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Highlights

• We propose an efficient probabilistic method to solve a fully deterministic problem—we present a randomized optimization
approach that drastically reduces the enormous computational cost of optimizing designs under many load cases for both
continuum and truss topology optimization. The proposed randomized optimization method with stochastic sampling requires
the solution of only a few (e.g., 5 or 6) finite element problems (large linear systems) per optimization step instead of hundreds
or more. The results show that the stochastic algorithm obtains similar final topologies and results (e.g., compliance) to those of
standard algorithms at a greatly reduced computational cost.

• We propose a damping scheme for the randomized approach based on simulated annealing. The results indicate that the damping
scheme is effective and leads to rapid convergence of the proposed algorithm.

• We present a stochastic version of the discrete filter for the ground structure method. The combination of the discrete filter with
the stochastic algorithm leads fewer linear solves with smaller systems, resulting in great computational Q3efficiency.

Abstract

We propose an efficient probabilistic method to solve a fully deterministic problem — we present a randomized optimization
approach that drastically reduces the enormous computational cost of optimizing designs under many load cases for both continuum
and truss topology optimization. Practical structural designs by deterministic topology optimization typically involve many load
cases, possibly hundreds or more. The optimal design minimizes a, possibly weighted, average of the compliance under each
load case (or some other objective). This means that, in each optimization step, a large finite element problem must be solved for
each load case, leading to an enormous computational effort. On the contrary, the proposed randomized optimization method with
stochastic sampling requires the solution of only a few (e.g., 5 or 6) finite element problems (large linear systems) per optimization
step. Based on simulated annealing, we introduce a damping scheme for the randomized approach. Through numerical examples
in two and three dimensions, we demonstrate that the stochastic algorithm drastically reduces computational cost to obtain similar
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final topologies and results (e.g., compliance) to those of standard algorithms. The results indicate that the damping scheme is
effective and leads to rapid convergence of the proposed algorithm.
c⃝ 2017 Published by Elsevier B.V.

Keywords: Topology optimization with many load cases; Stochastic sampling; Randomized algorithm; Trace estimator; Density-based method;
Ground structure method

Nomenclature

n f Number of monitored step for the discrete filter in the stochastic algorithm
ns Frequency to select a new sample
nstep Sample window size in the damping scheme
τstep Tolerance for the damping scheme
γ Scale factor in the damping scheme
R Effective step ratio in the damping scheme
αTop Resolution of the structural topology
αi Weighting factor for the i th load case
α f Discrete filter value
fi External force vector the i th load case
ui Displacement vector the i th load case
ξ Random vector with its entries drawn from the Rademacher distribution
ρ∗ Optimal solution obtained by the standard algorithm in the density-based method
x∗ Optimal solution obtained by the standard algorithm in the GSM
ρ̂

S Optimal solution obtained by the stochastic algorithm in the density-based method
x̂S Optimal solution obtained by the stochastic algorithm in the GSM
Nsolve Total number of linear systems solves in the optimization process
H Filter matrix for density
ρ Filtered density vector
p Penalization parameter in the density-based method
d Number of dimensions
E0 Young’s modulus of the solid material
F Weighted external force matrix
C Weighted compliance (objective function)
Ĉ Estimated objective function by the stochastic algorithm
K Global stiffness matrix
ρ(e) Density of element e (eth design variable in the density-based method)
L (e) Length of truss member e
M Number of elements in the mesh/initial ground structure
m Number of load cases
N Number of nodes in the mesh/initial ground structure
n Sample size
τopt Tolerance for the optimization process
U Weighted displacement matrix
v(e) Volume of element e
Vmax Prescribed maximum volume
x (e) Cross-sectional area of member e (eth design variable in the GSM)
xmin, xmax Lower and upper bounds for the cross-sectional area of the member in the GSM
ρmin Lower bound for density in the density-based method
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1. Introduction1

Structural topology optimizationQ4 is an important tool that, if properly used, can lead to significantly improved2

designs. In the field of structural topology optimization, designs accounting for many load cases are common3

practice [1]. Indeed, real-world structural designs, for example, high-rise buildings and long-span bridges, generally4

involve numerous load cases [1]. For the end-compliance minimization formulation, several methods that include5

many load cases have been published [2–4]. The main idea is to minimize a proper norm of the vector of compliances6

from all load cases. This paper concentrates on one popular method, the weighted sum formulation that minimizes a7

weighted sum of the vector of compliances from all load cases, which requires the solution of the structural equation8

for each load case. Another formulation that accounts for many load cases is the
∧
min–max formulation, which9

minimizes the worst-case compliance of all load cases, i.e., the infinity norm of the vector of compliances [4,5].10

This formulation also requires the solution of a large system of linear equations for each load case. Therefore, in11

terms of computational cost, it is similar to the aforementioned weighted sum formulation. In this paper, we propose12

a randomized algorithm that drastically reduces the computational cost. Similar techniques have been applied to solve13

inverse problems – see [6–8] and references therein, and least squares problems – see [9] and references therein.14

More general randomization techniques, especially randomized linear algebra, such as trace estimation and matrix15

decomposition, are discussed and surveyed in [10–13]. In [14], Avron and Toledo discuss and derive bounds on several16

trace estimators and prove a bound on the number of samples required to guarantee a chosen accuracy. Their results17

were improved and extended by Roosta-Khorasani and Ascher [15]. More recently, Saibaba et al. [16] presented18

randomized algorithms for estimates of the trace and determinant of positive semidefinite Hermitian matrices. Their19

algorithms yield more accurate estimates; but the estimates are not unbiased. We emphasize that the use of random20

samples in our algorithm does not reflect any uncertainty in the load cases but instead arises from a stochastic21

optimization approach that avoids solving for a large number of load cases in each optimization step. In our proposed22

algorithm, randomization is used to solve a deterministic optimization problem with deterministic loads that remain23

fixed throughout the optimization process. Thus, our randomized algorithm is conceptually different from robust24

topology optimization approaches (see, e.g., [17–19]), in which the uncertainty of the loads is characterized by25

probability distributions.26

The remainder of the paper is organized as follows. We finish this section with a brief review of the weighted27

sum formulation of the standard nested minimum end-compliance topology optimization with many load cases, using28

both the density based method and the ground structure method (GSM). Section 2 reviews the stochastic sampling29

techniques we use to estimate the trace of a general matrix and proposes the randomized algorithm for minimum30

end-compliance topology optimization under many load cases. Section 3 discusses the algorithmic parameters and31

introduces a damping scheme for the randomized algorithm. Section 4 presents numerical examples in two- and32

∧
three-dimensions highlighting the efficiency and effectiveness of the proposed algorithm, and Section 5 provides33

concluding remarks with suggestions for extending the work.34

1.1. Density-based topology optimization formulation with many load cases35

For a set of m given load cases fi , i = 1, . . . , m, the standard weighted sum formulation for the minimum end-36

compliance design with many load cases using the density-based method can be written as [4],37

min
ρ

C (ρ) = min
ρ

m∑
i=1

αi f T
i ui (ρ),

s.t.
M∑

e=1

v(e)ρ̄(e)
− Vmax ≤ 0,

0 < ρmin
≤ ρ(e)

≤ 1, e = 1, . . . , M,

with ui (ρ̄) = K(E (ρ̄))−1fi , i = 1, . . . , m.

(1)38

In this minimization problem, the objective function C is the weighted-average compliance of the corresponding39

structure, ρ ∈ RM is the vector of design variables (the density field), and M is the number of elements in the finite40

element mesh. We define ρ̄ and H as the filtered physical density and the filter matrix such that ρ̄ = Hρ [20]. In order41

to ensure a positive definite stiffness matrix K ∈ Rd N×d N , a lower bound ρmin is prescribed on ρ(e), where N is the42

number of nodes and d is the dimension of the problem, so d N is the number of degrees of freedom. The volume43
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(area) of element e is given by v(e), and Vmax is the prescribed upper bound on the total volume. The weight and the 1

displacement vector associated with load case fi ∈ Rd N are given by αi (αi > 0,
∑m

i=1αi = 1) and ui ∈ Rd N , 2

respectively. The Young’s modulus E is defined by, for example, the Solid Isotropic Material with Penalization 3

(SIMP) [21,22] approach. Other models, e.g., RAMP (Rational Approximation of Material Properties) [4,23], can 4

be used and would not alter the conceptual presentation of the topic. For the SIMP approach with the density filter, 5

we have E (e)
= Emin + [ρ̄(e)]p(E0 − Emin), where E0 and Emin are elastic moduli for solid material and Ersatz 6

material, respectively, and p is a penalization factor. The gradient (sensitivity) of the objective function corresponds 7

to a weighted sum of the sensitivities of each individual loading case, which can be expressed as 8

∇C (e)
ρ =

∂C
∂ρ(e) = −

m∑
i=1

αi u T
i

∂K
∂ρ(e) ui . (2) 9

The formulation (1) is known to be convex when p = 1 [24]. Using p > 1 to obtain a solid-void solution, one makes 10

the problem non-convex and, as expected, the solution obtained from the optimization algorithm may not be the global 11

minimum. 12

1.2. Ground-structure based formulation with many load cases 13

The standard weighted sum formulation for the minimum end-compliance design with the ground structure method 14

(GSM) under many load cases takes the following form, 15

min
x

C (x) = min
x

m∑
i=1

αi f T
i ui (x),

s.t.
M∑

e=1

L (e)x (e)
− Vmax ≤ 0,

0 < xmin
≤ x (e)

≤ xmax, e = 1, . . . , M,

with ui (x) = K(x)−1fi , i = 1, . . . , m.

(3) 16

The vector x ∈ RM is a vector of design variables, with component x (e) being the cross-sectional area of truss member 17

e. It is subject to lower bound xmin and upper bound xmax. Furthermore, M is the number of truss members in the 18

ground structure (GS), L (e) is the length of truss member e, and Vmax is the prescribed upper bound on the total 19

volume. For the i th load case fi ∈ Rd N , αi and ui ∈ Rd N are the corresponding weight factor and displacement 20

vector. As in the density-based method, the sensitivity of the objective function in the GSM is the weighted sum of 21

the sensitivities from each load case: 22

∇C (e)
x =

∂C
∂x (e) = −

m∑
i=1

αi u T
i

∂K
∂x (e) ui . (4) 23

The standard nested formulation of the end-compliance objective function with a single load case has been proven to 24

be convex in [25] for a positive definite stiffness matrix and in [26] for a positive semi-definite stiffness matrix. The 25

formulation (3) with multiple load cases is easily proved to be convex. 26

1.3. Synopsis 27

The optimization algorithm contains three main components: solving the structural equilibrium problem for a set 28

of given design variables, computing the gradient of the objective function, and updating the design variables. In this 29

paper, we use the density-based and GS
∧
methods — both methods utilize the Optimality Criterion (OC) algorithm [27] 30

as the update scheme, which only requires gradient information of the objective function and the volume constraint. 31

The convergence criterion for optimization used in formulations (1) and (3) is that the maximum change in design 32

variables drops below a given tolerance, τopt. 33

The overall computational cost of the standard optimization formulations (1) and (3) can be estimated by the total 34

number of structural equations (large linear system) solves, i.e., m × Nstep, where Nstep is the number of optimization 35

steps. For realistic three-dimensional (3D) problems, where the mesh size, the number of design variables, and the 36

number of load cases are large, the associated computational cost is enormous. Thus, in this paper, we propose a 37
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randomized approach that reduces the problem with many load cases (m) to a sequence of optimization steps with1

only a few load cases (n ≪ m) to solve per step and that yields results similar to those from the standard weighted2

sum approach.3

2. Stochastic sampling and topology optimization4

This section proposes a stochastic sampling approach for the minimum end-compliance topology optimization5

formulations with many load cases. First, we briefly review a stochastic sampling technique to estimate the trace6

of a general matrix. Then, the stochastic sampling technique is applied to the minimum end-compliance topology7

optimization with many load cases using both density-based and GS methods.8

2.1. Stochastic sampling of matrices9

For a general matrix A ∈ Rq×q , stochastic sampling techniques can be used to estimate the trace of A. We10

discuss one popular approach here, the Hutchinson trace estimator [10], but several alternatives exist, e.g., the11

Gaussian estimators and unit vector estimators—see [14,15] and references therein. Let ξ ∈ Rq be a random vector12

containing entries that are independent and identically distributed (i.i.d.) with value ±1 each with probability 1/2.13

This distribution is known as the Rademacher distribution. It follows immediately that, for each entry, the expectation14

E (ξi ) = 0. Since the entries are independent, the expectation of ξiξ j is given by,15

E
(
ξiξ j

)
=

{
0, i ̸= j,
1, i = j. (5)16

Now consider the expectation of the random variable ξ T Aξ ,17

E
(
ξ T Aξ

)
= E

( q∑
i=1

q∑
i=1

ξi Ai jξ j

)
=

q∑
i=1

q∑
i=1

Ai jE
(
ξiξ j

)
. (6)18

Since E
(
ξiξ j

)
= 1 only when i = j , and 0 otherwise, we get19

E
(
ξ T Aξ

)
=

q∑
i=1

Ai i = trace (A) . (7)20

As a result, the trace of a given matrix A can be estimated using random samples. Here, we utilize the sample average21

approximation (SAA) technique, see, e.g., [28], which approximates the expected value by the average. The sample22

average or empirical mean for n samples (or realizations) ξ 1, ξ 2, . . . , ξ n , of the random variable ξ is defined as23

ES
(
ξ T Aξ

)
=

1
n

n∑
k=1

ξ T
k Aξ k . (8)24

According to the Law of Large Numbers (LLN) [29], as the number of (independent) samples n approaches ∞, the25

sample average ES
(
ξ T Aξ

)
converges to the expectation E

(
ξ T Aξ

)
, which is the trace of A,26

ES
(
ξ T Aξ

)
=

1
n

n∑
k=1

ξ T
k Aξ k → E

(
ξ T Aξ

)
= trace (A) . (9)27

The use of trace estimators can be highly efficient if the matrix A is not explicitly available and its computation is28

expensive. We also have that ES
(
ξ T Aξ

)
is an unbiased estimator of E

(
ξ T Aξ

)
[28]. Since the expected accuracy of29

such estimates is given by the variance, the goal is to obtain the estimates with the smallest variance. The Rademacher30

distribution, from which we choose the random vectors ξ , was shown in [10] to be the distribution that yields the31

smallest variance. Other studies rank various trace estimators differently according to criteria other than the variance.32

For further information, readers are referred to, e.g., [14,15]. For a symmetric matrix A, the variance of ξ T Aξ is33
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derived as 1

Var
(
ξ T Aξ

)
= E

{[
ξ T Aξ − E

(
ξ T Aξ

)]2
}

= E

⎧⎪⎨⎪⎩
⎡⎣ q∑

i=1

q∑
j=1

ξi Ai jξ j −

q∑
i=1

Ai i

⎤⎦2
⎫⎪⎬⎪⎭

= E

⎧⎪⎨⎪⎩
⎡⎢⎣ q∑

i, j=1
i ̸= j

ξi Ai jξ j

⎤⎥⎦
2⎫⎪⎬⎪⎭ = E

⎧⎪⎨⎪⎩
q∑

i, j=1
i ̸= j

q∑
k,l=1
k ̸=l

Ai j Aklξiξ jξkξl

⎫⎪⎬⎪⎭
=

q∑
i, j=1
i ̸= j

q∑
k,l=1
k ̸=l

Ai j AklE
{
ξiξ jξkξl

}
=

q∑
i, j=1
i ̸= j

q∑
k,l=1
k ̸=l

Ai j Akl(δikδ jl + δilδ jk)

=

q∑
i, j=1
i ̸= j

(Ai j Ai j + Ai j A j i ) = 2
q∑

i, j=1
i ̸= j

A2
i j ,

(10) 2

where δi j is the Kronecker delta function. In addition, the standard deviation of ξ T Aξ is given by 3

Dev
(
ξ T Aξ

)
=

√
Var

(
ξ T Aξ

)
=

√2
q∑

i, j=1
i ̸= j

A2
i j . (11) 4

The variance and standard deviation can be estimated using a finite number of samples. Given the samples above, we 5

define the sample variance and sample standard deviation as 6

VarS
(
ξ T Aξ

)
=

1
n

n∑
k=1

[
ξ T

k Aξ k −
1
n

n∑
ℓ=1

ξ T
ℓ Aξ ℓ

]2

, (12) 7

and 8

DevS
(
ξ T Aξ

)
=

√1
n

n∑
k=1

[
ξ T

k Aξ k −
1
n

n∑
ℓ=1

ξ T
ℓ Aξ ℓ

]2

. (13) 9

Below, we use these derivations for estimating the objective function (the compliance), as well as its gradient or 10

sensitivity. A key issue for efficiency is that both can be estimated with the same set of random vectors. 11

2.2. Randomized topology optimization with stochastic sampling 12

We apply the stochastic sampling technique to both the density-based method and the GSM. The basic idea is 13

to replace the compliance and its gradient by stochastic estimates and to use these estimates in the optimization 14

algorithm. 15

2.2.1. Density-based method 16

Consider the standard topology optimization formulation in (1) with m load cases fi , i = 1, . . . , m, and 17

corresponding weights αi . We define a weighted load matrix F ∈ Rd N×m as F =
[√

α1 f1, . . . ,
√

αm fm
]
. In a similar 18

fashion, we define the weighted displacement matrix U ∈ Rd N×m
=
[√

α1 u1, . . . ,
√

αm um
]
, whose columns are the 19

corresponding displacement fields. The matrix U is defined by the equilibrium equation, U = K −1F. So, we can write 20

the end-compliance and its sensitivities as traces of the symmetric matrices 21

C (ρ) =

m∑
i=1

αi f T
i ui = trace

(
F T U

)
= trace

(
F T K −1F

)
(14) 22

and 23

∇C (e)
ρ = −

m∑
i=1

αi u T
i

∂K
∂ρ(e) ui = − trace

(
U T ∂K

∂ρ(e) U
)

= − trace
(

F T K−1 ∂K
∂ρ(e) K−1F

)
. (15) 24
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With the random variable ξ as defined above, the end-compliance and the topology optimization problem can be1

expressed as2

C (ρ) = trace
(
F T K−1F

)
= E

(
ξ T F T K−1Fξ

)
= E

[
(Fξ)T K−1 (Fξ)

]
, (16)3

and4

min
ρ

C (ρ) = min
ρ

E
[
(Fξ)T K(ρ)−1 (Fξ)

]
,

s.t.
M∑

e=1

v(e)ρ(e)
− Vmax ≤ 0,

0 < ρmin
≤ ρ(e)

≤ 1, e = 1, . . . , M.

(17)5

The sensitivity of the objective function can be expressed as6

∇C (e)
ρ = − trace

(
F T K−1 ∂K

∂ρ(e) K−1F
)

= −E
[
(Fξ) T K−1 ∂K

∂ρ(e) K−1 (Fξ)

]
. (18)7

Eqs. (17) and (18), stated as a stochastic programming problem, are equivalent to the standard formulation (1) and (2).8

We approximate the compliance and its gradient by replacing their expectation in the equations above by its sample9

average estimate. Given the i.i.d. random sample ξ 1, ξ 2, . . . , ξ n as n realizations of the random vector ξ , we define10

Ĉ S (ρ) =
1
n

n∑
k

(
Fξ k

)T K(ρ)−1 (Fξ k
)
, (19)11

and12

(∇Ĉ S
ρ )(e)

= −
∂Ĉ S

∂ρ(e) =
1
n

n∑
k=1

(
Fξ k

)T K−1 ∂K
∂ρ(e) K−1 (Fξ k

)
. (20)13

We remark that Ĉ S (ρ) and ∇Ĉ S
ρ are unbiased estimators for the compliance and its gradient. By the LLN, Ĉ S (ρ) →14

C (ρ) and ∇Ĉ S
ρ → ∇Cρ (with probability 1) for any feasible ρ as n → ∞ [30].15

Within each step of the optimization algorithm, we use the same random vectors to estimate the compliance and its16

gradient using (19) and (20). However, to avoid convergence for a specific random load case, a new set of n random17

vectors is selected at each optimization step. If n ≪ m, our proposed algorithm reduces the computational cost from18

m × Nstep to roughly n × Nstep if the convergence of the optimization is not affected.19

The idea to approximate the gradient and the objective function in a structural optimization problem is similar20

to the use of stochastic gradient-based methods in other areas, e.g., stochastic gradient descent (SGD) [31],21

and stochastic meta-descent (SMD) [32], which are optimization methods mainly for unconstrained optimization22

problems. Stochastic gradient methods use small sub-samples (also referred as mini-batches) to estimate the gradient23

and have been applied in other fields, such as large-scale machine learning [33,34]. For our application, the SAA24

gradient estimate always has a positive angle with the gradient, and hence the negative SAA gradient estimate25

is a descent direction for the unconstrained case. We demonstrate numerically how effective the approximation26

is in Section 4. Because the optimization problem for the density-based method with penalization is non-convex,27

deterministic gradient-based methods may not converge to the global minimum (as expected). The randomized28

approach leads to solutions that are (roughly) as accurate in terms of the end-compliance as those from the standard29

weighted sum approach. This is demonstrated by the results in Section 4.2.30

In general, for stochastic gradient methods, a damping or averaging scheme (also referred to as a decay schedule31

of the scalar gain or gain vector adaptation) is needed to achieve convergence [34]. Various damping or averaging32

methods for step sizes have been proposed for different types of problems [35]. For the structural optimization33

problems in this paper, we propose a damping scheme that adjusts the move limits (reminiscent of a trust region),34

which especially befits the structural optimization framework. The idea of the proposed damping scheme is similar to35

adjusting the size of the update in simulated annealing [36,37] and is discussed in detail in Section 3.1. Robbins and36

Monro [31] have given conditions for the convergence of stochastic gradient methods that use such damping schemes;37

see also [34]. A more recent (and very accessible) paper discussing the convergence of stochastic gradient methods in38

detail, and considering more general cases than Robins and Monro [31], is the one by Bottou, Curtis and Nocedal [38].39
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The numerical results (see Section 4) show that the convergence of the proposed approach is typically rapid if 1

our damping scheme is properly used, roughly as fast as for the standard weighted sum approach and sometimes 2

faster. Since the randomized approach solves only n linear systems at each optimization step, compared with m for 3

the standard weighted sum approach, and n ≪ m, the proposed randomized approach is computationally much more 4

efficient. Moreover, randomized approaches with a proper damping scheme can be more robust in finding the global 5

minimum for non-convex optimization problems than deterministic algorithms. We demonstrate this with numerical 6

examples in Section 4. In general, such increased robustness comes at the price of slower convergence. 7

To analyze the effects of randomization on the proposed approaches, we consider the variance and sample variance 8

for the compliance estimate and its gradient. 9

Var
[
(Fξ )T K−1(Fξ )

]
= 2

m∑
i, j=1
i ̸= j

(
FT K−1F

)2
i j , (21) 10

and 11

Var
[
(Fξ)T K−1 ∂K

∂ρ(e) K−1 (Fξ)

]
= 2

m∑
i, j=1
i ̸= j

(
FT K−1 ∂K

∂ρ(e) K−1F
)2

i j
. (22) 12

Similarly, the sample variance of the compliance and its gradient can be expressed as 13

VarS
[
(Fξ)T K−1 (Fξ)

]
=

1
n

n∑
k=1

(
ξ T

k FT K−1Fξ k −
1
n

n∑
ℓ=1

ξ T
ℓ FT K−1Fξ ℓ

)2

, (23) 14

and 15

VarS

[
(Fξ)T K−1 ∂K

∂ρ(e) K−1 (Fξ)

]
16

=
1
n

n∑
k=1

(
ξ T

k F T K−1 ∂K
∂ρ(e) K−1Fξ k −

1
n

n∑
ℓ=1

ξ T
ℓ F T K−1 ∂K

∂ρ(e) K−1Fξ ℓ

)2

. (24) 17

2.2.2. Ground structure method 18

A randomized version of the optimization problem for the GSM with the weighted force matrix F is analogous to 19

that for the density-based method (17). The minimization problem for the GSM is given by 20

min
x

C (x) = min
x

E
[
(Fξ)T K(x)−1 (Fξ)

]
,

s.t.
M∑

e=1

L (e)x (e)
− Vmax ≤ 0,

0 < xmin
≤ x (e)

≤ xmax, e = 1, . . . , M,

(25) 21

and the sensitivity of the objective function can be expressed as, 22

∇C (e)
x = −E

[
(Fξ) T K−1 ∂K

∂x (e) K−1 (Fξ)

]
. (26) 23

Here too, we replace the objective function and its gradient by their sample average approximation. Using the same 24

assumptions, for an i.i.d. random sample ξ 1, ξ 2, . . . , ξ n , the compliance C (x) and its gradient can be estimated by 25

Ĉ S (x) =
1
n

n∑
k

(
Fξ k

)T K(x)−1 (Fξ k
)
, (27) 26

and 27

(∇Ĉ S
x )(e)

=
∂Ĉ S

∂x (e) = −
1
n

n∑
k=1

(
Fξ k

)T K−1 ∂K
∂x (e) K−1 (Fξ k

)
, (28) 28
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where Ĉ S (x) and (∇Ĉ S
x )(e) are the estimated compliance and estimated sensitivity of the corresponding structure1

analogous to (19) and (20). The variance and sample variance of the objective function and its sensitivity take the2

same form as (21)–(24), and therefore are not listed. Since the standard optimization formulation for the GSM is3

convex, it has a unique global minimum. Hence, we expect the approximated minima obtained with the randomized4

method to be equal to or larger than the one obtained from the standard formulation. This is confirmed by the results5

in Section 4.6

We conclude this subsection by making a remark on the flexibility of our proposed randomized algorithm for7

topology optimization. This algorithm can be combined with many types of update schemes that are based on gradient8

information, such as the Optimality Criterion (OC) method [27] and the Method of Moving Asymptotes (MMA) [39].9

In this work, because the estimated sensitivities in (20) and (28) are guaranteed to be non-positive, we adopt OC as10

the update scheme for both continuum and truss topology optimization. The OC method is a highly efficient update11

scheme that is tailored for self-adjoint problems and widely used in topology optimization: see, e.g. [40–42].12

2.3. Discrete filter for ground structure method with stochastic sampling13

In the GSM, a discrete filter similar to the filter proposed in [43] (see below) is applied to the truss topology14

optimization with both the standard and the randomized algorithms to extract valid structures out of ground structures.15

The use of the discrete filter reduces the number of redundant bars and the size of the structural problem within each16

solve, which reduces the cost of subsequent optimization steps. For the standard multiple load case optimization17

problem (3), the discrete filter can be expressed as18

Filter
(
xk, α f

)
=

⎧⎨⎩0, if
x(e)

k

max (xk)
< α f < 1,

x (e), otherwise,
(29)19

where α f is the prescribed filter value and x (e)
k is the design variable for truss member e at the kth step. The discrete20

filter is applied to the GS at each step and removes the truss members with areas smaller than the filter parameter α f .21

For the randomized algorithm for the GSM, we define a discrete filter that slightly differs from the standard discrete22

filter. To avoid inadvertent removal of truss members due to an (occasional) poor estimate in the randomized algorithm,23

the discrete filter removes truss members only when their areas have remained below the prescribed filter value for n f24

steps, namely,25

Filter S (xk, α f
)

=

⎧⎪⎪⎨⎪⎪⎩
0, if max

⎛⎝ x(e)
k−n f

max
(
xk−n f

) , . . ., x(e)
k

max (xk)

⎞⎠ < α f < 1,

x (e), otherwise,

(30)26

where Filter S(xk, α f ) denotes the filter for the randomized algorithm, and n f is a chosen number of monitored steps27

(see the discussion of parameters below). The use of the filter for the randomized algorithm (Filter S) leads to a more28

efficient GSM with stochastic sampling than if the filter were not used (see numerical examples section).29

3. A damping scheme and algorithmic parameters for randomized optimization30

This section introduces a damping scheme to facilitate convergence and demonstrates the effectiveness of this31

scheme through a three-truss example. We further discuss the algorithmic parameters that are used in the proposed32

randomized optimization framework and comment on the range of values chosen for those parameters.33

3.1. The proposed damping scheme: effective step ratio and step size reduction34

In the randomized algorithm, the structure must be adjusted based on the random linear combination of load35

cases that changes at each optimization step. Therefore, the convergence criteria commonly used for the standard36

structural optimization framework are insufficient for the proposed framework. Based on ideas from simulated37

annealing [36,37], we propose a damping scheme that evaluates the average progress per step and reduces the move38
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Fig. 1. Three-bar truss structure under 9 load cases: initial ground structure, load and boundary conditions.

limit (similar to the scalar gain in SGD) accordingly. We define the effective step ratio R as follows (using the GSM 1

notation): 2

R =

1
nstep

∥
(
xk − xk−nstep+1

)
∥

∥xk − xk−1∥
, (31) 3

where nstep is the sample window size (see below). The average step size over a sample window is divided by the 4

current step length. This effective step ratio serves as an indicator of the optimizer’s status, i.e., the ratio is relatively 5

large when the optimizer is making progress; and relatively small (typically smaller than 0.1) when the step is not 6

effective. Once R is below a prescribed tolerance τstep, i.e., R < τstep, we reduce the allowable move limit of the 7

optimizer by a prescribed scale factor γ . The move limit is not adjusted in the first nstep optimization steps. 8

The effectiveness of the damping scheme is illustrated through a simple numerical example for the GSM. This 9

example is not representative for the effectiveness of the randomized algorithm; it was selected to emphasize the 10

poor performance of the randomized optimization algorithm without a damping scheme. We consider a three-truss 11

structure supported at their left ends and subjected to a set of 9 equal-weighted load cases, f1, . . . , f9, at their right 12

joint, as shown in Fig. 1. The problem formulation is given as follows: 13

min
x

C (x) =

9∑
i=1

f T
i ui (x),

s.t.
3∑

e=1

L (e)x (e)
− Vmax ≤ 0,

0 < xmin
≤ x (e)

≤ xmax, e = 1, . . . , 3,

with ui (x) = K(x)−1fi , i = 1, . . . , 9.

(32) 14

We set the volume constraint as Vmax = 0.1, and take initial guess as x (e)
0 = Vmax/

∑
e L (e)

= 0.0278, for e = 1, 2, 3. 15

In addition, we choose the lower and upper bounds to be x (e)
min = 10−8x (e)

0 and x (e)
max = 104x (e)

0 , respectively. The 16

initial move limit is taken as move = 10−1x (e)
0 . The tolerance for convergence of the optimization is 10−8. For the 17

randomized algorithm, we choose the sample size as n = 6 (i.e., 6 sample load cases), and select a new sample at 18

each iteration. 19

We use the proposed randomized algorithm with and without the damping scheme. The contour plots of the 20

objective function with the optimization history of x (1) and x (2) (x (3) can be computed from the volume constraint 21

because, in practice, the sum of volumes will always be equal to Vmax) for both cases are shown in Fig. 2(a) and 22

2(b). The optimization history from the standard weighted sum approach is plotted for reference. The standard 23

approach obtains the global minimum of the given problem within 25 steps where x∗
=

[
x (1), x (2), x (3)

]T
= 24

[0.0344, 0.0290, 0.0132]T and C (x∗) = 8.1666. The randomized algorithm without damping does not converge, 25
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Fig. 2. Illustration of the damping scheme in the three-bar truss example: contour plots of the objective function with the optimization history of
x (1) and x (2) for (a) the standard weighted sum approach and the randomized approach without a damping scheme; (b) the standard weighted sum
approach and the randomized approach with the proposed damping scheme. (c) The angle between the reduced gradient vectors of the objective
function and the volume constraint.

and the updates become ineffective after roughly 10 steps (Fig. 2a). The randomized algorithm with our damping1

scheme converges to x̂S
= [0.0343, 0.0290, 0.0134]T with C (̂xS) = 8.1667. The results are summarized in Table 1.2

This is close to the optimal solution obtained by the standard algorithm. For this small problem, we use nstep = 10,3

τstep = 0.05, and γ = 2. Since the solution of this example is relatively trivial, the randomized algorithm with4

our damping scheme converges slower than the standard algorithm. For more complicated and realistic problems5

(e.g., examples in Section 4), the convergence rates for the randomized and standard algorithms are comparable.6
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Table 1
Solution of the 3-bar truss of Fig. 1 using the standard GSM and the GSM
with stochastic sampling and damping.

Standard GSM Randomized
GSM w/ damping

x (1) 0.0344 0.0344
x (2) 0.0290 0.0290
x (3) 0.0132 0.0134

C∗ 8.1666 8.1667

To verify that the solution from the randomized algorithm with damping converges to a KKT
∧
(Karush–Kuhn– 1

Tucker) point (optimal solution in case of the GSM), we examine the angle θA between ∇CA (reduced gradient vector 2

of the objective function) and LA (reduced gradient vectors of the volume constraint) for the standard algorithm, and 3

randomized algorithm with and without damping, as shown in Fig. 2(c). The solution is a KKT point if θA
= π . 4

For the standard algorithm, θA converges quickly to π . For the randomized algorithm with damping, θA gradually 5

converges to π (the case without damping does not converge). Hence, we numerically show that the solution from the 6

randomized algorithm with damping converges to the optimal solution in the truss optimization framework. 7

3.2. Overview of algorithmic parameters for randomized optimization 8

This subsection summarizes the important parameters that are used in the randomized optimization framework, 9

with some comments on the possible range of values to be used in practice. 10

Sample size. In the proposed randomized optimization framework, the larger the number of sample load cases n, the 11

more accurate the estimate of the compliance will be. However, the computational cost increases with the number 12

of sample load cases, because in each optimization step we need to solve n systems of equations. Thus, we need to 13

balance the accuracy of the estimates and the computational complexity. Typically, the results from the randomized 14

algorithm are relatively insensitive to the number of sample load cases. Indeed, with a small number of sample load 15

cases (n ≪ m) we obtain solutions comparable to those from the standard algorithm in terms of topology and 16

compliance value, and sometimes even better in terms of compliance value. It seems that for these problems the 17

estimated gradient is fairly accurate even for small sample sizes. This is also demonstrated in the numerical examples 18

in the next section. To provide some insight into the choice of sample size, a study is conducted using different 19

sample sizes in Section 4.1. For the examples in the remainder of this paper, we choose the number of sample load 20

cases n = 6, unless otherwise stated, to demonstrate the accuracy and computational efficiency of the randomized 21

optimization framework. 22

Frequency to select a new sample. The frequency to select a new sample, ns , or the number of optimization steps with 23

a fixed random sample, influences the convergence rate of the optimization. If the frequency is too low, optimization 24

steps are influenced too much by specific sets of random loads, and convergence may be slow. In this work, we select 25

a new random sample every step, i.e., ns = 1. 26

Filter parameters. Applying the discrete filter in the GSM reduces the number of redundant bars, which drastically 27

reduces the computational cost, for both standard and randomized algorithms. The discrete filter for the randomized 28

algorithm, as discussed in Section 2.3, also helps to limit the effects of the stochastic estimates. For the randomized 29

algorithm, we choose a relatively small filter size α f = 10−4 and remove truss members when their cross-sectional 30

areas have remained below α f for n f = 10 cumulative steps. Further details about the filter parameters can be found 31

in the paper by Ramos Jr. and Paulino [43]. 32

Parameters in the damping scheme. The damping scheme introduced in Section 3.1 has four parameters, the 33

effective step ratio (R), the sample window size (nstep), the tolerance (τstep), and the scale factor (γ ). The parameter 34

choices in this damping scheme are crucial to the quality of the final solution. We average over a moving window. As 35

the window size nstep increases, we average over more steps. If nstep is too large, it slows down convergence because 36

the algorithm adapts more slowly. In practice, we have found nstep = 100 is sufficient for problems containing more 37
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than one thousand design variables. At the start of the optimization, the number of steps after which we start to dampen1

the allowable moving limit is typically chosen to be the same as the window size.2

The tolerance for the effective step ratio, τstep, serves as a threshold to determine when updates become ineffective.3

Therefore, the choice of τstep affects the rate of convergence and sometimes the quality of the solutions. In general,4

a loose tolerance leads to faster convergence (reduces the move limit more frequently) at the expense of the quality5

of design (in terms of the compliance value). One must balance the quality of the results and the convergence rate.6

The GSM is more sensitive to τstep than the density-based method. This is demonstrated in Section 4.1. Therefore,7

a stricter tolerance is needed for the GSM. In practice, we choose τstep = 0.05 for the GSM and τstep = 0.1 for the8

density-based method. For the moving limit scale factor γ , we have found that γ = 2 is typically a good choice.9

4. Numerical examples10

We present several numerical examples in both two and three dimensions to demonstrate the effectiveness as well11

as the computational efficiency of the proposed randomized algorithm for topology optimization. Both density-based12

method and GSM are used. The first two examples (Section 4.1) investigate the sensitivity of the density-based method13

and the GSM to the tolerance τstep (see Eq. (31)). Moreover, Example 1 (Section 4.1.1) shows the relation between14

sample size and quality of the optimized design. Example 2 (Section 4.1.2) illustrates the effect of the discrete filter15

in the GSM for the proposed randomized algorithm. The last two examples (Sections 4.2 and 4.3) in 3D demonstrate16

the capability of the proposed algorithm to create practical structural designs at greatly reduced computational cost.17

To quantify the computational cost of the standard and randomized optimization algorithms, we define Nsolve =18

n × Nstep as the total number of linear systems of equations to solve in the optimization process, where Nstep is the19

number of optimization steps. This is a measure of the computational efficiency of an optimization formulation. The20

optimization process is considered converged if the current step size (bounded by the move limit) is below a prescribed21

tolerance τopt for the optimization process, that is, ∥xk − xk−1∥ < τopt.22

For the density-based method (continuum), we incorporate the proposed technique into the computer program23

PolyTop [44] in 2D and the topology optimization code in 3D [45]. For plotting 3D continuum results, we utilize24

TOPSlicer [46]. All the problems are initialized as follows. The initial guess is taken as ρ
(e)
0 = Vmax/M , where M is25

the number of elements in the finite element mesh. The convergence tolerance is τopt = 10−2; the initial move limit is26

chosen as move = 0.05; the damping factor for the OC update scheme is η = 0.5. We use a continuation scheme, in27

which the penalization factor starts at p = 1 and each time increases by 0.5 until p = 3 (for 2D problems [44]) or 428

(for 3D problems [46]). For example, p = [1, 1.5, 2, 2.5, 3].29

For the GSM (truss-layout), we generate initial ground structures (without overlapped bars) using the collision30

zone technique from Refs. [47,48] and plot final topologies in 3D using the program GRAND3 [48]. The initial guess31

of the design variables is taken as x (e)
0 = Vmax/

∑M
e=1L (e); the convergence tolerance is τopt = 10−8; the initial move32

limit is chosen as move = x (e)
0 × 104; the damping factor for the OC update scheme is η = 0.5. When the discrete33

filter is used in the GSM, we use n f = 10 and α f = 10−4 during the optimization process, unless otherwise stated; the34

lower and upper bounds on the design variables are xmin = 0 and xmax = 104x0 (unbounded in practical terms). For35

the standard GSM (without the discrete filter), we apply a cut-off value 10−2 that defines the final structure at the end36

of the optimization [49]. The lower and upper bounds are defined by xmin = 10−2x0 and xmax = 104x0, respectively.37

For all results in the GSM, we remove unstable nodes and floating bars and then check the final topologies to ensure38

that they are at global equilibrium
∧
— a detailed explanation can be found in Ref. [50].39

In both the continuous and truss-layout optimization, the randomized algorithm uses the following parameters.40

Unless otherwise stated, the sample size is chosen to be n = 6; in the damping scheme, the window size is nstep = 100,41

and we use step size reduction factor γ = 2. For the density-based method, we use a tolerance for the effective step42

ratio τstep = 0.1, and for the GSM we use τstep = 0.05. Let ρ∗ and x∗ represent the optimal solutions of the standard43

formulations in (1) and (3), ρ̂S and x̂S represent the optimal solutions obtained from the randomized algorithm for44

density-based and GS methods. To evaluate the quality of the solutions, in the case of the randomized algorithm, we45

present the true values of the objective function C (̂ρS) and C (̂xS) at the approximated solutions ρ̂S and x̂S (instead of46

their estimators Ĉ S (̂ρS) and Ĉ S (̂xS)) and compare them with those obtained from the standard algorithm C(ρ∗) and47

C(x∗). The relative difference is defined as ∆C =
(
C (̂xS) − C(x∗)

)
/C(x∗).48
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Fig. 3. Two-dimensional box domain with load and support conditions. A total of 108 equal-weighted load cases are applied at three given points
with each point having 36 load cases applied from 0◦ to 350◦ (dotted arrows are the schematic illustrations of non-active load cases).

4.1. Two-dimensional box domain with 108 load cases 1

We present a two-dimensional (2D) topology optimization problem whose design domain and boundary conditions 2

are shown in Fig. 3. A total of 108 equal-weighted load cases are applied at three given points, with each point having 3

36 load cases applied along different angles (from 0◦ to 350◦). In this section, both the density-based and the GS 4

methods are used. 5

4.1.1. Example 1: Continuum topology optimization with density-based method 6

Using the density-based method, we demonstrate the reduction of the computational cost by means of the 7

randomized algorithm. We further investigate the sensitivity of the final optimized topologies to the tolerance τstep 8

in the damping scheme and the sample size n. Since the final topology from the standard algorithm is symmetric both 9

horizontally and vertically, we enforce symmetry of the topologies in the randomized case by enforcing horizontal 10

and vertical symmetry of the distribution of the density field [44]. A total number of 25,600 quadrilateral elements 11

are used to discretize the domain which gives 52,002 degrees of freedom (DOFs). The linear density filter that defines 12

the solid-void boundary takes the radius of 1 (see Section 1.1). For comparison purposes, the final topology obtained 13

from the standard topology optimization is shown in Fig. 4(a). The final topology has C(ρ∗) = 3.257 and converges 14

after 1048 steps. In each optimization step, we solve 108 linear systems (corresponding to 108 load cases), which 15

leads to a total 113,184 solves. Since the continuation method is used for the penalization factor, p, the jumps in the 16

compliance correspond to p = 1.5, 2.0, 2.5, 3.0 (initially p = 1.0) [44]. 17

To investigate the sensitivity to τstep, we consider τstep = 0.1 and τstep = 0.05, and the results are compared with 18

that from the standard algorithm [4]. For both cases, the number of sample load cases used is n = 6. Fig. 4(b) and 19

(c) show the optimized topologies for the randomized algorithm for a single representative trial (one trial is one run 20

of the numerical experiment) for each τstep, and Fig. 4(d) shows the convergence histories of the objective function 21

for all cases for the representative trial. Since the sample load cases are generated randomly at each step, the final 22

optimized topology and its compliance vary slightly with each trial. Therefore, the associated results in Table 2 are 23

averaged over 5 trials. For the randomized algorithm, we also report the standard deviations of the compliance for 5 24

∧
trials — the standard deviations for all the cases are small, indicating that the randomized algorithm generates results 25

with similar compliance in every instance. For this example, the standard algorithm leads to a lower compliance and 26

simpler topology. However, the randomized algorithm for both tolerances uses substantially fewer solves for final 27
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Table 2
Results for Example 1 (density-based), averaged over 5 trials.

Density-based C(ρ∗) C (̂ρS) ∆C DevS(C (̂ρS)) τstep cos θ̄ n Nstep Nsolve

Standard 3.257 – – – – – – 1048 113,184
Stoch. τstep = 0.05 – 3.315 1.79% 2.00E − 2 0.05 0.971 6 1052 6312
Stoch. τ step=0.1 – 3.337 2.45% 9.17E − 3 0.1 0.971 6 695 4,170
Stoch. n = 4 – 3.389 4.05% 2.15E − 2 0.1 0.959 4 618 2,472
Stoch. n = 5 – 3.356 3.05% 3.28E − 3 0.1 0.967 5 684 3,420
Stoch. n = 7 – 3.334 2.36% 2.84E − 2 0.1 0.976 7 684 4,788
Stoch. n = 20 – 3.291 1.05% 3.33E − 3 0.1 0.991 20 838 16,760
Stoch. n = 50 – 3.278 0.65% 8.13E − 3 0.1 0.996 50 850 42,500

topologies similar to the one obtained with the standard algorithm. For τstep = 0.1, the number of linear systems to1

solve is 27 times fewer than for the standard algorithm (113,184 solves vs. 4170 solves), and the convergence of the2

optimization is more rapid. The final topologies obtained for the two tolerances and the compliance for each case (see3

Fig. 4) suggest that the tolerance in the damping scheme has a minor influence on the final results in the density-based4

method. The relative differences between the compliance for the standard algorithm and those for the randomized5

algorithm are 1.79% for τstep = 0.05 and 2.45% for τstep = 0.1. It seems that smaller τstep leads to slower convergence6

but a slightly better compliance: the optimization with τstep = 0.05 takes an average 1052 steps to converge while7

the one with τstep = 0.1 takes an average 695 steps. Therefore, the latter is more computationally efficient with only8

Nsolve = 4170 compared with Nsolve = 6312 for the former one.9

Next, we check the quality of the estimated gradients by plotting the angle between the true gradient and the10

estimated gradient. The very small angles show that the estimated gradient is about as effective as the true gradient,11

and that the negative estimated gradient is a descent direction. As shown in Fig. 4(e) and (f), we plot the angle (θ ),12

and the cosine of the angle (cos θ ), between the gradient and the estimated gradient for each of the two tolerances for13

one representative trial. The moving averages (over 50 steps) of cos θ , in both cases, are close to 1.0.14

The next study demonstrates the influence of sample sizes on optimization results and the reduction of the15

computational cost by using the randomized algorithm. In this study, τstep = 0.1. Fig. 5 gives the compliances for16

sample sizes n = 4, 5, 6, 7, 20, 50 and final topologies (from one representative trial). Each data point in Fig. 5 is17

obtained by averaging 5 trials, and the data are summarized in Table 2. Several observations can be made based on18

Fig. 5 and Table 2. For one, the randomized algorithm leads to similar optimal topologies and compliances compared19

with the standard algorithm. For n = 4, Nsolve is significantly smaller than for the standard algorithm, by a factor of20

45 on average. Moreover, the compliance improves as we increase n, indicating that larger n offers better estimation21

during the optimization and ultimately yields stiffer optimal structures. However, Nsolve also increases as we use more22

sample load cases. From the optimized structures and compliances, it seems that n = 6 is sufficient for this problem23

with greatly reduced computational cost. The compliance differs from the standard algorithm by only 2.45%. Table 224

shows that the cosine of the average angle between the gradient and the estimated gradient, cos θ̄ , ranges from 0.95925

and 0.996 for various sample sizes. Using the randomized algorithm, we can almost fully recover the original optimal26

results by either increasing the sample size (e.g., n = 50) or choosing smaller τstep, as both methods lead to highly27

accurate designs.28

4.1.2. Example 2: Truss topology optimization with ground structure method29

As example 2, we study again the problem presented in Fig. 3, but this time using the GSM. We demonstrate that30

our approach greatly reduces the total number of linear solves. In addition, we investigate the sensitivity of the results31

to τstep as well as the influence of the discrete filter on final solutions of the randomized algorithm. We use a full-level32

GS (6 × 4 grid) with 2196 non-overlapped bars to discretize the domain [47,48]. The optimal topology and the33

convergence of the compliance for the standard algorithm are shown in Fig. 6(a) and (d). The optimal compliance for34

the standard algorithm, C (x∗) = 4.219, is obtained in 406 steps and Nsolve = 43, 308. For the randomized algorithm,35

we compare two cases using different tolerances in the damping scheme, τstep = 0.05 and τstep = 0.1. The results are36

summarized in Table 3, averaged over 5 trials. The optimized structures and the convergence of the compliance for a37

single representative trial are shown in Fig. 6(b)–(d).38

In contrast to the results for the density-based method in Section 4.1.1, the results for the GSM indicate that the39

choice of τstep has a significant impact on the optimized structure. Although τstep = 0.05 results in a larger number40
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a

b

c

e

d

f

Fig. 4. Results for Example 1 using the density-based method with 25,600 quadrilateral elements and 52,002 degrees of freedom (DOFs).
(a) The optimized topology obtained by the standard algorithm [4]; (b) the optimized topology obtained by the randomized algorithm with n = 6
and τstep = 0.05 (one representative trial); (c) the optimized topology obtained by the randomized algorithm with n = 6 and τstep = 0.1 (one
representative trial); (d) the convergence of the compliance for above cases; (e) the angle, and the cosine of the angle, between the gradient ∇Cx
and the estimated gradient ∇Ĉ S

x for the randomized case with τstep = 0.05 demonstrate that the directions are aligned. (f) the angle, and the cosine
of the angle, between ∇Cx and ∇Ĉ S

x for the randomized case with τstep = 0.1 demonstrate that the directions are aligned.

iterations/optimization steps and a larger number of linear system solves, Nsolve, compared with τstep = 0.1, its final 1

structure is simpler, has slightly lower compliance, and is similar to the structure obtained by the standard algorithm. 2

This suggests that τstep = 0.05 is a better choice for this example. The convergence rate for the randomized algorithm 3

is about the same as for the standard algorithm. Since the standard optimization problem for the GSM is convex, 4

its solution is the global minimum; hence, the compliances obtained with the randomized algorithms will be larger 5

than or equal to those obtained with the standard algorithm. However, the relative differences in compliance are very 6

small, only 0.09% and 0.35% on average, and the randomized algorithm achieves these results with considerably 7

less computational effort (Nsolve = 5627 and 2322 on average for the randomized algorithm versus Nsolve = 43848 8

for the standard algorithm). Symmetry was not enforced for the GSM in the present study. To show the accuracy of 9

estimated gradient of compliance for both tolerances, we plot cos θ between the gradient and the estimated gradient 10

for one representative trial in Fig. 6(e). The cosine of the average angle, cos θ̄ , for the two randomized cases are 0.911 11

and 0.912, indicating that the estimated gradients of both randomized cases are quite accurate and lead to effective 12

optimization steps. 13

Next, we also include the discrete filter [43] in the randomized algorithm and study its influence on the optimized 14

results. Based on previous observations, we choose τstep = 0.05 and n = 6. We use the following parameters for 15

the discrete filter (see Section 2.3): n f = 10 and α f = 0.0001. Fig. 7(a) shows the final topology obtained by the 16

randomized algorithm with the discrete filter in one representative trial (cf. Fig. 6(b), which was obtained without the 17

filter). The convergence of the compliance and cos θ in each step are shown in Fig. 7(b)–(c). The results, averaged 18
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Fig. 5. Study of sample sizes (n = 4, 5, 6, 7, 20, 50) versus the resulting final compliance (or end-compliance) using the randomized algorithm in
Example 1. The final topologies (from representative trials) are included.

Table 3
Results for Example 2 (GSM), averaged over 5 trials.

GSM C(x∗) C (̂xS) ∆C DevS(C (̂xS)) τstep cos θ̄ n Nstep Nsolve

Standard 4.219 – – – – – 406 43,848
Stoch. τstep = 0.05 – 4.222 0.09% 6.84E − 4 0.05 0.911 6 938 5627
Stoch. τstep = 0.1 – 4.231 0.35% 3.36E − 3 0.1 0.912 6 387 2322
Stoch. w/ Filter – 4.222 0.09% 9.93E−4 0.05 0.978 6 907 5442
τ step = 0.05

over five trials, are summarized in Table 2. Similar to Example 1, the standard deviations provided in the table for the1

randomized algorithm show that the compliance of the optimal structure for each trial is almost identical. The discrete2

filter combined with the randomized algorithm leads to a simpler final topology. From Fig. 7(c), the direction of the3

estimated gradient seems to be more accurate than the ones without the discrete filter (Fig. 6(e)), which is confirmed4

by cos θ̄ = 0.978. This indicates that the removal of some non-useful members helps to limit the collateral effects5

of the stochastic estimates. As compared to the standard algorithm, the discrete filter combined with the randomized6

algorithm not only leads a reduction in the number of linear system solves (Nsolve = 5442 versus Nsolve = 43848), but7

the size of the linear systems also keeps decreasing due to the discrete filter, which further improves the computational8

efficiency.9

4.2. Example 3: Three-dimensional bridge design with density-based method10

In this section, we demonstrate the quality of the design and the great reduction in computational work of the11

proposed randomized algorithm using a 3D bridge design in the non-convex, continuum topology optimization12

framework. The design domain, load, and boundary conditions are shown in Fig. 8(a). A total of 144 equal-weighted13

load cases are applied to the bridge deck (non-designable layer). Based on the structural symmetry, we optimize a14

quarter of the domain, as shown in Fig. 8(b), which reduces the number of load cases to m = 36. We use 10,000 brick15

elements to discretize the quarter domain, resulting in 35,343 degrees of freedom (DOFs). We take Vmax = 0.1 × M16

(where M = 10, 000) and use a quadratic density filter which takes the radius of 2.5 (see Section 1.1). The penalization17

factor for the continuation scheme takes values p = 1, 2, 3, 4 [46]. The randomized case uses the following parameter18

values: the sample size is chosen to be n = 6; the window size nstep = 100, γ = 2 and τstep = 0.1 (the effective step19
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Fig. 6. Results for the GSM (without the discrete filter) for Example 2 with a full-level GS ( 16 × 4 grid) and 2196 non-overlapped bars.
(a) The optimized structure obtained by the standard algorithm; (b) the optimized structure obtained by the randomized algorithm with n = 6 and
τstep = 0.05; (c) the optimized structure obtained by the randomized algorithm with n = 6 and τstep = 0.1; (d) the convergence of the compliance
for all above cases; (e) the cosine of θ between the gradient ∇Cx and the estimated gradient ∇Ĉ S

x for the randomized algorithm (τstep = 0.05 and
τstep = 0.1).

Fig. 7. Results for the GSM with the discrete filter for Example 2. (a) The optimized structure obtained from randomized algorithm with n = 6,
τstep = 0.05, and α f = 0.0001; (b) the convergence of the compliance; (c) the cosine of θ between the gradient ∇Cx and the estimated gradient
∇Ĉ S

x for the randomized case.

ratio is calculated in terms of ρ). Fig. 9 shows the optimized structures obtained using the standard algorithm and the 1

randomized algorithm. The results are summarized in Table 4. 2

The standard algorithm leads to final topology with C(ρ∗) = 542.1 and converges in 968 steps. In each optimization 3

step, we solve 36 linear systems (load cases), which leads to Nsolve = 34848. Our randomized algorithm, while 4

offering a nearly identical topology as the standard algorithm, drastically reduces the computational cost from 34,848 5

solves to 4662 solves and leads to even better compliance C (̂ρS) = 523.6. 6
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Fig. 8. Three-dimensional bridge design with (a) the geometry, load and boundary conditions; (b) the quarter domain is modeled by a mesh with
10,000 brick elements and 35,343 DOFs.

Fig. 9. Optimized structures of the 3D bridge design obtained from (a) the standard algorithm; (b) the randomized algorithm with n = 6 and
τstep = 0.1.

4.3. Example 4: Three-dimensional high-rise building design with ground structure method1

To illustrate the effectiveness of the randomized algorithm combined with the discrete filter on a practical2

engineering design, we optimize a simplified 3D high-rise building (twisting tower) in the truss topology optimization3

framework. The domain of the twisting tower, given in Fig. 10, has 11 floors with the 1st floor fixed to the ground.4

The tower twists a full 90◦ from its base to its crown. To obtain constructible structures, we use a 4 ×4 ×115

grid to discretize the domain followed by the generation of a level 7 initial GS, containing 3556 non-overlapping6

members [48]. The base mesh and the void zone are shown in Fig. 10(b). As shown Fig. 10(c), 77 equal-weighted7

load cases are applied to the building. Based on our previous studies, we choose τstep = 0.05 and n = 6. We apply8
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Table 4
Results for Example 3 (density-based bridge design).

Study 1 C(ρ∗) C (̂ρS) ∆C τstep n Nstep Nsolve

Standard 542.1 – – – – 968 34,848
Stochastic – 523.6 −3.4% 0.1 6 777 4,662

Table 5
Results for Example 4 (Tower design).

3D GSM C(x∗) C (̂xS) ∆C τstep cos θ̄ n Nstep Nsolve

Standard 4.388 – – – – – 382 29,414
Stochastic – 4.408 0.46% 0.05 0.937 6 735 4,410

the discrete filter for both the standard and the randomized algorithms; specifically, we choose n f = 10, a small filter 1

value (α f = 0.0001) used during optimization, and a larger filter value (α f = 0.001) in the final step to control 2

the resolution of the final topology [43,51]. Fig. 11 shows the optimized structures obtained using the standard and 3

randomized algorithms. A summary of the results is provided in Table 5. 4

The optimal compliance for the standard algorithm, C (x∗) = 4.388, is obtained in 382 optimization steps and a 5

total of Nsolve = 29414 linear solves. With the randomized algorithm, we obtain a similar final structure as well as a 6

compliance that is only 0.46% higher than that obtained with the standard algorithm. These results are obtained at a 7

drastically reduced computational cost, i.e., Nsolve = 4410 linear solves. In addition to the reduction in the number of 8

linear system solves obtained by the randomized algorithm, the discrete filter also reduces the size of the linear systems 9

as the optimization proceeds, because the use of the filter scheme reduces the number of design variables, and hence 10

the size of the stiffness matrices. This significantly decreases the CPU time and memory usage [51], contributing to 11

great computational efficiency. 12

5. Concluding remarks and perspective 13

This paper proposes an efficient randomized optimization approach for topology optimization that drastically 14

reduces the enormous computational cost of optimizing practical structural systems under many load cases while 15

producing high-quality designs. We apply this approach to the nested minimum end-compliance topology optimization 16

using both the density-based method (non-convex) and the ground structure method (convex) by minimizing a 17

weighted sum/average of the compliance over many load cases. Minimizing the weighted average of the compliance 18

over many load cases requires the solution of the state equations for each load case in every optimization step to 19

compute the (weighted) compliance and its gradient. Since the objective function and its gradient can be defined as 20

the traces of symmetric matrices, we use the Hutchinson trace estimator, which provides the lowest variance, combined 21

with the sample average approximation technique, to estimate both. This reduces the computational cost from m×Nstep 22

to roughly n×Nstep, where m is the number of load cases, and n ≪ m is the sample size. We further propose a damping 23

scheme for the randomized algorithm, derived from simulated annealing to obtain fast convergence. We discuss the 24

algorithmic parameters for our scheme and provide some information on how to choose them. 25

The results for several generic examples and practical engineering designs demonstrate that the proposed 26

randomized algorithm provides high-quality designs at a drastically reduced computational cost. Based on the 27

limited number and size of examples investigated, we show that the proposed randomized algorithm may reduce 28

the computational cost by a factor of up to 45, while obtaining a final compliance very close to that obtained by 29

the standard algorithm, and occasionally even better. Our proposed damping scheme leads to fast convergence of 30

the optimization. In addition, the combination of the discrete filter with the randomized algorithm leads fewer linear 31

solves with smaller systems, resulting in great computational efficiency. 32

The proposed randomized algorithm is flexible and can be combined with any gradient-based update scheme. In 33

this paper, we combine this technique with the optimality criteria, but other optimization methods can be used, such 34

as the method of moving asymptotes
∧
(MMA) — see, for example, the book by Christensen and Klarbring [49]. 35

There are several important directions for future research. Although we have provided an important proof-of- 36

concept, many questions remain open. One important question concerns optimal choices of parameters for both overall 37

computational cost and quality of design. In this case, we could consider dynamically varying the parameters. For 38
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Fig. 10. Twisting tower (inspired by the
∧
Cayan tower [52]): (a) geometry; (b) base mesh with a void zone in the middle; (c) load and boundary

conditions. One dead load case, 40 live load cases, and 36 lateral load cases (the lateral load is applied at 4 corners on the top floor and rotating in
36 directions).

example, if necessary, the quality of designs may be improved by increasing the sample size (n) as the minimum is1

approached. Another important question concerns the choice among randomized optimization methods/approaches,2

both in terms of the overall methods as well as the choices in estimates and approximations. We need to further3

analyze what topology optimization problems can be solved efficiently using this approach. For non-self
∧
adjoint4

problems, instead of minimizing quadratic forms, we may use randomization for the minimization of similar problems,5
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Fig. 11. Optimized structures of the 3D twisting tower obtained from: (a) the standard algorithm; (b) the proposed randomized algorithm with
n = 6 and τstep = 0.05.

minp∥CT (A(p))−1B−D∥ where A(p) is not symmetric. This requires randomizing over both the columns of B and the 1

columns of C [53]. Finally, it would be useful to prove convergence to either a local or global minimum of the topology 2

optimization problem under appropriate conditions. Thus, we hope that the present paper will motivate further the use 3

of stochastic sampling in various areas connected to (large scale) topology optimization. 4

Acknowledgments 5

The authors G. H. Paulino and X. Zhang acknowledge the financial support from the US National Science 6

Foundation (NSF) under project #1559594 (formerly #1335160).
∧
The authors are also grateful for the endowment 7



CMA: 11500

Please cite this article in press as: X. Zhang, et al., Stochastic sampling for deterministic structural topology optimization with many load cases: Density-based and ground structure
approaches, Comput. Methods Appl. Mech. Engrg. (2017), http://dx.doi.org/10.1016/j.cma.2017.06.035.

X. Zhang et al. / Comput. Methods Appl. Mech. Engrg. xx (xxxx) xxx–xxx 23

Fig. A.12. A simply supported rectangle with (a) 4 equally-weighed load cases, f1, . . . , f4, acting independently on different nodes; and (b) two
sample load cases based on random vectors ξ1 and ξ2.
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Appendix. Stochastic sampling of load cases4

In this appendix, we present an illustration of the stochastic sampling of load cases. As shown in Fig. A.12(a), we5

consider a simply supported rectangle with 4 equally-weighed load cases, f1, . . . , f4, acting independently. Numbering6

the 4 nodes on the top of the rectangle from left to right as 1 to 4, we can express the 4 independent load vectors and7

load matrix F as8

f1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−a
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−b
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

−c
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

−d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−a 0 0 0
0 0 0 0
0 −b 0 0
0 0 0 0
0 0 −c 0
0 0 0 0
0 0 0 −d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.1)9

From the Rademacher distribution, we randomly select 2 vectors, ξ 1 and ξ 2, with the following form10

ξ 1 =
[
−1 1 1 − 1

]T and ξ 2 =
[
1 − 1 1 1

]T
. (A.2)11

Then, according to Eq. (16), we obtain the corresponding sample load cases as12

Fξ 1 =
[
0 a 0 − b 0 − c 0 d

]T and Fξ 2 =
[
0 − a 0 b 0 − c 0 − d

]T
. (A.3)13

The two sample load cases are shown in Fig. A.12(b). We can see that in both sample load cases, all the load cases14

f1, . . . , f4 appear simultaneously but may act in opposing directions.15
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[28] A. Shapiro, D. Dentcheva, A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, in: MPS-SIAM Series on 45

Optimization, Philadelphia, 2009. 46

[29] C.M. Grinstead, J.L. Snell, Introduction to Probability, second ed., American Mathematical Society, 2006. 47

[30] A.J. Kleywegt, A. Shapiro, T. Homem-de Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. 48

Optim. 12 (2) (2001) 479–502. 49

[31] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat. 22 (3) (1951) 400–407. 50

[32] N.N. Schraudolph, Local gain adaptation in stochastic gradient descent, in: Intl. Conf. Artificial Neural Networks, vol. 2, IEE, Edinburgh, 51

Scotland, 1999, pp. 569–574. 52

[33] S.V.N. Vishwanathan, N.N. Schraudolph, M.W. Schmidt, K.P. Murphy, Accelerated training of conditional random fields with stochastic 53

gradient methods, in: Proceedings of the 23rd International Conference on Machine Learning, ACM, Pittsburgh, PA, 2006, pp. 969–976. 54

[34] N.N. Schraudolph, J. Yu, S. Günter, A stochastic quasi-Newton method for online convex optimization, in: 11th Intl. Conf. on Artificial 55

Intelligence and Statistics (AIstats), Soc. for Artificial Intelligence and Statistics, 2007, pp. 433–440. 56

[35] A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim. 19 (4) 57

(2009) 1574–1609. 58

[36] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671–680. 59

[37] P. Salamon, P. Sibani, R. Frost, Facts, Conjectures, and Improvements for Simulated Annealing, in: SIAM Monographs on Mathematical 60

Modeling and Computation, SIAM, Philadelphia, 2002. 61

[38] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, 2016. ArXiv preprint arXiv:1606.04838. 62

http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1605.04893
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838
http://arxiv.org/1606.04838


CMA: 11500

Please cite this article in press as: X. Zhang, et al., Stochastic sampling for deterministic structural topology optimization with many load cases: Density-based and ground structure
approaches, Comput. Methods Appl. Mech. Engrg. (2017), http://dx.doi.org/10.1016/j.cma.2017.06.035.

X. Zhang et al. / Comput. Methods Appl. Mech. Engrg. xx (xxxx) xxx–xxx 25

[39] K. Svanberg, The method of moving asymptotes- a new method for structural optimization, Internat. J. Numer. Methods Engrg. 24 (2) (1987)1

359–373.2

[40] H. Nguyen-Xuan, A polytree-based adaptive polygonal finite element method for topology optimization, Internat. J. Numer. Methods Engrg.3

110 (10) (2017) 972–1000.4

[41] S. Zargham, T.A. Ward, R. Ramli, I.A. Badruddin, Topology optimization: a review for structural designs under vibration problems, Struct.5

Multidiscip. Optim. 53 (6) (2016) 1157–1177.6

[42] J. Lin, Y. Guan, G. Zhao, H. Naceur, P. Lu, Topology optimization of plane structures using smoothed particle hydrodynamics method,7

Internat. J. Numer. Methods Engrg. 110 (8) (2017) 726–744.8

[43] A.S. Ramos Jr., G.H. Paulino, Filtering structures out of ground structures –a discrete filtering tool for structural design optimization, Struct.9

Multidiscip. Optim. 54 (2016) 95–116.10

[44] C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, PolyTop: A Matlab implementation of a general topology optimization framework11

using unstructured polygonal finite element meshes, Struct. Multidiscip. Optim. 45 (3) (2012) 329–357.12

[45] K. Liu, A. Tovar, An efficient 3D topology optimization code written in MATLAB, Struct. Multidiscip. Optim. 50 (6) (2014) 1175–1196.13

[46] T. Zegard, G.H. Paulino, Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim. 53 (1) (2016) 175–192.14

[47] T. Zegard, G.H. Paulino, GRAND –Ground structure based topology optimization for arbitrary 2D domains using MATLAB, Struct.15

Multidiscip. Optim. 50 (5) (2014) 861–882.16

[48] T. Zegard, G.H. Paulino, GRAND3 –Ground structure based topology optimization for arbitrary 3D domains using MATLAB, Struct.17

Multidiscip. Optim. 52 (6) (2015) 1161–1184.18

[49] P. Christensen, A. Klarbring, An Introduction to Structural Optimization, Vol. 153, Springer Science & Business Media, 2009.19

[50] X. Zhang, S. Maheshwari, A.S. Ramos Jr., G.H. Paulino, Macroelement and macropatch approaches to structural topology optimization using20

the ground structure method, ASCE J. Struct. Eng. 142 (11) (2016) 04016090.21

[51] X. Zhang, A.S. Ramos Jr., G.H. Paulino, Material nonlinear topology optimization using the ground structure method with a discrete filtering22

scheme, Struct. Multidiscip. Optim. 55 (6) (2017) 2045–2072.23

[52] Cayan Tower (Infinity Tower). URL: http://cayan.net.24

[53] S. Aslan, E. de Sturler, M. Kilmer, Randomized approach to nonlinear inversion combining simultaneous random and optimized sources and25

detectors, arXiv:1706.05586.2627

http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://cayan.net
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586
http://arxiv.org/1706.05586

	Stochastic sampling for deterministic structural topology optimization with many load cases: Density-based and ground structure approaches
	Introduction
	Density-based topology optimization formulation with many load cases
	Ground-structure based formulation with many load cases
	Synopsis

	Stochastic sampling and topology optimization
	Stochastic sampling of matrices
	Randomized topology optimization with stochastic sampling
	Density-based method
	Ground structure method

	Discrete filter for ground structure method with stochastic sampling

	A damping scheme and algorithmic parameters for randomized optimization
	The proposed damping scheme: effective step ratio and step size reduction
	Overview of algorithmic parameters for randomized optimization

	Numerical examples
	Two-dimensional box domain with 108 load cases
	Example 1: Continuum topology optimization with density-based method
	Example 2: Truss topology optimization with ground structure method

	Example 3: Three-dimensional bridge design with density-based method
	Example 4: Three-dimensional high-rise building design with ground structure method

	Concluding remarks and perspective
	Acknowledgments
	Stochastic sampling of load cases
	References




