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The ground structure method seeks to approximate Michell optimal solutions for real-world design prob-
lems requiring truss solutions. The single solution extracted from the ground structure is typically too
complex to realize directly in practice and is instead used to inform designer intuition about how the
structure behaves. Additionally, a post-processing step required to filter out unnecessary truss members
in the final design often leads to structures that no longer satisfy global equilibrium. Here, a maximum
filter is proposed that, in addition to guaranteeing structures that satisfy global equilibrium, leads to sev-
eral design perspectives for a single problem and allows for increased user control over the complexity of
the final design. Rather than applying a static filter in each optimization iteration, the maximum filter
employs an interval reducing method (e.g., bisection)to find the maximum allowable filter value that
can be imposed in a given optimization iteration such that the design space is reduced while preserving
global equilibrium and limiting local increases in the objective function. Minimization of potential energy
with Tikhonov regularization is adopted to solve the singular system of equilibrium equations resulting
from the filtered designs. In addition to reducing the order of the state problem, the maximum filter
reduces the order of the optimization problem to increase computational efficiency. Numerical examples
are presented to demonstrate the capabilities of the maximum filter, including a problem with multiple
load cases, and its use as an end-filter in the traditional plastic and nested elastic approaches of the
ground structure method.

� 2017 Published by Elsevier Ltd.
1. Introduction

Since Michell’s 1904 landmark paper [1], in which he proposed
criteria for minimum volume structures that equilibrate a set of
forces (see also [2]), much work has been devoted to designing
structures at ‘‘the limits of economy.” For instance, optimal frames
satisfying Michell’s criteria have been analytically derived for var-
ious beam structures by e.g., A.Chan [3] in the 1960s, H. Chan [4] in
the 1970s, and Lewiński, Zhou, and Rozvany [5,6] in the 1990s.
Since analytical solutions are difficult or impossible to obtain for
some practical design problems, others have turned to numerical
approximations to Michell solutions. For example, the ground
structure method, developed by Dorn et al. in 1964 [7], begins with
a dense truss network composed of a finite number of members
and uses numerical optimization to size the members and obtain
approximate Michell trusses. More recent implementations
demonstrate the efficiency of the plastic formulation of the ground
structure method for finding approximate minimum volume
trusses with bounded member stresses [8–12]. Although the plas-
tic formulation is extremely efficient (it can be posed as a linear
programming problem), it has limitations in extending to more
complex problems [13]. Thus, this work focuses on the elastic for-
mulation for volume constrained compliance minimization, which
has been shown to be equivalent to compliance constrained vol-
ume minimization up to a scaling [14] for linear problems.

Both the plastic and elastic formulations of the ground structure
method typically lead to highly complex geometries that are
impractical in practice. Somework has been done to tailor themeth-
ods to obtain more practical designs. For example, Tugilimana et al.
[15] introduced the concept of modularity into the formulation to
obtain trusses consistingofmultiple identical pieces that canbepre-
fabricated offsite. Prager [16], and more recently Asadpoure et al.
[17], introduced penalty terms in the objective function to reduce
the number or weight of connections in their designs. Ramos Jr.
and Paulino [18] recently introduced the so called discrete filter that
changes the ground structuremethod formaximumstiffness design
from a truss sizing optimization problem to a true topology
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Fig. 1. Cantilever beam, clamped at one end with a mid-height point load at the
other end - the optimization is based on a 9� 5 nodal mesh and a full-level initial
ground structure (632 non-overlapping members): (a) initial ground structure and
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optimization problem in which a zero lower bound can be imposed
and cleaner final designs can be obtained. The intermediate struc-
tures generated during the optimization are filtered by removing
‘‘unnecessary” members, while preserving global equilibrium and
limiting local increases in the objective.

This work presents a maximum filter, which leads to several
design perspectives for a single problem and allows user control
over the final design. Accordingly, the contributions of the present
work are as follows:

1. Adaptive filter: In contrast to the previous static filter [18], the
max filter is adaptive. The magnitude of the max filter varies
during the iterations in accordance with a user prescribed toler-
ance on the change in the objective, allowing for a broader
range of possible designs and easier control over the final topol-
ogy. Moreover, there is no need to set a specific value of the fil-
ter ‘‘a priori.”

2. Piecewise convexity: Rather than applying the filter in every iter-
ation, ‘‘piecewise convexity” is achieved by controllingwhen the
max filter is applied, again leading to easier control over the
final design.

3. Efficiency: In addition to reducing the size of the state equations,
the size of the optimization problem is reduced when the max
filter is applied, further addressing a major drawback of the
nested elastic approach: computational cost.

4. End-filter: The max filter is shown to work effectively as an end-
filter to guarantee designs obtained using the traditional plastic
and nested elastic formulations satisfy global equilibrium.

Equipped with these features, the max filter becomes an effec-
tive engineering tool that can provide multiple perspectives on a
given design problem and empower engineers and architects to
take creative risks.

The remainder of this paper is organized as follows: Section 2
discusses the nested elastic formulation in a general sense. Sec-
tion 3 provides the standard nested elastic formulation and the
modified version used in this work. In Section 4, the max filtering
scheme is detailed for use with the modified nested elastic formu-
lation and for use as an end-filter with the traditional plastic and
nested elastic formulations. Section 5 provides a brief review of
solving the singular system of equilibrium equations using mini-
mization of potential energy with Tikhonov regularization (PE-
TR), and demonstrates the benefits of the method with a simple
example. The use of a reduced order model (ROM) on both the
state problem and the optimization problem as well as the impli-
cations on computational efficiency are discussed in Section 6.
Aligned nodes and hanging members are addressed in Section 7,
and some numerical aspects of the implementation are addressed
in Section 8. In Section 9, three numerical examples are used to
demonstrate the capabilities of the max filter, ROM, and the appli-
cability of the max filter as an end-filter in the traditional plastic
and nested elastic formulations of the ground structure method.
Conclusions are presented in Section 11. Nomenclature used
throughout the paper can be found in Appendix A, some comments
on fully stressed designs in Appendix B, the max filter algorithm
flowchart in Appendix C, a derivation of compliance for discrete
optimal trusses discussed in the text in Appendix D, and details
on solving singular systems in Appendix E. The MATLAB imple-
mentation is included as electronic supplementary material and
a tutorial for using the code is provided in Appendix F.
boundary conditions; (b) final topology based on a 1:0� 10�7 cutoff, which contains
undesirable thin and hanging members; (c) final topology based on a 0.20 cutoff,
which leads to a mechanism; (d) final topology based on a 0.010 cutoff, which is
statically determinate. Note: Red indicates compression and blue indicates tension
based on the stress state at the end of the sizing problem. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
2. On nested elastic formulations

It is widely known that the nested elastic formulation typically
requires a small positive lower bound on the member cross-
sectional areas to ensure that the problem remains well posed.
As a result, the nested elastic formulation of the ground structure
method becomes a truss-sizing problem in which all members
defined in the initial ground structure are present in the optimal
structure. Thus, the optimal solution contains many thin members.
Discrete designs from ground structures are typically obtained by
using the small positive lower bound on the design variables (or
another arbitrary threshold value) as a ‘‘post-processing filter” that
removes a given level of thin members once the sizing problem is
complete [14]. This method of obtaining the final topology at the
end of the sizing problem using an arbitrary threshold will be
referred to as a ‘‘cutoff” in the remainder of this manuscript.

A number of issues arise when using the nested elastic formu-
lation of the ground structure method for maximum stiffness
design with a lower bound on the design variables and a cutoff.
First, the final topology can depend largely on the value of the
small positive lower bound and cutoff. These values must be care-
fully selected: the lower bound must be small enough to prevent
non-optimal members from contributing stiffness, but large
enough that the stiffness matrix does not become ill-conditioned.
The cutoff should be small enough that critical structural elements
are not removed from the final topology, but not so small that thin
members remain in the final topology [19,14]. Second, when using
this approach, truss members are often removed using the cutoff
after the sizing problem is complete without regard for whether
the final topology satisfies global equilibrium. In fact, solutions
based on this approach often contain hanging members (i.e., mem-
bers that are not connected to the structure at one or both ends) or
internal mechanisms. Lastly, the value of the objective function is
based on the result of the sizing problem in which all truss mem-
bers from the initial ground structure are present, whereas the
final topology after applying the cutoff actually represents an
increased objective.

Fig. 1 shows three final topologies obtained for an 8� 4 rectan-
gular domain, clamped at one end, with a mid-height point load at
the other end (Fig. 1a). The results are based on the nested elastic
formulation with a small positive lower bound
(xmin

i ¼ 1:581� 10�12) and various cutoffs. All three designs are
obtained from a full-level ground structure based on a 9� 5 nodal
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mesh. Fig. 1b demonstrates that using a low cutoff (e.g., removing
members with area less than 1:0� 10�7 of the maximum member
area) can lead to a final topology containing thin members, many
of which may be hanging members. On the other extreme, Fig. 1c
shows that a large cutoff (e.g., 0.20) can remove members essential
to global equilibrium, leading to a mechanism. For the simple prob-
lem in Fig. 1, a statically determinate equilibrium solution can be
obtained with a cutoff, for example, of 0.010 (Fig. 1d). It is noted
that the objective (compliance) obtained from the algorithm is
the same for all three designs in Fig. 1 and the objective after
applying the cutoff is necessarily increased. Table 1 provides the
comparison of compliance in addition to the global equilibrium
residual for designs obtained with a cutoff, using PE-TR to solve
the resulting singular system [18].

Imposing a zero lower bound on the design variables allows for
realization of optimal designs that do not contain undesirable thin
members, but requires somemethod of solving the resulting singu-
lar system of equations if remeshing is to be avoided. Bruns [20]
noted that methods of obtaining generalized inverses, e.g., singular
value decomposition, can be prohibitively expensive in topology
optimization problems. As an alternative, he proposed a method
to accommodate zero density elements in the nested approach
for maximum stiffness design of continuum structures without
using computationally expensive generalized inverses. Noting that
a singular stiffness matrix leads to a system of equations with an
infinite number of solutions (assuming the system is consistent),
Bruns [20] proposed to numerically fix the indeterminate displace-
ment states that arise when zero density elements are introduced
by setting the 0 diagonal elements of the stiffness matrix to 1 and
the corresponding force component equal to 0. The method allows
for a unique solution for the initially indeterminate degree of free-
dom without affecting the response of the other degrees of free-
dom since they are decoupled. He imposed a similar numerical
fix in the design sensitivity analysis and obtained solutions with
zero-density elements. However, the singularities caused by
islands of material (as opposed to completely detached degrees
of freedom) requires elementary row operations, which can also
be cumbersome, in order to expose the zeros on the diagonal.

Ramos Jr. and Paulino [18] proposed a different method specif-
ically for truss design using the nested elastic formulation. Their
method allows for a zero lower bound on the member cross-
sectional areas and for zero area members to be introduced during
the optimization by using PE-TR to solve the singular state equa-
tions. The method is shown to yield the minimum norm solution
for systems in equilibrium, while detecting non-equilibrium solu-
tions (through excessively large displacements and values of the
objective).
3. Discrete nested elastic formulations: standard and modified

The nested elastic formulation of the ground structure method
seeks to minimize the compliance of a truss structure subject to a
volume constraint. The displacements are defined implicitly
through the governing equilibrium equations and the design vari-
ables include only member cross-sectional areas, which are
denoted by x [14]:
Table 1
Compliance comparison and equilibrium check for the sizing problem with varying cutoff

Fig. Cutoff value Converged compliance (sizing problem) Final com

1b 1� 10�7 33.326 33.326

1ca 0.20 33.326 7.186 � 1
1d 0.010 33.326 33.328

a Large values for compliance and tip displacement indicate that they tend toward in
min
x

C xð Þ ¼ FTu xð Þ
s:t: LTx 6 Vmax

0 < xmin
i 6 xi 6 xmax

i

with K xð Þu xð Þ ¼ F

ð1Þ

where C is the structural compliance, F is the external force vector,
u is the vector of state variables representing nodal displacements,
L is the vector of member lengths, Vmax is a prescribed upper bound
on the total structural volume, xmin

i and xmax
i are upper and lower

bounds on the member cross-sectional areas, respectively, and K
is the global stiffness matrix. Together with the linear constraints
in (1), the nested elastic formulation for compliance minimization
is convex [21].

The nested elastic formulation in (1) requires a small positive
lower bound, xmin

i > 0, on member cross-sectional areas to prevent
a singular or ill-conditioned stiffness matrix as members are sized
toward zero area. Thus, (1) is a truss sizing optimization problem
rather than a topology optimization problemand the resulting glob-
ally optimal structure contains all members present in the initial
ground structure. In order to address the topology optimization
problem inwhich trussmembers can be removed from the interme-
diate design solutions, the nodal displacements are implicitly
defined bymeans of the PE-TR [18] so that (1) ismodified as follows:

min
x

C xð Þ ¼ FTu xð Þ
s:t: LTx 6 Vmax

0 6 xi 6 xmax
i

with min
u

P u xð Þð Þ þ k
2u xð ÞTu xð Þ

ð2Þ

where the potential energy is given by

P u xð Þð Þ ¼ 1
2
u xð ÞTK xð Þu xð Þ � FTu xð Þ ð3Þ

and the last term in the state equations of (2) is the Tikhonov reg-
ularization term that is discussed further in Section 5. The modified
nested elastic formulation in (2) is equivalent to (1) and differs only
in the numerical implementation. Thus, the arguments provided by
Svanberg [21] for convexity of (1) hold for (2) and the modified
nested elastic formulation provides a globally optimal solution
(see also [19]).

The formulation in (2) alone simply allows members to be
assigned zero area during the optimization, but does not ensure
that all thin members are removed. To achieve such a design,
Ramos Jr. and Paulino [18] filter the intermediate design solutions
such that thin members are removed during the optimization iter-
ations. The filter sets member cross-sectional areas equal to zero if
they are less than a certain fraction, af , (i.e., the filter value) of the
maximum member cross-sectional area present in the current
design:

xi ¼ Filterðx;af Þ ¼
0 if xi

max xð Þ < af

xi otherwise

(
ð4Þ

Thus, the modified nested elastic formulation with an imposed filter
becomes [18]:
s for the cantilever of Fig. 1 (units can be taken as kilonewtons and meters).

pliance (after cutoff) Tip displacement Global equilibrium residual

3.333 � 10�1 1.567 � 10�11

010 ?1 1.186 � 108 ?1 1.508 � 10�1

3.333 � 10�1 2.072 � 10�11

finity for the mechanism.
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Fig. 2. Demonstration of the change in the objective from iteration k� 1 to k: Point
(a) represents the value of the objective at the end of the previous iteration (k� 1);
the design variable update is expected to reduce the value of the objective to e.g.,
that at point (b); finally the filter is imposed, increasing the objective to point (c)
such that the normalized increase due to the max filter, DCk

filt , is less than the
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min
x

C xð Þ ¼ FTu xð Þ
s:t: LTx 6 Vmax

0 6 xi 6 xmax
i

with xi ¼ Filterðx;af Þ
and min

u
P u xð Þð Þ þ k

2u xð ÞTu xð Þ

ð5Þ

which is now a non-convex formulation.

4. Max filter

The filtering procedure in (4) is similar to the cutoff described in
Section 2, except that it is applied during the optimization itera-
tions rather than after convergence of the sizing problem (1). As
such, a structure obtained using an arbitrarily large filter value
may exhibit a similar potential drawback as using a cutoff (i.e.,
members may be removed from the intermediate designs such that
the truss no longer satisfies global equilibrium). Additionally, large
filter values may lead to excessively large jumps in the objective
during convergence. As a result, the discrete filter [18], which is
set to a constant value, is often restricted to a relatively small filter
value. Here, the filter value, af , in (5) is determined using the bisec-
tion procedure illustrated in Algorithm 1 (flowchart in Appendix C)
such that the imposed filter is the maximum value for which the
filtered structure satisfies global equilibrium and meets a pre-
scribed tolerance on the change in the objective, i.e., the max filter.

Algorithm 1. Max filter algorithm

Initialize:
Filter lower bound, a�

f ¼ 0:0

Filter upper bound, aþ
f ¼ 1:0

Current filter value, af ¼ ða�
f þ aþ

f Þ=2
Equilibrium filter value, aeq

f ¼ 0:0

Change in equilibrium filter value, Daeq
f ¼ 1:0

Apply the current filter: xi ¼ Filter x;af
� �

while Daeq
f > 1� 10�4do

if R 6 q and DC < Ctol then
Calculate change in equilibrium filter value:
Daeq

f ¼ jaeq
f � af j

Store equilibrium filter value: aeq
f ¼ af

Reset filter lower bound: a�
f ¼ af

Increase current filter value: af ¼ ða�
f þ aþ

f Þ=2
else
Reset filter upper bound: aþ

f ¼ af

Decrease current filter value: af ¼ ða�
f þ aþ

f Þ=2
end if
Apply the current filter: xi ¼ Filter x;af

� �
end while

To preserve global equilibrium, the max filter iteratively adjusts
the filter value employed in a given optimization iteration via a
quantification of the global equilibrium residual:

R ¼ kKu� Fk=kFk 6 q ð6Þ
where q is a numerical tolerance. The filter value is simultaneously
adjusted to meet a prescribed tolerance, Ctol, on the change in the
objective that occurs due to filtering:

DCk
filt ¼ Ck � Ck

upd

� �
=Ck�1 ð7Þ
where Ck
upd is the value of the objective after the design variable

update of the current iteration k, Ck is the value of the objective

after the subsequent filtering in the current iteration k, and Ck�1 is
the objective value of the design at the end of the previous iteration
k� 1. Calculating the change in the objective due to the design vari-
able update in a similar way:

DCk
upd ¼ Ck

upd � Ck�1
� �

=Ck�1 ð8Þ

the total change in the objective from iteration k� 1 to k is:

DCk ¼ DCk
upd þ DCk

filt ¼ Ck � Ck�1
� �

=Ck�1 ð9Þ

and the total allowable change in the objective from iteration k� 1
to k is limited by:

DCk < DCk
allow ¼ DCk

upd þ Ctol ð10Þ

The prescribed Ctol allows the user to control how drastically the
objective deviates from the smooth convergence of the sizing prob-
lem (1) and, indirectly, how far from the global optimum the final
topology is. Fig. 2 demonstrates how the value of the objective
changes from iteration k� 1 (point (a) in Fig. 2) to iteration k (point
(c) in Fig. 2). The design moves through an intermediate stage due
to the design variable update, at which it has the objective value
at point (b) in Fig. 2. After the design variable update, the max filter
is imposed, increasing the objective to point (c) in Fig. 2 without

violating DCk
allow given in (10).

It is not necessary to impose the max filter in every optimiza-
tion iteration. As such, an additional parameter, Nf , is used to pre-
scribe the optimization iterations in which the max filter is
imposed. Between these iterations, i.e., when no filter is imposed,
the formulation is identical to (2) and the problem remains convex.
By postponing application of the max filter using a large Nf , the
final topology is more likely to resemble the solution to the sizing
problem.

A few comments on the max filter algorithm:

1. The bisection algorithm described here can be replaced by any
other interval-reducing algorithm.

2. The max filter problem is non-convex.
3. A filter value that yields a structure meeting the equilibrium

and/or objective criteria in a given iteration is not guaranteed
to be found. In those iterations, no filter is applied.
prescribed tolerance, Ctol .



a

1

1

P

P
2

1

1

P

P

b

E.D. Sanders et al. / Engineering Structures 151 (2017) 235–252 239
4.1. Max filter as an end-filter

Final topologies containing thin members may be obtained
when using the max filter for two main reasons: (1) Ctol is too
small; and/or (2) Nf is too large. Removing members with the
max filter typically leads to some increase in compliance. Thus,
in the first case, an excessively restrictive Ctol may not allow for
compliance increases large enough to allow even thin members
contributing little to the compliance to be removed. In the second
case, if Nf is increased greater than 1.0 the max filter may not be
applied in one or more consecutive optimization iterations before
convergence. In those iterations, the design variable update
scheme is working alone to size members and will not necessarily
size all thin members to zero before convergence. For these two
reasons, the max filter is also imposed as what is called an
end-filter after final convergence of the optimization algorithm.
The magnitude of the end-filter is determined using the max filter
algorithm shown in Algorithm 1 (flowchart in Appendix C), with
Ctol replaced by Cendtol. In many cases, setting Cendtol = Ctol is suffi-
cient, but in some cases Cendtol must be relaxed in order to remove
thin members.
Fig. 3. Topologies containing singularities: (a) left: initial ground structure and
boundary conditions; right: final topology with a rank deficient stiffness matrix
K xð Þ 2 R9�9

6

� �
due to aligned nodes (indicated in red); (b) left: initial ground

structure and boundary conditions; right: final topology with a rank deficient
stiffness matrix K xð Þ 2 R5�5

3

� �
due to detached degrees of freedom (associated with

the red node) causing zero rows and columns. Notes: Dashed lines represent zero
area members, Rm�m

r is the space of m�m matrices with rank r. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
4.2. Max filter as an end-filter for traditional plastic and elastic
formulations

The end-filter can also be applied in place of a cutoff when using
the traditional plastic or nested elastic formulation (1) of the
ground structure method (refer to e.g., [2,7–12,22] for a review
of the plastic formulation). At the end of both the traditional plastic
and nested elastic formulations, final topologies containing thin (or
zero-area) members can be post-processed using the end-filter,
yielding a structure satisfying global equilibrium and meeting a
prescribed tolerance, Cendtol, on the increase in the final objective
(i.e., volume for the plastic formulation and compliance for the
elastic formulation). In the case of the plastic formulation in which
only nodal equilibrium is considered (i.e., compatibility and consti-
tutive relations are neglected), the global equilibrium residual, R, is
determined according to:

R ¼ kBTn� Fk=kFk 6 q ð11Þ

where B is the nodal equilibrium matrix, n is the vector of internal
member forces, F is the vector of externally applied forces, and q is
a numerical tolerance (cf. (6)). The end-filter applied to the original
nested elastic formulation and the plastic formulation is demon-
strated in Section 9.3.
5. Solving the singular state equations

The zero lower bound and the max filter (5) cause intermediate
designs that contain singularities due to the zero area members
causing aligned nodes and/or detached degrees of freedom, each
of which cause rank deficiencies in the stiffness matrix. Fig. 3
shows final topologies containing these two types of singularities.

To deal with structures like those in Fig. 3 that satisfy global
equilibrium, but have a singular stiffness matrix, a means of solv-
ing a singular system of equations is required. Although the
reduced order model described in Section 6 eliminates detached
degrees of freedom (Fig. 3b), both types of rank deficiencies may
occur during max filter iterations before reducing the order of
the model. Ramos Jr. and Paulino [18] propose solving the singular
system of equations using PE-TR (2) and they show that it is more
desirable in application to the ground structure method than other
methods of solving singular systems, such as generalized (reflex-
ive) inverse, Moore-Penrose (MP) inverse, and least-squares with
Tikhonov regularization (LS-TR) (refer to [23] for details on these
methods). For example:

1. PE-TR does not require elementary row operations that are
needed to determine the generalized (reflexive) inverse, which
can be cumbersome for large problems. Additionally, the gener-
alized (reflexive) inverse typically does not lead to the mini-
mum norm solution.

2. PE-TR leads to the minimum norm solution that can be
obtained using the MP inverse, without having to calculate
eigenvalues and eigenvectors of the stiffness matrix required
for singular value decomposition.

3. Although LS-TR also leads to the minimum norm solution, it
cannot always recognize structures in equilibrium that may
have ill-conditioned stiffness matrices due to large differences
in stiffness between adjacent members. In contrast, PE-TR can
detect when such structures satisfy global equilibrium and are
valid solutions.

4. In addition to a large global equilibrium residual, PE-TR indi-
cates non-equilibrium solutions through large magnitude dis-
placements (and compliance). Thus, the solutions more
accurately represent the physical behavior of a mechanism.

For the above reasons, the PE-TR [18] is adopted in the current
implementation of the modified nested elastic formulation (5). In
structural mechanics, the displacement field that minimizes the
potential energy is the one that provides global equilibrium. Min-
imizing the potential energy (3) yields a linear system of equations
equivalent to the state equations in (1) and due to the indetermi-
nacy inherent in ground structures, there are multiple displace-
ment fields satisfying the state equations. Adding the Tikhonov
regularization term to the minimization of potential energy as
shown in (2) and (5), not only renders the problem well-posed,
but also constrains the displacement field to the one of minimum
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norm. Then, the displacement field satisfies (12), which is obtained
by minimizing the expression for potential energy with Tikhonov
regularization (2):

K xð Þ þ kIð Þu xð Þ ¼ F ð12Þ

In (12), k is a small positive parameter and the displacement field
can be obtained using a direct solve. Additionally, choosing the
parameter k allows for numerical control over the condition num-
ber of the stiffness matrix.

The structure in Fig. 4 is used to demonstrate the ability of PE-
TR in detecting non-equilibrium solutions. The structure is defined
as a pin-jointed equilateral triangle in which all three structural
members have unit axial stiffness. The applied loads are defined
with P ¼ 1 in the results to follow. When the load factor, b, is equal
to 1 the structure is self-equilibrated, while when b is not equal to
1 the structure does not satisfy global equilibrium.

Table 2 compares the nodal displacements, compliance, and
global equilibrium residual using the MP inverse, LS-TR, and PE-
TR. The results in Table 2 are similar to those of the 1D example
of reference [18] in that of the three methods, only PE-TR detects
the non-equilibrium state (b ¼ 0:1) through unrealistically large
displacements and compliance. Although the other methods indi-
cate that the structure does not satisfy global equilibrium through
the global equilibrium residual, the magnitude of displacements
obtained using the MP inverse and LS-TR do not make physical
sense for an unrestrained structure subjected to unbalanced loads.
6. Reduced order model (ROM)

One limitation of the ground structure method is that it requires
an increasingly large number of degrees of freedom and design
variables in order to achieve increasingly optimal designs that
resemble Michell structures [1] (see also [2–6]). Large problems
 βP

 P
2

 P
2

2 1

4

35

6

ba

Fig. 4. Structure demonstrating solution of a singular system of state equations: (a)
self-equilibrated structure when b ¼ 1, non-equilibrium structure when b– 1 (b)
degree of freedom numbering.

Table 2
Comparison of results obtained using the MP inverse, LS-TR, and PE-TR for solving the sin
equilibrium structure in Fig. 4.

Self-equilibrated (b ¼ 1)

MP inverse LS-TR PE-T

u1 0:000 0:000 0:00

u2 �0:500 �0:500 �0:5

u3 0:144 0:144 0:14

u4 0:250 0:250 0:25

u5 �0:144 �0:144 �0:1

u6 0:250 0:250 0:25

Compliance, C 0:750 0:750 0:75

Residual, R 3:576� 10�16 3:242� 10�13 5:27
(e.g., 3D problems) become infeasible when using the nested elas-
tic approach because of the large finite element analyses required
in solving the state equations in each iteration. As member cross-
sectional areas go to zero when using the modified nested elastic
formulation (5), either as a result of the design variable update
or due to an imposed filter, the number of degrees of freedom asso-
ciated to the topology is reduced with respect to that of the ground
structure. Thus, increasingly reduced order models can be consid-
ered to promote computational efficiency. Cost savings comes from
both reducing the order of the state equations and the order of the
optimization problem.

6.1. Reduced order state equations

When considering a full order model (FOM), the size of the stiff-
ness matrix, K xð Þ 2 Rm�m

r , remains constant throughout the entire
optimization algorithm, where m is the number of degrees of free-
dom associated with the ground structure and r is the rank of the
stiffness matrix. As the members are sized and the max filter is
applied, the stiffness matrix becomes increasingly sparse, which
may lead to minor increases in computational efficiency due to
reduced storage cost. By considering a ROM on the state problem,
significant additional computational savings can be achieved. The
ROM on the state problem completely removes unloaded zero-
area members from the analyses by eliminating null rows and col-
umns of the stiffness matrix that are not associated with loaded
degrees of freedom. Here, the model is reduced each time zero-
area members lead to detached (and unloaded) degrees of freedom
due to either the design variable update or an imposed filter.

Fig. 5 shows the degrees of freedom associated with a topology
that considers a FOM (Fig. 5c) versus a ROM (Fig. 5d) on the state
problem. Even after reduction, in most cases, the stiffness matrix
will still be singular due to linearly dependent rows arising from
aligned nodes (e.g., the node associated with degrees of freedom
4 and 5 in Fig. 5d). Thus, considering a ROM on the state problem
does not eliminate the need to solve a singular system of equa-
tions. It is noted that renumbering the degrees of freedom many
times during the optimization (here they are renumbered in every
iteration regardless of whether there are detached degrees of free-
dom) increases computational cost, but the savings due to reduc-
ing the size of the state equations more than makes up for that
loss as is demonstrated in Section 9.2.

6.2. Reduced order optimization problem

The sensitivity of compliance is given by (13) (see e.g., [14] for
the derivation):

@C xð Þ
@xi

¼ �u xð ÞT @K xð Þ
@xi

u xð Þ ð13Þ
gular system of equations associated with the self-equilibrated structure and a non-

Non-equilibrium (b ¼ 0:1)

R MP inverse LS-TR PE-TR

0 0:000 0:000 �4:065� 106

00 �0:200 �0:200 3:000 � 1011

4 0:058 0:058 �1:016� 107

0 0:100 0:100 3:000 � 1011

44 �0:058 �0:058 �1:016� 107

0 0:100 0:100 3:000 � 1011

0 0:120 0:120 2:700� 1011

1� 10�13 0:728 0:728 0:728
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Fig. 5. Demonstration of a reduced order model on the state equations: (a) initial
ground structure and boundary conditions; (b) degrees of freedom associated with
the initial ground structure to define a positive definite stiffness matrix
K xð Þ 2 R7�7

7

� �
with condition number 22.723; (c) degrees of freedom associated

with the final topology considering a FOM with positive semi-definite stiffness
matrix K xð Þ 2 R7�7

4

� �
and condition number 7:030� 1063 (singular); (d) degrees of

freedom associated with the final topology considering a ROM with positive semi-
definite stiffness matrix K xð Þ 2 R5�5

4

� �
and condition number 7:510� 1033 (singu-

lar). Notes: Dashed lines represent zero area members, dof numbers are indicated in
blue, member numbers are indicated in red, Rm�m

r is the space of m�m matrices
with rank r. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3
FOM vs. ROM: input parameters

Elastic modulus, E 1
Volume limit, Vmax 5:556� 10�4

Initial area, x0 8:136� 10�5

Minimum area, xmin
i

0:000

Maximum area, xmax
i 8:136� 10�1

Move parameter, c 8:000� 10�1

Convergence tolerance 1:000� 10�10

Tikhonov parameter, k0 1:000� 10�12

Ctol 1:000� 10�2

Cendtol 1:000� 10�2

Nf 1
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In (13), the derivative of K xð Þ with respect to the cross-sectional
area of member i is:

@Ki

@xi
¼ Ei

Li

ninT
i �ninT

i

�ninT
i ninT

i

" #
ð14Þ

where Ei is the elastic modulus of member i, ni is the unit vector ori-
ented along member i, and Li is the length of member i. Thus, the
sensitivity of compliance is independent of the member cross-
sectional area, allowing zero area members to have finite sensitivi-
ties as long as they have finite elastic modulus and length. The opti-
mality criteria (OC) update scheme employed in this work does not
allow members with null cross-sectional areas to return to the
topology in subsequent iterations and it is unnecessary to consider
the sensitivities of these non-existent members during the design
variable update. Thus, the space of design variables is also reduced
each time member cross-sectional areas are set equal to zero, lead-
ing to a reduction in the order of the sensitivity analysis. Kosaka and
Swan [24] noted the benefits of a reduced optimization problem
when they proposed a symmetry reduction method in continuum
topology optimization.

6.3. Comparison of the full order model (FOM) and reduced order
model (ROM)

The structure in Fig. 5 is optimized using the formulation in (5)
considering a FOM and a ROM with the input parameters given in
Table 3. In both cases, the optimization converges in seven itera-
tions and af ¼ 0 for the first three iterations. As a result, the mem-
ber cross-sectional areas and design sensitivities are identical for
the first four iterations. In the fourth iteration, the first and only
application of the max filter removes all members not present in
the final topology, leaving members 3, 4, 5, and 7 non-null.

Table 4 gives the design sensitivities in the final three iterations
for the FOM and the ROM. In the case of the ROM, the design sen-
sitivities of zero-area members are not considered in the sensitiv-
ity analysis and are indicated by blanks in Table 4. The design
sensitivities for the zero area members have finite value in the case
of the FOM, with the exception of member 2. The sensitivity of
member 2 is zero because there is no stiffness in member 2 in
the direction of displacement (horizontal). In contrast to the small
magnitude sensitivities of zero-area members 6 and 8, zero-area
member 1 has larger sensitivity than the non-null area members.
This large sensitivity results from the horizontal displacement at
node 1 where a load is applied. Since no force can transfer through
a member with zero area, the displacement at node 2 is zero,
resulting in a high sensitivity for that member.

The design sensitivities are identical between the FOM and the
ROM for the non-null members up to at least three digits as shown.
However, when considering more digits, the percent difference in
design sensitivities between the FOM and the ROM is on the order
of 10�10 or less, ultimately leading to solutions of the same topol-
ogy, but with compliance also differing in percentage on the order
of 10�10. Two factors contribute to the difference in sensitivities:

1. The Tikhonov regularization parameter, k, is defined in this
work as k0 multiplied by the mean of the diagonal of the stiff-
ness matrix. Since the stiffness matrices for the FOM and ROM
are of different sizes, the means of the diagonals are not equal.
This discrepancy can be mitigated by calculating the mean
without considering zero values on the diagonal.

2. The OC algorithm used in the implementation uses sensitivity
information to define the bisection interval for solving the dual
subproblem. This discrepancy can be eliminated by setting sen-
sitivities of the zero-area members equal to zero in the bisec-
tion portion of the OC update.

By eliminating the above discrepancies, the percent difference
in sensitivities of the non-null members is reduced to the order
of 10�13 for members 3, 5, and 7. The sensitivity of member 4 is
the same for both problems. In the final topology, the areas of
members 5 and 7 differ on the order of 10�13, in percentage, while
the other two members match exactly. Additionally, the compli-
ance obtained at convergence for the two problems match exactly.
The small differences may be attributed to numerical inaccuracies.
Without adjusting for the two discrepancies above, the final topol-
ogy and/or converged compliance may differ.
7. Aligned nodes and hanging members

The nested elastic formulation (1) with a cutoff often leads to
aligned nodes (i.e., hinges connecting two collinear members) in
the final post-processed design. Since all members from the initial
ground structure are present during the optimization in (1), the
equilibrium equation remains well posed. When members are
removed after the optimization, aligned nodes may appear. It is
generally accepted that collinear members connected by aligned



Table 4
Comparison of FOM and ROM design sensitivities for optimization of the structure in Fig. 5.

Member FOM ROM

Iter. 5 Iter. 6 Iter. 7 Iter. 5 Iter. 6 Iter. 7

1 �2:047� 108 �2:081� 108 �2:740� 108

2 0 0 0
3 �4:970� 107 �5:314� 107 �5:184� 107 �4:970� 107 �5:314� 107 �5:184� 107

4 �5:542� 107 �5:167� 107 �5:184� 107 �5:542� 107 �5:167� 107 �5:184� 107

5 �3:822� 107 �3:627� 107 �3:666� 107 �3:822� 107 �3:627� 107 �3:666� 107

6 �1:660� 10�2 �6:476� 10�2 �9:385� 10�4

7 �3:822� 107 �3:627� 107 �3:666� 107 �3:822� 107 �3:627� 107 �3:666� 107

8 �1:660� 10�2 �6:476� 10�2 �9:385� 10�4

a b

Fig. 6. Cantilever beam obtained with maximum filter parameters Ctol = 1.0,
Cendtol = 0.0, Nf = 50: (a) converged final topology containing aligned nodes and
hanging members, C = 33.558; (b) final topology with aligned nodes and hanging
members removed by an end-filter of af ¼ 0:303, C = 33.558. Note: Red indicates
compression and blue indicates tension. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Compliance comparison before and after removing aligned nodes for the cantilever
beam of Fig. 1a (units can be taken as kilonewtons and meters).

Sizing problem
+ end-filter

Sizing problem
+ end-filter

Max filtera

End-filter value 0.158 0.162 0.000
Minimum area, xmin

i 1:581� 10�8 1:581� 10�12 0.000

Objective function

Convergedb 33.516 33.326 33.326
After end-filterb 33.723 33.328 33.326
No aligned nodes 33.695 33.328 33.326

a Max filter parameters can be taken as, e.g., Ctol ¼ 0:00010, Cendtol ¼ 0:0, Nf ¼ 1,
or Ctol ! 1, Cendtol ¼ 0:0, Nf ¼ 300.

b Contains aligned nodes.
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nodes can be interpreted as one long member [19]. It is noted,
however, that the collinear members do not necessarily have the
same cross-sectional area, since additional members framed into
that node when equilibrium was solved by (1). Thus, in replacing
collinear members by a longer member, a decision is required as
to the cross-sectional area to use for the long member. In the
results to follow, collinear members are replaced with a long mem-
ber and the long member is assigned all of the structural properties
of the collinear member with the largest area. As such, it is
expected that the compliance of the structure with aligned nodes
removed is decreased from that obtained after applying the cutoff
(i.e., increased area leads to a stiffer structure, which causes less
displacement (no self-weight), and thus, reduced compliance).

Aligned nodes also appear in the designs derived using (5) with
the max filter (see Fig. 6a). Solution by PE-TR is effective in solving
the singular system caused by these aligned nodes as long as the
structure satisfies global equilibrium [18]. In the case of structures
obtained by (5) with the max filter, the collinear members must
contain the same internal force (in order to satisfy global equilib-
rium) and thus, have the same cross-sectional area. Therefore,
when replacing the collinear members with a long member, no
decision about the new long member’s properties or internal force
is required and the compliance obtained after removing the
aligned nodes remains unchanged. The tolerance used to deter-
mine whether two members are collinear plays an important role,
especially for 3D structures. If the tolerance is too large, the com-
pliance may change slightly after removing aligned nodes.

Table 5 shows the compliance for the structure in Fig. 1d
obtained via (1) the sizing problem (1) plus end-filter with two dif-
ferent lower bounds and (2) the modified formulation with max fil-
ter (5) before and after removing aligned nodes. It is shown that
the problem of selecting the new long member’s cross-sectional
area encountered when using the sizing problem (1) with an
end-filter is mitigated by using a sufficiently small minimum area.
For a small minimum area, the members removed by the cutoff are
negligible, and the collinear members connected by hinges have
similar enough cross-sectional area that the compliance remains
unchanged after removing aligned nodes. When using the max fil-
ter (5), the compliance is unchanged after removing aligned nodes
as shown in Table 5. However, in the case that the end-filter is
required in addition to the max filter, the compliance may increase.

Hanging members are not explicitly addressed in the imple-
mentation because the end-filter is effective in removing them.
In Fig. 6a, a topology containing two hanging members is obtained
due to the filter not being applied in the last 34 iterations before
convergence. The design variable update is sufficient in reducing
the cross-sectional area of these members to almost zero, but it
does not remove them before convergence. The topology obtained
in Fig. 6b is after the end-filter has been applied with Cendtol = 0.0,
indicating that removal of the hanging members does not increase
the compliance of the structure. This concept makes intuitive sense
since the only degree of freedom contributing to the compliance
for this single load problem is the degree of freedom at which
the load is applied. Thus, no matter how large the deflections of
the hanging members are, unless the load is applied at the corre-
sponding degrees of freedom, hanging members do not affect the
compliance of a structure that can be classified as at least statically
determinate after removal of the hanging members. It can be
assumed that using the end-filter with any specified Cendtol will
remove all hanging members from the final topology without
affecting the compliance.
8. Numerical aspects

The optimization formulation in (2) and (5) is implemented
using the OC method for updating the design variables (refer to
e.g., [25,26] for details on the update scheme). Note that members
removed from the design cannot reappear, first, because the OC
does not allow reappearance by definition, and second, because
those members are completely removed from the problem in the
ROM.



Table 6
Optimization input parameters for the cantilever
beam.

Volume limit, Vmax 3:600� 10�3

Initial area, x0 1:581� 10�6

Minimum area, xmin
i

0:000

Maximum area, xmax
i 1:581� 10�2

Move parameter, c 8:000� 10�1

Convergence tolerance 1:000� 10�10

Tikhonov parameter, k0 1:000� 10�12
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8.1. Design variable update

In all of the examples provided in the next section, the move
limit, M, used in the OC design variable update, is defined using
the control parameter c:

M ¼ cx0 ð15Þ
where x0 is the initial cross-sectional area of each member [25,18].

8.2. Convergence criteria

The optimization is terminated when the infinity norm of the
change in design variables from iteration k� 1 to k,
kxðk�1Þ � xðkÞk1, is less than a prescribed convergence tolerance.

8.3. Tikhonov regularization

In this work, k is selected as k0 ¼ 10�12 multiplied by the mean
of the diagonal of the stiffness matrix.

8.4. Global equilibrium residual

The structure is said to satisfy global equilibrium if the ratio in
(6) and (11) is satisfied with q equal to 10�4. It is noted that the
equilibrium solutions in this work typically have R much smaller
than 10�4.

8.5. Collinearity criteria

After convergence, collinear members connected by aligned
nodes are replaced with a longer member as described in Section 7.
Members are identified as collinear if the angle between them is
less than 0.0001 radians.

9. Numerical examples

Three numerical examples are presented to demonstrate the
use of the max filter in conjunction with the modified nested elas-
tic formulation (5) using PE-TR to solve the singular system of
equilibrium equations. In the first example, the max filter is
imposed on the cantilever that was presented for the sizing prob-
lem (1) with cutoff (Fig. 1) to demonstrate how Ctol and Nf can be
used to control the level of detail in the final topology. The second
example demonstrates the computational savings that can be
achieved by considering the max filter and reducing the order of
the model for design of a tall building. Lastly, the third example
shows that the max filter can be applied as an end-filter for both
the traditional plastic and elastic formulations of the ground struc-
ture method, avoiding the use of a cutoff selected arbitrarily or by
trial-and-error. The examples demonstrate that:

1. the max filter and/or end-filter can lead to multiple valid
designs;

2. by controlling increases in compliance between intermediate
designs, solutions with almost the same optimal value as the
convex sizing problem can be obtained;

3. all designs obtained with the max filter satisfy global
equilibrium.

Line thicknesses in the topology plots indicate the diameter of
the truss-member normalized to the maximum member diameter
assuming a circular cross-section (i.e., in general, line thicknesses
cannot be compared between structures). All inputs and outputs
are dimensionless, but are based on elastic modulus E ¼ 7� 107,
which corresponds to Aluminum if the units are taken to be kilo-
newtons and meters. In all cases, the longer of two overlapping
members in the initial ground structure is not considered.

9.1. Cantilever beam: demonstration of max filter parameters

Here, the same cantilever beam from Section 2 (Fig. 1) is consid-
ered to show the effects of varying the max filter input parameters,
Ctol and Nf . The domain is clamped at one end with a mid-height
point load of 100 force units at the other end. The 8� 4 design
domain is discretized into a 9� 5 nodal mesh and full-level con-
nectivity (with the longer of overlapping bars removed) is used
to define the initial ground structure with 632 truss elements
(Fig. 1a). Table 6 lists the parameters used in the optimization algo-
rithm for solution of (5) using the OC design variable update
scheme [25].

9.1.1. Varying max filter parameters
For this simple example, the max filter is shown to yield multi-

ple designs that are all statically determinate and satisfy global
equilibrium. In contrast to the sizing problem (1), in which final
topologies based on different cutoff values represent the same
solution with varying levels of thin members (Fig. 1), the designs
obtained using the max filter are distinct from one another as
demonstrated visually by the final topologies in Figs. 7–9 and
through the indicated values of the objective function
(compliance).

Since the formulation in (2) is convex, the objective is expected
to converge toward the global optimum in each iteration. However,
introducing the max filter (5) disrupts the convexity of the prob-
lem and segregates it into a series of convex topology optimization
problems. Figs. 7 and 8 compare the objective function curves for
the sizing problem to a few of the results obtained with the max
filter. Notice that the objective function converges smoothly for
the case of the convex sizing problem, while peaks in the objective
function indicate the iterations at which the max filter causes the
compliance of the structure to increase from the previous interme-
diate design. As a result of these peaks in the objective, the end
compliance generally increases with increasing magnitude and
number of non-convex regions, while the final topologies decrease
in complexity.

Fig. 7 demonstrates that the max filter, with decreasing Ctol,
forces the solution toward the globally optimal solution found
using the sizing problem (1) with a cutoff. Fig. 7a shows that when
there is no limitation placed on the increase in compliance
(Ctol ! 1), the filter takes the maximum value (1.0) in many iter-
ations, causing large peaks in the objective function convergence
plot and a simple final topology with a relatively large objective.
As Ctol is decreased, the max filter forces the filter value to be less
than 1.0, causing the peaks in the objective to reduce (Fig. 7b–d)
and the final topology to converge toward that of the sizing prob-
lem (Fig. 7d).

Fig. 8 clearly shows the convex subproblems that exist between
applications of the max filter and demonstrates the effect of
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Fig. 7. Cantilever beam: filter values, objective function convergence plots, and
final topologies for max filter parameters Nf = 1 and (a) Ctol ! 1; (b) Ctol = 0.50; (c)
Ctol = 0.050; (d) Ctol = 0.00010. Notes: Filter values equal to zero are not plotted, the
end-filter was found to be zero for all cases, all structures shown have R < 10�10 (cf.
(7)), red indicates compression and blue indicates tension. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 8. Cantilever beam: filter values, objective function convergence plots, and
final topologies for max filter parameters Ctol ! 1 and (a) Nf = 1; (b) Nf = 5; (c)
Nf = 25; (d) Nf = 300. Notes: Filter values equal to zero are not plotted, the end-filter
was found to be zero for all cases, all structures shown have R < 10�10 (cf. (6)), red
indicates compression and blue indicates tension. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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postponing application of the max filter using the Nf parameter. All
of the results in Fig. 8 are obtained without limiting the increase in
compliance (i.e., Ctol ! 1), but increasing the number of iterations
between application of the max filter. Imposing the max filter in
every iteration (Fig. 8a) or every five iterations (Fig. 8b), leads to
high jumps in the objective early in the optimization. Since mem-
bers cannot be re-introduced, the early and large increases in the
objective destines the final compliance to be significantly
increased relative to that of the sizing problem. As Nf is increased,
the jumps in the objective are pushed farther along in the process
and in general, are smaller, again forcing the solution toward that
of the sizing problem (Fig. 8d). Note that in Fig. 8b–d, before the
first max filter application the objective function follows exactly
the same path as that of the sizing problem. The max filter then
causes an abrupt jump in the objective, which is followed by
smooth convergence until the next max filter application.

Notice that the topologies obtained for Nf = 1 and Ctol = 0.00010
(Fig. 7d) and Nf = 300 and Ctol ! 1 (Fig. 8d) are essentially identi-
cal to the only feasible final topology obtained from the sizing
problem with cutoff (Fig. 1d). The compliance of the max filtered
structure (33.326) is the same as the converged compliance of
the sizing problem (see Table 1) to at least three decimal places.
However, the compliance of the max filtered structure is slightly
smaller when considering the increase in compliance due to appli-
cation of the cutoff (33.328, see Table 5). This difference in compli-
ance can become meaningful if the minimum area, xmin

i , used in



C = 33.790

fe

Nf = 2, Ctol = 5.0

C = 33.558

ba

dc

C = 46.446

C = 33.456

C = 32.281

C = 46.446

Nf = 10, Ctol = 0.20

Nf = 50, Ctol = 1.0

Max filter Geometrical rules
(Mazurek et. al. 2011)

Fig. 9. Cantilever beam: additional final topologies obtained by varying both max
filter parameters and compared to the corresponding discrete optimal trusses
obtained using geometrical rules [27]: (a) max filter with Ctol = 5.0 and Nf = 2
compared with (b) discrete optimal truss for n ¼ 1; (c) max filter with Ctol = 0.20
and Nf = 10 compared with (d) discrete optimal truss for n ¼ 2; (e) max filter with
Ctol = 1.0 and Nf = 50 compared with (f) discrete optimal truss for n ¼ 3. Notes: The
end-filter was found to be greater than zero for the topology in (e) (cf. Fig. 6), red
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of this article.)
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formulation (1) is ‘‘large”. The results presented in Fig. 1 and
Table 1 are based on a small xmin

i ¼ 1:581� 10�12.
The results shown in Fig. 7 indicate that when the filter is

applied in every iteration the objective decreases as Ctol is
decreased. The results in Fig. 8 indicate that when there is no
restriction on increases in compliance between iterations, the
objective decreases as Nf is increased. It is important to recognize,
however, that this trend is not strict. Each time the max filter is
applied, a structure satisfying global equilibrium is obtained and
the optimization proceeds based on this new initial structure. Just
as the nodal discretization and ground structure level limits the
space of feasible solutions in the convex sizing problem, so does
re-initiating the optimization problem with the use of the max fil-
ter. This fact highlights another important aspect of the max filter:
there is no way to accurately predict which final topology will be
obtained and what the final value of the objective will be based
on the two max filter input parameters. As a result, it becomes
more difficult to control the final topology as the initial ground
structure is made more dense and increasingly many local minima
exist in the solution space.
9.1.2. Comparison with discrete optimal trusses
Figs. 7 and 8 show the effect of varying Ctol and Nf , with the

other parameter set at the two extremes (Nf = 1 and Ctol ! 1,
respectively). By varying both parameters simultaneously, addi-
tional topologies can be obtained. In Fig. 9, the max filter is used
to obtain geometries resembling the discrete optimal trusses
obtained by Mazurek et al. [27] for the symmetric three-point
problem. In their work, Mazurek et al. [27] obtain geometric rules
that yield optimal trusses given a finite number of members (N = 2,
8, 18, 32, 50, . . .). They note that N ¼ 2n2, where n is the number of
members attached to each support. Thus, n ¼ 1 corresponds to the
2-bar truss, n ¼ 2 to the 8-bar truss, n ¼ 3 to the 18-bar truss, and
so on. As n approaches infinity, the total structural volume
decreases toward the analytical solution and the trusses approach
the Michell [1] solution.

Fig. 9 demonstrates that the max filter is effective in obtaining
solutions that resemble the n ¼ 1, n ¼ 2, and n ¼ 3 solutions. It is
noted that material in the discrete optimal trusses is distributed
for minimum tip displacement using the Lagrange multiplier
method after the geometry of the discrete optimal truss is obtained
[27]. For a fair comparison of compliance between the results of
the max filter and the discrete optimal trusses, the material distri-
bution for the trusses in Figs. 9b, d, and f is defined by setting the
total volume of the discrete optimal trusses equal to Vmax (see
Appendix D for the full derivation).

Due to limitations in the nodal locations of the initial ground
structure, the solutions obtained using the max filter have
increased compliance relative to their discrete optimal counter-
parts. It is also noted that solutions resembling discrete optimal
trusses for n > 3 cannot be obtained by the max filter due to the
coarse nodal discretization defining the initial ground structure.
It also becomes more difficult to obtain solutions resembling the
discrete optimal trusses as the initial ground structure becomes
more dense because of the increasing number of local minima that
exist.
9.2. Lotte Tower: demonstration of the reduced order model

The following example is used to demonstrate the computa-
tional efficiency of introducing the max filter and reducing the
order of the model during the optimization iterations. The design
domain and boundary conditions considered in this example are
inspired by Skidmore, Owings & Merrill LLP’s design for the Lotte
Tower design competition in Seoul, South Korea. The design
domain consists of a 10� 10 square cross-section at the base,
which transitions to a circular cross section with a diameter of
10 at the top. The total height of the domain is 80. Stromberg
et al. [28] and Zegard and Paulino [12] considered a similar domain
for density based topology optimization and for the plastic formu-
lation of the ground structure method, respectively. In fact, the
design domain, nodal discretization, and ground structure defini-
tion, available with download of GRAND3 for the Lotte Tower
are, adopted here [12].

The design domain is discretized into a 13� 16 nodal mesh (i.e.,
16 nodes are equally distributed around each of 13 equally spaced
cross-sections along the height). The ground structure is defined
using the 13� 16 nodal mesh considering level 5 connectivity.
Additionally, in order to represent a building with useable space
on the interior, a void region defined by an offset of the design
domain inward by 0.5 extends vertically from base to top. The level
5 initial ground structure is modified such that truss members do
not intersect with the void region and the longer of two overlap-
ping members is removed. The initial ground structure contains
4100 elements.

Two equally weighted load cases are considered (see e.g., [29]
for the standard multi-load formulation used here), each with four
equal lateral loads applied to four equally spaced nodes at the top
of the domain. The loads considered for load cases 1 and 2 are per-
pendicular to each other and the total applied load in each case is
10 force units. All nodes at the base of the tower are fixed. The
design domain, nodal discretization [12], and boundary conditions
are depicted in Fig. 10 and the inputs to the optimization algorithm
are provided in Table 7.

Effect of the ROM: Fig. 11 shows the final topology obtained from
the sizing problem (1) plus end-filter (Fig. 11a) compared to some
of the topologies obtained using the max filter (5) (Fig. 11b and c).
The corresponding max filter parameters, a quantification of the
solutions, and a comparison of the computational costs for the



a b c

load case 1 load case 2

Fig. 10. Lotte Tower problem definition: (a) SOM’s design [photo credit: SOM —
SEVENTH ART GROUP]; nodal mesh and boundary conditions for (b) load case 1;
and (c) load case 2.

Table 7
Optimization input parameters for the Lotte Tower.

Volume limit, Vmax 6:600� 10�3

Initial area, x0 9:518� 10�8

Minimum area,a xmin
i

0:000

Maximum area, xmax
i 9:518� 10�4

Move parameter, c 1:000
Convergence tolerance 1:000� 10�10

Tikhonov parameter, k0 1:000� 10�12

a Sizing problem uses xmin
i ¼ 9:518� 10�14.

a b c

Fig. 11. Lotte Tower final topologies: (a) sizing problem (1) with Cendtol = 0.010 and
end-filter = 4:578� 10�3; (b) max filter (5) with Nf = 350, Ctol = 0.0, Cendtol = 0.010,
and end-filter = 4:700� 10�3; (c) max filter (5) with Nf = 2, Ctol = 0.40, Cendtol = 0.010,
and end-filter = 0.0; Note: Although not always the case, max filter results (b and c)
are identical for the FOM and ROM up to differences on the order of machine
precision.

Table 8
Results for the Lotte Tower.

Fig. 11a Fig. 11ba Fig. 11ca

Nf – 350 2
Ctol – 0.000 0.40
Cendtol 0.010 0.010 0.010

End-filter 4:578� 10�3 4:700� 10�3 0.000

Number of members 644 644 228
Equilibrium residual, R 1:259� 10�9 1:259� 10�9 1:315� 10�9

Final resolutionb
4:598� 10�3 4:746� 10�3 6:382� 10�2

Final compliance, Cc 373.209 373.178 535.402

FOM run time, T (s) 546.079 439.337 127.204
ROM run time, T (s) 546.079 302.653 31.518
Number of state solves 997 819 849

a Max filter results are based on ROM unless indicated otherwise.
b resolution ¼ min x=max xð Þð Þ.
c Compliance for the sizing problem before applying the end-filter is 369.580.
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sizing problem and max filter considering both the FOM and ROM
are provided in Table 8. It is noted that the max filter is able to
achieve an almost identical topology and compliance as the sizing
problem (cf. Fig. 11a and b), but in less than 60% of the time. By
adjusting the max filter parameters, a different topology is
obtained (Fig. 11c), which shows even greater computational sav-
ings relative to the sizing problem at the expense of an increased
compliance due to the large specified Ctol. Note that the reduction
in computational time does not scale proportionally with the num-
ber of state solves. For example, the sizing problem in Fig. 11a
solves the state equations about 1.2 more times than the max filter
with ROM in Fig. 11c, but takes about 20 times longer. The reduc-
tion in computational time for the ROM is not only dependent on
the number of solves, but more importantly on the incremental
reductions in the size of the linear system of equations being
solved.

In Fig. 12, the time per iteration for the sizing problem is com-
pared to that of the max filter with FOM and ROM for the topolo-
gies in Fig. 11b and c. Fig. 12a shows that before application of the
max filter in iteration 300, the computational cost of the max filter
algorithm per iteration with both a FOM and a ROM is similar to
that of the sizing problem. However, a sharp reduction in compu-
tational cost per iteration is observed after the first application of
the max filter for both the FOM and ROM. Although the size of
the linear system is constant for the FOM, a reduction in computa-
tional cost is likely due to the increased sparsity of the stiffness
matrix as member cross-sectional areas are set equal to zero by
the max filter.

Fig. 12b illustrates the spikes in computational time for itera-
tions in which the max filter is imposed. In these iterations, the
state equations are solved multiple times while iterating to find
the max filter value. Regardless, even in the case with multiple lin-
ear solves in every other iteration (Nf ¼ 2), it is shown in Fig. 12b
that the computational time per iteration when considering the
ROM is reduced compared to that of the sizing problem due to
the reduced size of the state equations.

Although not the case here, use of the max filter will often lead
to more calls to the linear solver than in the sizing problem, espe-
cially for low Nf . If Ctol is also sufficiently small, the max filter with
ROM may become inefficient, but in general tends to remain more
efficient than the sizing problem.
9.3. Shell structure: use of the max filter as an end-filter

To demonstrate the use of the end-filter on the traditional plas-
tic and nested elastic (1) formulations, two different ground struc-
tures are defined on the base surface shown in Fig. 13, which is
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Fig. 12. Lotte Tower: CPU time comparison between the sizing problem (1) and the
maximum filter (5) considering a full order model (FOM) and a reduced order model
(ROM) (a) Nf ¼ 350, Ctol ¼ 0:0, Cendtol ¼ 0:010, and end-filter = 4:700� 10�3; and (b)
Nf ¼ 2, Ctol ¼ 0:4, Cendtol ¼ 0:010, and end-filter = 0.0. Note: The black solid line
corresponds to the topology in Fig. 11a, and the red lines in (a) and (b) correspond
to the topologies in Fig. 11b and c, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 13. Shell structure nodal mesh and boundary conditions: (a) isometric view;
(b) plan view. Note: The cartoon loading in (a) is used for clarity; point loads are
actually applied to all nodes along the x and y-axes as shown in (b).

Table 9
Optimization input parameters for the shell
based on the t ¼ 10 ground structure when
solved using the nested elastic formulation (1).

Volume limit, Vmax 6:600� 10�3

Initial area, x0 7:876� 10�9

Minimum area, xmin
i 7:876� 10�15

Maximum area, xmax
i 7:876� 10�5

Move parameter, c 1:000
Convergence tolerance 1:000� 10�10
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discretized into 800 triangular elements. The base surface is com-
posed of several reflections of one eighth of a hyperbolic parabola.
By means of the ground structure generation algorithm in GRAND3
[12], two level 8 ground structures with restriction surfaces offset
above and below the base surface are generated. For the first
ground structure, the restriction surfaces are offset 5 units from
the base surface, for an allowable thickness, t ¼ 10, and a total of
17,748 members. The second ground structure is generated with
restriction surfaces offset 2.5 units from the base surface, for an
allowable thickness, t ¼ 5, and a total of 12,176 members. The
shell-like structure is loaded with a series of vertical point loads
along the x and y-axes, for a total vertical load of 100 force units.
The input parameters used for the nested elastic formulation are
provided in Table 9.

Use of the end-filter: Table 10 compares the optimization results
for the nested elastic formulation and the plastic formulation at
convergence and after applying the end-filter for the ground struc-
ture with t ¼ 10. In all cases Cendtol ! 1. Below are a few remarks
on the results in Table 10:

1. The result of the nested elastic formulation, without cutoff, is
based on (1). At convergence, all of the members from the initial
ground structure are present, as expected, and the resolution
(ratio of minimum to maximum cross-sectional area) indicates
that very thin members are present. After applying the max fil-
ter as an end-filter, the resolution is significantly improved
(increased).

2. The first result for the plastic formulation is obtained using
GRAND3, which defaults to MATLAB’s interior point method
[12]. At convergence, all of the members from the initial ground
structure are present and again the resolution indicates that
very thin members are present. By applying a typical cutoff
value (0.005), the global equilibrium residual indicates that
the solution does not satisfy global equilibrium. However, by
using the concept of the max filter to find an appropriate
end-filter, the structure satisfies global equilibrium and the res-
olution is significantly improved (increased) with respect to
that of the original plastic formulation.

3. GRAND3 is also run using MATLAB’s dual-simplex method. In
this case, all but 248 members have zero area in the converged
structure. However, the zero-area members exist at conver-
gence and the resolution of the structure is zero. After applying
the end-filter, which is found to be zero, the final topology con-
sists of the 248 nonzero members found at convergence and the
resolution is significantly improved (increased).

4. One additional note is that the dual-simplex algorithm takes
about 2.5 times longer than the interior point method for this
problem. The average CPU times are 1.551 s and 3.844 s for
the interior point and dual-simplex algorithms, respectively



Table 10
Results for the shell based on the t ¼ 10 ground structure.

End-filter value Number of members Objectivea Global equilibrium residual, R Resolutionc

Nested elastic formulation (1):

Converged – 17,748 4:858� 104 1:194� 10�14 1:675� 10�9

End-filter 1:358� 10�3 380 4:858� 104 2:262� 10�11 1:369� 10�3

Plastic formulation: Interior point

Converged – 17,748 3:643� 104 7:573� 10�12 4:909� 10�14

Cutoff = 0.005 – 248 3:641� 104 7:595� 10�3 1:026� 10�2

End-filterb 1:556� 10�3 256 3:643� 104 2:724� 10�10 1:563� 10�3

Plastic formulation: Simplex

Converged – 17,748d
3:643� 104 7:953� 10�14 0:000d

End-filter 0:000 248 3:643� 104 7:953� 10�14 1:563� 10�3

a Objective is compliance for the nested elastic formulation and volume for the plastic formulation (the volumes of structures obtained using the two formulations are not
comparable).

b Final topology shown in Fig. 14a.
c Resolution ¼ min x=max xð Þð Þ.
d Zero-area members exist in the converged solution.
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(average of ten runs). As expected, the nested elastic formula-
tion is more expensive. Without optimizing the code for speed,
a single run for this problem took almost two hours.

The final topologies obtained using the plastic formulation with
interior point method (plus end-filter) for the t ¼ 10 and t ¼ 5
ground structures are shown in Fig. 14a and b, respectively. Final
topologies obtained using the other two methods (plus
end-filter) are almost identical from a visual perspective and, as
such, are not shown here. Of the three methods, the result of the
elastic formulation has the greatest number of members after
applying the end-filter, but the resolution is of a similar order of
magnitude as the results of the plastic formulation. Although the
full results are not reported for the shell with t ¼ 5, similar trends
to those of the shell with t ¼ 10 are observed. It is noted that using
b

isometric view

plan view

a

Fig. 14. Shell structure final topology considering the plastic formulation solved using
structure with t ¼ 10; and (b) 6:723� 10�4 for the ground structure with t ¼ 5. The final t
visually, almost identical.
Cendtol ! 1 as done here may lead to large increases in the final
value of the objective in some situations and it may be more prac-
tical to use a smaller value for Cendtol.

10. Discussion

The max filter is introduced to increase the filter’s reliability in
achieving useful solutions and to provide increased user control
over design complexity. Rather than specifying a filter value a pri-
ori and modifying the OC move limit to control increases in the
objective function, the max filter directly controls the filter value to
limit increases in the objective function. In other words, the dis-
crete filter [18] is static while the max filter is adaptive. Thus,
the max filter does not falter when a specified filter value is too
big to satisfy the objective tolerance and/or global equilibrium
isometric view

plan view

the interior point method with an end-filter of (a) 1:556� 10�3 for the ground
opologies obtained with the simplex method and the nested elastic formulation are,
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tolerance. Further, the max filter is decoupled from the update
scheme so that it becomes a modular tool to re-initialize or reduce
the design space in an informed way. As such, the design space
always represents a structure satisfying global equilibrium and
the performance of structures in the re-initialized design space
changes based on user specified parameters.

The max filter provides a flexible design environment, in which
architects and engineers can find common solutions to often differing
design goals. Use of the ground structure method in practice is typ-
ically limited to providing some design intuition about structural
behavior and load path. Designs obtained directly from the opti-
mization algorithms represent a single solution and are often much
too complicated to implement directly. As a result, significant post-
processing or re-design is necessary to achieve a practical solution.
The max filter does not eliminate the need for designer interpreta-
tion, but it does provide additional flexibility and multiple perspec-
tives on the design problem at hand. Thus, the max filter has the
potential to make the ground structure method more appealing
to designers by allowing them to develop multiple design options
(rather than a single solution), each with an associated quantitative
measure of performance (i.e., the value of the objective) that will
easily allow the designer to weigh the costs and benefits of the var-
ious designs. The implications of topology optimization as a bridge
between architects and engineers has been studied by Beghini
et al. [30] and the max filter provides a means to achieve the
designs developed in the collaborative architectural-engineering
design environment that they envision.
11. Conclusions

A max filter is integrated with the nested elastic formulation of
the ground structure method. In addition to converting the ground
structure method from a sizing problem to a topology plus sizing
problem and guaranteeing structures satisfying global equilibrium
[18], the proposed formulation leads to a method in which:

1. the user can control the complexity of designs;
2. multiple designs can be obtained for a single ground structure;
3. arbitrary post-processing is replaced by a reliable end-filter;

and
4. computational cost is reduced.

The formulation is characterized by finding a maximum filter
value in a given iteration that can be imposed without violating
equilibrium or the user prescribed tolerance on the increase in
the objective. The numerical implementation features an addi-
tional parameter that allows the designer to specify the number
of iterations between applications of the max filter. The approach
allows the optimizer to find multiple local minima to the maxi-
mum stiffness problem, all of which are guaranteed to satisfy glo-
bal equilibrium. Although the overall optimization problem
becomes non-convex due to application of the max filter, the
‘‘sub-problems” between applications of the max filter are convex
(i.e., piecewise convex). Additionally, as shown in Sections 9.1 and
9.2, the max filter can be controlled such that an unambiguous
topology with practically the same compliance as the global opti-
mum (convex formulation of (1)) is achieved.

Minimization of potential energy with Tikhonov regularization
(PE-TR) is used to solve the singular state equations that result
from filtering during the optimization. Not only does PE-TR allow
members to be actually removed during the optimization, but it
also enables the use of a zero-lower bound on the member cross-
sectional areas, which is prohibited in the traditional nested elastic
formulation. As unnecessary members are removed, a reduced
order model is achieved, leading to increased computational effi-
ciency as the size of the state equations and the number of design
variables considered in the sensitivity analysis are reduced.

The max filter can be applied in a post-processing stage of other
ground structure methods. For instance, it can be applied as an
end-filter after use of the traditional plastic and nested elastic for-
mulations to remove thin members, while obtaining a structure
guaranteed to satisfy global equilibrium.
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Appendix A. Nomenclature
af
 current filter value

aþ
f
 upper bound on filter value
a�
f
 lower bound on filter value
aeq
f

filter value preserving global equilibrium
b
 non-equilibrium parameter

BT
 nodal equilibrium matrix

C
 compliance

Cendtol
 tolerance on change in objective for end-filter

Ctol
 tolerance on change in objective

Daeq

f

change in filter values preserving global
equilibrium
DC
 change in compliance

D
 tip displacement

E
 elastic modulus

F
 external force vector

f i
 internal member force due to a unit load

c
 multiplier on initial areas to define move limit

K
 global stiffness matrix

L
 vector of member lengths

k; k0
 Tikhonov regularization parameters

L
 Lagrangian

LS-TR
 least-squares with Tikhonov regularization

l
 Lagrange multiplier

l�
 Lagrange multiplier at optimality

M
 optimality criteria move limit

n
 vector of internal member forces

N
 total number of elements

n
 number of members connected to each support

Nf
 number of iterations between max filter

applications

ni
 unit vector oriented along member i

OC
 optimality criteria method

P
 potential energy

P
 applied load

MP
 Moore-Penrose

PE-TR
 minimization of potential energy with Tikhonov

regularization
(continued on next page)
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Rm�m
r
 space of m�m matrices with rank r
q
 tolerance on global equilibrium residual

R
 normalized global equilibrium residual

FOM
 full order model

ROM
 reduced order model

r
 stress associated with fully stressed design

ri
 stress in member i

u
 vector of nodal displacements

V
 total total structural volume

Vmax
 upper bound on total structural volume

x
 vector of member cross-sectional areas

xk
 member cross-sectional areas at iteration k
xknew
 member cross-sectional areas at iteration k after
application of the max filter
xmax
i
 upper bound on member cross-sectional areas
xmin
i

lower bound on member cross-sectional areas
x�
 vector of member cross-sectional areas at
optimality
x0
 vector of initial member cross-sectional areas
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Fig. C.15. Bisection scheme to find the max allowable filter in iteration k.
Appendix B. Fully stressed designs

B.1. Sizing problem

The solution to the convex sizing problem (1) theoretically rep-
resents a fully stressed design in that all members with cross-
sectional area strictly between xmin

i and xmax
i have the same magni-

tude of stress, while members with cross-sectional area equal to
the upper or lower bounds are stressed with higher or lower mag-
nitude, respectively. This idea of fully stressed design is implied by
the necessary KKT conditions that give the following KKT point
(x�;l�):

r2
i 6 l�

E if x�i ¼ xmin
i

r2
i ¼ l�

E if xmin
i < x�i < xmin

i

r2
i P l�

E if x�i ¼ xmax
i

ðB:1Þ

where ri is the stress in member i, l� is the Lagrange multiplier
associated to the volume constraint at optimality, E is the elastic
modulus, and x�i is the cross-sectional area of member i at optimal-
ity (see [14] for the derivation of the above KKT conditions). When
solving the problem numerically, however, it is difficult to obtain a
result that strictly satisfies the KKT conditions. By removing mem-
bers with cross-sectional area equal to the bounds, the design may
still contain many undesirable thin bars due to machine precision in
achieving the lower bound. Therefore, a post-processing filter dif-
ferent than the cross-sectional area lower bound is typically
adopted. If a reasonable cutoff is selected, the final design will be
very close to fully stressed.

B.2. Max filter

In the case of the modified nested elastic formulation with the
max filter imposed (5), a series of convex sizing problems are
solved between applications of the max filter (even for the case
of Nf ¼ 1 in which the filter typically takes zero value for many
iterations). Thus, as long as a filter is not applied in the final opti-
mization iteration, the final solution at convergence will be as close
to fully stressed as the numerical solution will allow. Since xmin

i ¼ 0
in (5), there should theoretically be no members present with
stress of lower magnitude than r, although this will not hold if thin
members are present at convergence. In addition, xmax

i is prescribed
to be non-restrictive in this work and thus there should be no
members with stress of higher magnitude than r. If, however,
the max filter is applied in the final iteration or if an end-filter is
applied after convergence, a fully stressed design cannot be guar-
anteed because the optimality condition obtained with conver-
gence of the convex problem is no longer valid. However, from a
practical point of view, even in cases where non-fully stressed
designs are obtained from application of the max filter, the designs
are close to being fully stressed.

Appendix C. Max filter algorithm

Fig. C.15.

Appendix D. Material distribution for discrete optimal trusses

The discrete optimal trusses in Fig. 9b, d, and f are obtained by
first using geometrical rules to define the nodal locations, and sec-
ond by distributing the material for minimum tip displacement
using the Lagrange multiplier method [27]. The tip minimization
problem is defined as:

min
x

D ¼ P
E

XN
i¼1

f 2i Li
xi

s:t: LTx ¼ V

xi > 0

ðD:1Þ

where the design variable x is the vector of member cross-sectional
areas, D is the tip displacement, P is the applied vertical tip load, f i is
the internal force in member i due to a unit vertical tip load, L is the
vector of member lengths, E is the elastic modulus, and V is the pre-
scribed volume, which for comparison with the max filter results, is
set equal to the volume limit, Vmax, used in the compliance mini-
mization problem ((1), (2), (5)). The Lagrangian of (D.1) can be writ-
ten as:
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@L

@xi
¼ 0 ¼ � Pf 2i Li

Ex2i
þ lLi ðD:2Þ

where l is the Lagrange multiplier. Rearranging, the stress is found
to be constant and the material distribution is determined to be:

P2f 2i
x2i

¼ ElP ¼ r2

) xi ¼ Pfi
r

ðD:3Þ

where r is obtained by imposing the volume constraint:

V ¼ Vmax ¼
XN
i¼1

xiLi ¼ P
r
XN
i¼1

f iLi

) r ¼ P
Vmax

XN
i¼1

f iLi

ðD:4Þ

With all values in the expression for D (D.1) known, the compliance
is calculated as C ¼ PD.

Appendix E. Computations for self-equilibrated and non-
equilibrium structure

This appendix provides details on the computational proce-
dures used to calculate the displacements in the example provided
in Fig. 4 and Table 2. Each member in Fig. 4 has unit length, unit
cross-sectional area, and unit elastic modulus, (i.e., unit axial stiff-
ness). The global stiffness matrix, K 2 R6�6

3 , and force vector,
F 2 R6, are defined for the structure as follows:

K ¼

0:500 0 �0:250 0:433 �0:250 �0:433
0:000 1:500 0:433 �0:750 �0:433 �0:750
�0:250 0:433 1:250 �0:433 �1:000 0
0:433 �0:750 �0:433 0:750 0 0
�0:250 �0:433 �1:000 0 1:250 0:433
�0:433 �0:750 0 0 0:433 0:750

2
666666664

3
777777775

F ¼ 0 �1 0 0:5 0 0:5½ �T

In the following, the particular solution to the linear system of
equilibrium equations:

Ku ¼ F ðfrom1Þ
is determined using the MP inverse, LS-TR, and PE-TR (Table 2).
Note that the homogeneous solution is zero for a structure satisfy-
ing global equilibrium [18] and since these are the only structures
of interest, the particular solution is computed here and the homo-
geneous solution is neglected.

E.1. Moore-Penrose (MP) inverse

The MP inverse is obtained using singular value decomposition
(SVD) in which the stiffness matrix can be decomposed as:

K ¼ VSVT ðE:1Þ
where S ¼ diag s1; . . . ; sr;0; . . . ; 0ð Þ is a diagonal matrix of the eigen-
values of K with s1 P s2 P � � � P sr > 0 and V is an orthogonal
matrix with columns containing the corresponding eigenvectors.
The MP inverse, Kþ, is obtained as:

Kþ ¼ VSþVT ðE:2Þ
where Sþ ¼ diag 1=s1; . . . ;1=sr;0; . . . ;0ð Þ. Then, the particular solu-
tion is determined as follows [23]:
up ¼ KþF ðE:3Þ
For the problem considered, the eigenvalues of K, orthogonal

matrix of corresponding eigenvectors, and MP inverse according
to (E.2) are computed as follows:

s1 ¼ 3 s4 ¼ 0
s2 ¼ 1:5 s5 ¼ 0
s3 ¼ 1:5 s6 ¼ 0

V ¼

0 �0:500 0:289 �0:343 �0:510 0:538
�0:577 �0:289 �0:500 0:370 0:179 0:406
�0:500 0:500 0:289 0:308 �0:566 �0:031
0:289 �0:289 0:500 0:746 0:147 0:072
0:500 0 �0:577 0:308 �0:566 �0:031
0:289 0:577 0 �0:006 0:2117 0:734

2
666666664

3
777777775

Kþ ¼

0:222 0 �0:111 0:193 �0:111 �0:193
0 0:333 �0:096 �0:167 0:096 �0:167

�0:111 �0:096 0:306 �0:048 �0:194 0:144
0:193 �0:167 �0:048 0:250 �0:144 �0:083
�0:111 0:096 �0:194 �0:144 0:306 0:048
�0:193 �0:167 0:144 �0:083 0:048 0:250

2
666666664

3
777777775

The particular solutions using the MP inverse are provided in
Table 2 for the structure satisfying global equilibrium (b ¼ 1) and
for the non-equilibrium structure (b ¼ 0:1). Note that the compu-
tations have been carried out with values of magnitude 10�16 or
smaller manually changed to zero as these small values are the
result of limitations in machine precision.

E.2. Least-squares with Tikhonov regularization (LS-TR)

LS-TR converts the two-step least-squares, minimum norm
solution of the linear system of state equations in (1) into a one-
step problem of the form:

min
u

kKu� Fk2 þ k2uTu ðE:4Þ

where the first term is the least-squares solution, the second term
constrains the least-squares solution to the one of minimum norm,
and k2 is a small positive value (Tikhonov parameter) such that the
solution converges to KþF as k2 goes to zero. Minimizing (E.4), the
displacement field is determined according to:

up ¼ KTKþ k2I
� ��1

KTF ðE:5Þ

where k is selected as k0 ¼ 10�12 multiplied by the mean of the
diagonal of the stiffness matrix ([22,18]). The particular solutions
using LS-TR are provided in Table 2 for the structure satisfying glo-
bal equilibrium (b ¼ 1) and for the non-equilibrium structure
(b ¼ 0:1).

E.3. Potential energy with Tikhonov regularization (PE-TR)

As described in Section 5, the state equations in (1) can be
solved by minimizing the potential energy of the structure with
a Tikhonov regularization term to address singularities:

min
u

1
2
uTKu� FTuþ k

2
uTu ðsee 2 and 3Þ

Minimizing, the particular solution is determined according to:

up ¼ Kþ kIð Þ�1F ðE:6Þ
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where k is selected as k0 ¼ 10�12 multiplied by the mean of the
diagonal of the stiffness matrix [18]. The particular solutions using
PE-TR are provided in Table 2 for the structure satisfying global
equilibrium (b ¼ 1) and for the non-equilibrium structure (b ¼ 0:1).

Appendix F. MATLAB implementation

The modified nested elastic formulation (5) with the max filter
and end-filter is implemented in MATLAB and provided as elec-
tronic supplementary material. The structure of the code is
inspired by PolyTop [31]. The provided code is limited to 2D, but
can easily be extended to 3D. Three files are included:

1. TrussTop_MaxFilter_2D.m is the main file that runs the opti-
mization. This file contains a number of subroutines which cal-
culate the objective, constraint, sensitivities, impose the filter,
prepare and perform the finite element analysis, and display
the results.

2. Cantilever2D_Script.m contains all of the input information
required to run TrussTop_MaxFilter_2D.m for the cantilever
example presented in Sections 2 and 9.1. Similar input files can
be developed to run other problems.

3. GenerateGroundNonOver.m is used to generate the full-level
initial ground structure without overlapping bars for an orthog-
onal nodal grid.

The input file, Cantilever2D_Script.m defines the three
MATLAB struct arrays that must be passed to TrussTop_
MaxFilter_2D.m. Understanding Cantilever2D_Script.m will
allow the user to run the optimization, and thus, is the only file
detailed here.

The fem struct array contains the nodal coordinates (fem.
Node), element connectivity, material data, boundary conditions
(fem.Element), number of nodes (fem.NNode), and number of ele-
ments (fem.NElem) in the initial ground structure. Additional vari-
ables related to the finite element analysis are added to the fem

struct array inside the main function.
The filt struct array contains variables related to the max

filter. A boolean variable (filt.filter) allows the user to run
the standard nested elastic formulation (1) with end-filter
(filt.filter = 0) or the modified nested elastic formulation (5)
with max filter and end-filter (filt.filter = 1). Also included
are the tolerance on the change in the objective, filt.Ctol and
filt.Cendtol, for the max filter and the end-filter, respectively.
The max filter interval (0–1) is defined using filt.filtMin and
filt.filtMax. Lastly, filt.Nf defines the iterations in which
the max filter is imposed.

The opt struct array defines the optimization parameters
such as the upper and lower bounds on the design variables
(opt.xMin and opt.xMax, respectively), the initial vector of design
variables (opt.xini), the upper bound on the structural volume
(opt.Vol), OC parameters (opt.move, , and opt.OCEta), the max-
imum number of optimization iterations (opt.MaxIter), the con-
vergence tolerance (opt.Tol), and a plotting parameter (opt.
NPlot) to determine how often the topology will be plotted during
the optimization.

Appendix G. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.engstruct.2017.
07.064.
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[5] Lewiński T, Zhou M, Rozvany G. Extended exact solutions for least-weight truss
layouts—part I: cantilever with a horizontal axis of symmetry. Int J Mech Sci
1994;36(5):375–98.
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