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a b s t r a c t 

Thin sheets assembled into three dimensional folding origami can have various applications from recon- 

figurable architectural structures to metamaterials with tunable properties. Simulating the elastic stiffness 

and estimating deformed shapes of these systems is important for conceptualizing and designing practi- 

cal engineering structures. In this paper, we improve, verify, and test a simplified bar and hinge model 

that can simulate essential behaviors of origami. The model simulates three distinct behaviors: stretch- 

ing and shearing of thin sheet panels; bending of the initially flat panels; and bending along prescribed 

fold lines. The model is simple and efficient, yet it can provide realistic representation of stiffness char- 

acteristics and deformed shapes of origami structures. The simplicity of this model makes it well suited 

for the origami engineering community, and its efficiency makes it suitable for design problems such as 

optimization and parameterization of geometric origami variations. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The field of origami has grown in the past years as it offers

novel solutions to problems in both science and engineering. Early

applications took advantage of the idea that a system can be folded

compactly and subsequently deployed, or that self-assembly can be

used to construct a three dimensional structure by starting from a

thin sheet. More recently, the community has harnessed the ca-

pability of folding to create adaptable systems and metamateri-

als that can be tuned through reconfigurations. Practical applica-

tions of origami engineering can range in scale from an architec-

tural façade that can reconfigure to control shading at a large scale

( Del Grosso and Basso, 2010 ) to the folding of DNA to create nano-

scale mechanisms ( Marras et al., 2015 ). As the field of origami

has grown, so have the theoretical, analytical, and fabrication tech-

niques that allow for the successful simulation and implementa-

tion of novel folding solutions. 

The behavior and functionality of origami is influenced by the

geometry of the fold pattern and the material properties. A typ-

ical origami consists of flat thin sheet panels (or facets) that are

interconnected by fold lines (or hinges). An origami where defor-

mation occurs only at the fold lines while keeping the panels
� Dedicated to the memory of William “Bill” McGuire (1920–2013). 
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at is called rigid foldable . Such a structure can undergo a con-

inuous kinematic folding motion. Some origami can also be flat

oldable , where the structure can fold into a two dimensional flat

tate, allowing for compact stowage. Origami structures can have

igh stiffness ( Miura, 1972 ), multi-stability ( Guest and Pellegrino,

994 ), and stiffness against non-kinematic deformations ( Schenk

nd Guest, 2011 ), which are behaviors governed by the geometry

f the origami patterns, as well as the elastic properties of panels. 

Characterizing the elastic behavior of origami has become im-

ortant not only for evaluating the feasibility of origami as struc-

ural systems, but also for designing origami and analyzing non-

rivial behaviors. The physics of origami are often a nonlinear

oupling of folding motion along with both small and large de-

ormations of panels ( Fig. 1 ). Recently, various approaches have

merged to model the structural behaviors of origami which may

e grouped into three categories that vary in complexity and gen-

rality: (1) Analytical solutions for elasticity problems related to

rigami have been developed where typically a unit cell or a por-

ion of the pattern is explored empirically, e.g. Hanna et al. (2014) ,

iu et al. (2016) and Brunck et al. (2016) . These analytical ap-

roaches are typically suited for one specific origami pattern and

annot be readily used for other origami systems; they also of-

en assume that deformation only occurs as folding along the pre-

cribed fold lines. (2) A bar and hinge method where panel in-

lane deformations are restrained using bars elements while bend-

ng of panels and folds is modeled using rotational hinges, e.g.

chenk and Guest (2011) and Wei et al. (2013) . (3) Numerical

http://dx.doi.org/10.1016/j.ijsolstr.2017.05.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.05.028&domain=pdf
mailto:paulino@gatech.edu
http://dx.doi.org/10.1016/j.ijsolstr.2017.05.028
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Fig. 1. A Miura–ori pattern with a modified curved geometry ( Gattas et al., 2013 ). (a) Folding kinematics of the origami. (b) and (c) Initial (top) and deformed (bottom) 

shapes of the origami from a point load applied at the top, while the bottom of the structure is restrained vertically. (b) structural simulation with the bar and hinge model 

and (c) physical model of the origami. 
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ethods, and particularly, finite element (FE) methods where the

ystem is discretized in a detailed fashion, e.g. Schenk et al. (2014) ,

v et al. (2014) , Gattas and You (2015) and Peraza-Hernandez et al.

2016) . The FE approach often provides higher accuracy, however,

t tends to be computationally expensive, may obscure insight into

he deformations, and depending on the discretization technique

ay not be suitable for studying patterns with different geome-

ries. 

This work aims to provide a method that is generally applicable

o different folding patterns with a sufficient accuracy to capture

mportant elastic behaviors. The model should be relatively com-

utationally efficient to enable a full investigation of different fam-

lies of origami shapes, and to allow optimization with variable pa-

ameters. We develop and explore a variation of the bar and hinge

odel that provides for scalable modeling of origami. To illustrate

he practicality of the model, a real origami deformed by a physical

oad and a corresponding bar and hinge simulation are presented

n Fig. 1 . This paper also presents the stiffness characteristics of

rigami so as to effectively inform the bar and hinge model. In

articular, three fundamental physical behaviors are explored: (1)

tretching and shearing of thin sheet panels, (2) bending of the ini-

ially flat panels, and (3) bending along prescribed fold lines. The

undamental elastic behaviors are presented in Fig. 2 with a ba-

ic representation of how bars and hinges are used in a modeling

ramework. We provide scalable parameters that can be used for

ar and hinge models to capture realistic behaviors of origami. This

aper is motivated by the pioneering work of Prof. William “Bill”

cGuire on matrix structural analysis ( McGuire et al., 20 0 0; Nilson

t al., 2013 ). 

The objectives of this paper are to (i) introduce and formu-

ate the bar and hinge model, (ii) discuss the fundamental behav-

ors of thin sheets and provide a scalable implementation for how

he model can capture these, and (iii) demonstrate techniques of

ow the model can be used for physical simulation. The paper is

rganized as follows: Section 2 discusses existing approaches for

odeling origami and introduces the bar and hinge formulation

sed in this paper. The in-plane behavior of origami is explored

n Section 3 , out-of-plane bending of initially flat panels is stud-

ed in Section 4 , and the bending along fold lines is discussed

n Section 5 . In Section 6 , we discuss analysis for large displace-

ents in origami, and in Section 7 , we show examples of how

i  
he model can be used for different studies of origami structures.

ection 8 discusses the properties and limitations of the bar and

inge approach, and Section 9 provides concluding remarks. 

. Bar and hinge models for structural modeling of origami 

In this paper, the bar and hinge approach is used to model

rigami with elastic behavior; such behavior is a combined re-

ult of in-plane deformation of panels, the bending of panels, and

he folding along fold lines. We can observe that the geometry of

olded paper with straight lines has a naturally discretized form

hat influences the elastic behaviors. First of all, because of the

elatively high in-plane stiffness of the sheets, a straight fold line

etween surfaces tends to remain straight after adjacent material

eforms. A panel surrounded by such creases is highly resistant to

uckling, and as a result, a triangular face tends to remain pla-

ar, while a quadrilateral face tends to exhibit bending only along

ne of the diagonals ( Fig. 2 middle column). The key idea of the

ar and hinge model, is to follow this natural discretization as

ell as to provide scalable stiffness with the minimum number of

lements. In these models the in-plane stiffness, both along fold

ines and across the panel diagonals, is represented by bar ele-

ents with axial stiffness. The folding and bending stiffness is rep-

esented by elastic torsional hinges around the bars; see Fig. 2 .

rom this simplification, our model ignores the local effect around

he boundary edges (e.g. potential buckling), and thus in the cur-

ent form, it would be difficult to deal with kirigami models where

uts on surfaces produce higher compliance. 

The bar and hinge model can be used to analyze both flat fold-

ble and non-flat foldable origami. The model is also suitable for

oth developable (origami that can be folded and developed start-

ng from a flat sheet) and non-developable origami. The bar and

inge approach can be used in the study of surfaces not home-

morphic to a disk, such as origami tubes and cellular systems

here multiple origami are stacked and assembled together. The

odel may also be used for the analysis of non-folding origami-

ike structures made of thin sheets (e.g. boxes and cartons). This

aper only explores the model for rigid foldable systems; how-

ver, this is not a limitation of the model, but merely because of

ur interest in these structures, as they allow for continuous fold-

ng, simple actuation, and easy manufacturing. The bar and hinge
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Fig. 2. The fundamental elastic behaviors of origami are discussed in this work. A physical paper model (top row), the bar and hinge placement for one panel in the model 

(middle row), and bar and hinge placement on an origami tube (bottom row). Bending of panels results in localized curvature about the shorter diagonal, while the fold 

lines are assumed to be more flexible and bend along a prescribed line. The behavior of each origami panel and fold (simulated using bars and hinges) can be placed into a 

global system model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Evolution of the bar and hinge models, where different orientations of bars 

and nodes are used to simulate the in-plane behavior of origami panels. The frame 

of bar elements can be used as one element to model the in-plane behavior for 

an entire origami panel. The added complexity from the N4B6 and N5B8 models 

makes it possible to include scalability, isotropy, accuracy and more functionality 

to the model. The N4B5 model is from Schenk and Guest (2011) , the N4B6 is from 

Filipov et al. (2016) , and the N5B8 is introduced in this work. 
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model can potentially be applicable to non-rigid foldable origami

that exhibit multi-stability or nonlinear global buckling behaviors

( Silverberg et al., 2015; Hanna et al., 2014; Waitukaitis et al., 2015 ).

The geometric versatility, simplicity, and efficiency are the main

benefits of the bar and hinge model. The approach is suitable

for a wide range of origami variations (e.g. Tachi (2009b ); Gattas

et al. (2013) ; Dudte et al. (2016) ) and it is possible to parameter-

ize the models to explore the influence of geometry on the struc-

tural properties. Bar and hinge models can explore foldability of a

pattern in mechanical and physical terms ( Saito et al., 2015; Fuchi

et al., 2015; 2016b ), in lieu of more mathematical derivations (e.g.

Huffman (1976) ; Belcastro and Hull (2002) ; . Hull (2012) ; Tachi

and Hull (2016) ). The simplicity of the model is valuable in un-

derstanding the behavior of origami and adjusting the model for

different analyses. Eigenvalue simulations can be used to explore

global folding and stiffness characteristics, and structural analyses

can characterize the properties of origami inspired metamaterials

that have unique and tunable properties ( Tachi and Miura, 2012;

Schenk and Guest, 2013; Silverberg et al., 2014; Lv et al., 2014;

Cheung et al., 2014; Filipov et al., 2015; Yang and Silverberg, 2015 ).

Over the last several years bar and hinge models have been used

for various studies, and the model has evolved to provide more

functionality and improved quality of analyses. 

2.1. Evolution of bar and hinge models 

Several bar and hinge models have been proposed, which

vary in formulation and implementation. One of the earliest im-

plementations is that by Schenk and Guest (2011) where four

bars are placed on the perimeter of the panel and one bar

is placed along the shorter diagonal of the panel. The model

has four nodes and five bars, thus we designate this base of

model as N4B5 ( Fig. 3 ). It has become popular to use the bar
nd hinge model with an energy approach to find the deformed

hape of the structure ( Bridson et al., 2003; Wei et al., 2013;

arain et al., 2013 ). The energy approach has been modified

nd has been used to provide fundamental studies on origami

 Silverberg et al., 2014; Dudte et al., 2016 ). The N4B5 model has

lso been formulated based on elasticity and kinematics of solid

tate lattice systems ( Evans et al., 2015 ). Another approach by

uchi et al. (2016) uses frame elements instead of bars, and in-

ludes rotational degrees of freedom to enhance the flexibility

f the model at the fold lines. This model can potentially cap-

ure more local bending and torsion behaviors in the origami,

ut the formulation becomes more complex. All N4B5 models

annot capture in-plane deformations isotropically, and thus they can-

ot incorporate accurate bar stiffness parameters. Inspired to over-

ome some of the limitations of the conventional N4B5 bar and

inge models, Filipov et al. (2016) presented a N4B6 model that
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ntroduced an extra bar, making the frame indeterminate for in-

lane loading ( Fig. 3 ). By defining the bar properties, the model

ncorporates scaling effects and material properties. The indeter-

inate frame provides symmetric and isotropic response for in-

lane loading. The model uses elastic modulus ( E ), Poisson’s Ra-

io ( ν), and thickness of the origami ( t ) along with length pa-

ameters to obtain scalable system behavior. One limitation of the

4B6 model is that, because of the crossed bars, large panel bend-

ng (large displacements) cannot be easily accommodated. Here, a

odified approach is introduced where a node is incorporated at

he connection of the panel diagonals. This model has five nodes

nd eight bars (N5B8), and is able to combine the benefits of both

he N4B5 and N4B6. Some approaches for modeling of origami

nd thin sheets have also been formulated to account for in-plane

tiffness using triangular finite elements ( Resch and Christiansen,

970; Phaal and Calladine, 1992b ). If used to model quadrilateral

rigami, these approaches would lead to non-isotropic behavior for

tretching and shear (see comparison in Section 3 ). 

.2. Model formulation for the bar and hinge approach 

This section introduces the general formulation of a bar and

inge approach for modeling thin sheets in origami. The previ-

usly established model by Schenk and Guest (2011) is improved

nd extended. The global stiffness matrix for the origami sheet is

onstructed as follows: 

 = 

[ 

C 

J B 
J F 

] T [ 

D S 0 0 

0 D B 0 

0 0 D F 

] [ 

C 

J B 
J F 

] 

, (1) 

he stiffness matrix ( K ) for the origami structure incorporates stiff-

ess parameters for panel stretching and shearing ( D S ), panel bend-

ng ( D B ), and folding along prescribed fold lines ( D F ). The compat-

bility matrix ( C ) and Jacobian matrices ( J B and J F ) relate the stiff-

ess of constituent elements (bars and hinges) to the nodal dis-

lacements, as discussed in detail in Sections 3.1 and 4.1 . Each

ode has three displacement degrees of freedom (DOFs) and the

tiffness matrix is thus of size 3 n × 3 n , with n being the total

umber of nodes in the system. 

The total stiffness matrix is expressed equivalently as: 

 = C 

T D S C + J T B D B J B + J T F D F J F = K S + K B + K F , (2)

hich makes it apparent that the total stiffness matrix of the

rigami structure has additive contributions from the bars ( K S ), the

ending hinges ( K B ), and the folding hinges ( K F ). 

In the following sections we incorporate scaling effects for the

tructure and make the panel stiffness dependent on material and

eometric properties. The formulation for fold modeling is also up-

ated, and a length scale parameter is used to define the bend-

ng stiffness of a fold. The model provides an improved basis for

rigami stiffness simulation, while keeping the formulation simple

nd modeling the origami components (panels and folds) as indi-

idual elements. 

. In-plane stretching and shear of flat thin panels 

This section explores the behavior and stiffness of flat thin pan-

ls when subjected to in-plane loads (see left column of Fig. 2 ).

he stiffness of stretching and shearing a thin sheet is typically

everal orders of magnitude greater than its bending stiffness as

iscussed in subsequent sections. Although bending and folding

eformations will dominate in origami structures, it is important

o capture the in-plane stiffness of panels. 

Here, we study a single origami panel with different geometries

ubjected to in-plane loads. When assembled into a full origami

ystem, multiple panels would interact and combine their in-plane
esponses as determined by the global geometry of the system. The

ar frame is used as a single element to model the in-plane be-

avior of the panel, thus at the connection of two panels, there

ill be two bars at the same location and connecting to the same

wo nodes. In this work, we assume that the material properties

re locally isotropic and that the sheet behaves in the same way in

ll directions. The formulation is also based on an unbent panel;

hen a panel is bent out-of-plane, some of the stretching and

hearing behaviors may change, but we feel that the bar and hinge

odel would provide a reasonable estimate of the stiffness and

eformation. We also assume that the panel does not buckle, and

hat the bars remain straight and in-plane. This is a reasonable as-

umption because most panels are surrounded by creases with or-

hogonal panels, which act as stiffeners to prohibit panel buckling

ue to compression. 

.1. Definition of bar stiffness for the N5B8 model 

Each of the bars in the indeterminate frame (N5B8 frame in

ig. 3 ) are defined to result in an isotropic and scalable behavior

f the entire panel. A general formulation for bar elements is used

here an equilibrium matrix ( A ) relates internal bar forces ( t ) to

odal forces ( f ); a compatibility matrix ( C ) relates bar nodal dis-

lacements ( u ) to bar extensions ( e ); and a diagonal matrix ( D S )

elates the bar extensions to the bar forces. The formulation can

e written in three linear equations as 

 t = f , C u = e , D S e = t . (3)

sing the static-kinematic duality that C = A 

T 
, the linear system

or stretching and shear of the panels can be rewritten and is rep-

esented in Eq. (2) . 

The bar stiffness parameters (i.e. components of D S ) are defined

or each bar as 

K S = EA e /L e , (4) 

here L e is the bar length and A e is the bar area. When the inde-

erminate N5B8 frame is rectangular, the bar areas can be defined

uch that the frame will exactly exhibit Poisson effects for tensile

oading in both directions (i.e. isotropic behavior). The bar areas

re defined as: 

 X = t 
H 

2 − νW 

2 

2 H(1 − ν2 ) 
, A Y = t 

W 

2 − νH 

2 

2 W (1 − ν2 ) 
, 

 D = t 
ν(H 

2 + W 

2 ) 3 / 2 

2 HW (1 − ν2 ) 
, (5) 

or the horizontal (X), vertical (Y), and diagonal (D) bars, respec-

ively. The isotropic behavior for a tensile load on a square panel

s shown in Fig. 4 (a). For tensile loads, a rectangular N5B8 frame

ill have a stiffness equivalent to a solid block of material (i.e.

A/L = EW t/H). These definitions are based on rectangular panels,

owever, in subsequent sections we show that these assumptions

rovide reasonable estimates when the panels are skewed. 

When subjected to shear ( Fig. 5 ) the frame stiffness is depen-

ent on the chosen Poisson’s ratio. From Eq. (5) , when a low ν
s used, the diagonal bars have a low area, and the frame demon-

trates a low shear stiffness. The converse is also true, and increas-

ng ν increases the shear stiffness. This behavior is opposite to real

sotropic materials where shear stiffness decreases as ν increases.

 serendipitous case occurs when ν is set to 1/3, and the behavior

f the frame model in shear is identical to that of a homogeneous,

sotropic block of material. As shown on the right of Fig. 5 (d) the

op of the frame displaces laterally in the direction of loading and

ach diagonal bar carries a force of F /2 in the X direction. The

rame displacement matches the lateral displacement of a solid

lock with dimensions W × H × t loaded in simple shear, analyt-

cally defined as �x = F H/GW t, where F is the total shear force
X X 
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Fig. 4. Tensile test performed by applying a uniform distributed load to the top edge of a panel ( F = 1 ) and restraining the bottom edge with a pin and rollers. (a) Deformed 

shapes of a square panel simulated with a discretized FE model (left) and the N5B8 model (right). Deformation is scaled by 10 0 0 and undeformed outline is shown with 

dotted line. (b) Deformed shapes of skewed panels scaled by 100. (c) Normalized vertical stiffness of the panel with respect to the skew γ . The analysis is presented for the 

discretized FE case, the N5B8 model, and different FE cases using one or two elements only (S4 shell, Q4, T3A, and T3B). 

Fig. 5. Shear test performed by applying a uniform distributed load to the top edge of a panel ( F = 1 ). In (a–c) only the bottom edge is restrained with pins, while in (d–f) 

the top edge is also restrained with rollers. (a) Deformed shapes of a square panel simulated with a discretized FE model (left) and the N5B8 model (right). Deformation is 

scaled by 300 and undeformed outline is shown with dotted line. (b) Deformed shapes of skewed panels scaled by 100. (c) and (f) Normalized horizontal stiffness of the 

sheet with respect to the skew γ . (d) and (e) Deformed shapes scaled by 300. The analysis is presented for the discretized FE case, the N5B8 model, and different FE cases 

using one or two elements only (S4 shell, Q4, T3A, and T3B). 
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nd G is the shear modulus, defined as G = E/ 2(1 + ν) for a homo-

eneous, isotropic, linear elastic material. With ν = 1 / 3 , the frame

s scale independent for shear loadings, similar to any generic FE

pproach. 

When considering skewed and irregular panels, the height ( H )

f the panel is calculated as the average distance between nodes 1

o 4 and 2 to 3, while the width ( W ) is the average distance be-

ween nodes 1 to 2 and 4 to 3 (see Fig. 3 ). As will be shown in

he subsequent section, these basic definitions provide a realistic

ehavior for the panel for various in-plane loads. In the future, it

ay be possible to find more advanced definitions for the individ-

al bar stiffness that may improve the performance of the indeter-

inate N5B8 frame. 

.2. The stretching and shear of skewed panels 

Fig. 4 portrays a flat thin panel subjected to a tensile test,

here a uniform load of F = 1 is applied upward at the top of

he panel, while the bottom is restrained in the vertical direction.

he system is fully restrained out-of-plane. Using arbitrary units,

he panel has a height and width of 1, a thickness of 0.01, and a

oung’s modulus of E = 10 6 . A Poisson’s ratio of ν = 1 / 3 is used

uch that the N5B8 model exhibits a simple shear behavior. 

As a reference, a discretized FE model is used to study the be-

avior of a flat thin panel. In this and subsequent sections of the

aper the ABAQUS FE software ( Abaqus, 2010 ) is used with the S4

eneral purpose shell elements with finite membrane strains that

re appropriate for small and large deformation analyses. Mesh

onvergence studies for the stretching and shear examples showed

hat a discretization of 20 × 20 elements provide a displacement

olution for a skewed panel that is within 0.013% of a mesh with

ouble the number of DOFs. 

The displaced shapes of the discretized FE and the N5B8 models

re shown for square and skewed cases in Fig. 4 (a) and (b) respec-

ively. The N5B8 model is able to capture the isotropy of the panel

nd the general deformed shape relatively well. Fig. 4 (c) shows the

ormalized vertical stiffness with respect to skew, where the be-

avior of the discretized FE model is considered an accurate rep-

esentation of the real behavior. The vertical stiffness for each case

s calculated as K = F / ( �Y ) , where �Y is the average vertical dis-

lacement at the top surface of the panel. The stiffness is then nor-

alized by the axial stiffness of the square piece of thin elastic

heet shown in Fig. 4 (a) (i.e. by EWt / H ). The different models used

ith number of DOFs active in-plane are: discretized FE - 1323

OFs; N5B8 - 10 DOFs; a single shell (S4) - 12 DOFs; a quad (Q4) -

 DOFs; and two triangular elements (T3A and T3B) - 8 DOFs. The

4 shells differ conceptually from the other elements in that they

nclude drilling degrees of freedom at the four nodes. Fig. 4 shows

hat N5B8 model approximates axial stretching stiffness well for

arious amounts of skew. The model does not experience asym-

etric stiffness which occurs due to the placement of the T3 ele-

ents. 

Similar analysis are performed for two cases of shear applied to

he thin panel. In one case, the element is restrained only on the

ottom ( Fig. 5 (a)–(c)), and in the other it is restrained on both the

op and bottom, and is subjected to (theoretically) simple shear

 Fig. 5 (d)–(f)). The shear stiffness is calculated as K = F / ( �X ) ,

here �X is the average horizontal displacement at the top sur-

ace of the panel. The stiffness is then normalized by the shear

tiffness of a square piece of thin elastic sheet subjected to simple

hear (i.e. by GtW / H ). The N5B8 and other single element mod-

ls typically overestimate the shear stiffness by about 30–80%. Of

articular interest is the simple shear case with no skew ( γ = 0 ◦)

here most models match the stiffness of a simple shear panel,

hile in reality the discretized case is more flexible. The higher
exibility occurs because the material in an actual panel experi-

nces both tension and shear, and not theoretical simple shear. 

Although the N5B8 model overestimates the shear stiffness for

oth cases, it follows similar trends to the discretized FE analy-

is. When not restrained on top, the shear stiffness reduces with

kew, and when restrained on top the shear stiffness slightly in-

reases and then decreases with higher skew. The deformed shape

or shear loading of the N5B8 model is similar to the discretized FE

ase, but the displacements are underestimated. It should be noted

hat linear elastic shear in a complete origami structure would

ikely be more complex than the two cases presented here, as it

ay be accompanied with moments and localized axial forces. In

ummary, the N5B8 model is capable of capturing tensile isotropic

eformations of flat thin panels with and without skew. The model

pproximates axial stiffness well, and although it overestimates

hear stiffness, the stiffness follows expected trends with respect

o skew. 

. Out-of-plane bending of flat panels 

The out-of-plane bending of origami panels presents an in-

eresting phenomenon because adjacent panels can restrict bend-

ng (see middle column of Fig. 2 ). This restriction prevents the

anel from bending with a single curvature over the length of the

ong axis, and instead a more complicated bending occurs where

he panel deforms along its diagonals ( Demaine et al., 2011 ). This

henomenon tends to be more pronounced for large deformation

ending and has been studied in previous research ( Lobkovsky

t al., 1995; Di Donna and Witten, 2001; Witten, 2007 ). For model-

ng of origami, we investigate the stiffness of both small and large

eformation bending of the thin panels. The bar and hinge mod-

ls use an angular constraint to approximate the deformation and

tiffness of panel bending. By studying the detailed bending of thin

anels we formulate empirical expressions for the bar and hinge

odel that scale stiffness based on material and geometric effects.

.1. Rotational hinges for out-of-plane bending 

Early implementations of the bar and hinge model use two tri-

ngular segments connected by an angular constraint along one

iagonal to model the global out-of-plane displacement of the

anel ( Fig. 6 (a)). The choice of the diagonal does not influence the

isplacement pattern for small displacements ( Schenk and Guest,

013 ), but typically the shorter diagonal (with triangular segments

-2-3 and 1-3-4) is used to better match the expected real world

ehavior. For the N5B8 model, we have one additional out-of-plane

egree of freedom at node 5. The panel is divided into four trian-

ular segments with bending possible about both diagonals. The

quivalent compatibility matrix for the hinges (including bending

nd folding) contains the linearized constraint functions that re-

trict the relative rotations between adjacent triangular segments

 Fig. 6 (b)). By assigning a finite angular stiffness, which is stored

n the diagonal matrix D B , to each relative rotation between tri-

ngular segments, a variation from the initial flat state results in

internal) resistance forces. Each angular constraint is formulated

eparately based on the dihedral angle(s), θ i , which can be calcu-

ated by using cross and inner products of the vectors a , b , c and

 from the nodal coordinates of the panel p . Linearization of the

ngular constraint yields the Jacobian for panel bending, J B , which

s calculated as 

 θi = 

∑ ∂θi 

∂ p j 
d p j = J B u , (6) 

here u are the displacements of the nodes. The Jacobian is the

quivalent compatibility matrix for the bending hinges, as matrix
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Fig. 6. Placement of rotational hinges in the different bar and hinge models. The hinges provide stiffness for out-of-plane deformations of the panels. 
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C is for bars. Eq. (2) incorporates panel bending stiffness where

each element in the diagonal matrix D B corresponds to the bend-

ing stiffness for an angular constraint. Considerations for defining

the bending stiffness of each constraint K B are discussed in the fol-

lowing section. 

The bending definition here is similar to that used by other re-

searchers ( Schenk and Guest, 2011; Phaal and Calladine, 1992 ). Al-

though the N5B8 model allows for bending along either diagonal,

in Section 4.2 we discuss that this poses a problem for accurately

capturing the stiffness. We make a modification to restrict bend-

ing about the long diagonal by making those rotational hinges ap-

proximately 100 times stiffer. This modification is not necessary for

large displacement results. However, it allows for an accurate rep-

resentation of panel bending stiffness, and thus is used for both

small and large displacement cases. The deformed shapes with this

modification consist of bending about the short diagonal only, and

thus the N5B8 model is effectively reduced to a N4B5 model for

panel bending. 

4.2. Panel bending stiffness: from small to large displacements 

This section presents the stiffness characteristics of thin re-

strained panels and introduces the stiffness definitions for bending

in the N5B8 model. Appendix A provides additional information on

the specific stiffness scaling properties used herein. The origami

panels are restrained, meaning that there are adjacent panels posi-

tioned out-of-plane along the edges (at fold lines), and thus these

orthogonal panels limit out-of-plane deformation of the flat sheet.

Fig. 7 (a) and (b) shows a FE discretization of a restrained rhombus

panel with a long diagonal D L = 1 . 4 , a short diagonal D S = 1 . 0 , and

four restraining panels with a vertical width of 0.4. Boundary con-

ditions are imposed on three corners and a displacement control

is placed on the fourth. We constrain the minimum six degrees

of freedom to make the system statically determinate. With the

problem set-up, it is possible to achieve panel bending along ei-

ther of the two diagonals of the restrained panel. For different ge-

ometries of this problem, we have verified that for large displace-

ments, bending always occurs about the shorter diagonal and thus

we limit the dimensions to D S < D L . For subsequent analyses, we

apply a displacement control trajectory that follows a rotation of

the bending angle θB about the short diagonal. The vertical reac-

tion on the left corner ( R A ) is used to calculate the bending mo-

ment about the sheet as M B = R A D L / 2 . 

The problem converges successfully, and our chosen discretiza-

tion of 30 × 30 shell elements for the flat sheet provides solu-

tions that are close to a FE model with double the number of

DOFs (0.12% difference for small deformations θB = 0 . 1 ◦ and 0.21%

for large deformations θB = 70 ◦). The moment bending relation

of the entire panel can be represented as M B = θB K B , which can

subsequently be used to formulate the stiffness for the angular

constraints. The FE analysis from small to large displacements for

three sheets with different geometries is shown in Fig. 7 (e). 
The in-plane stiffness of the thin adjacent panels is high enough

o prevent bending and buckling at the edge connecting two pan-

ls (i.e. at the fold line on the perimeter of a panel). Because of this

estriction, the stiffness is higher than that of unrestrained sheets

hat are free to bend along the edges. The bending stiffness of the

estrained sheet scales with k ( D S / t ) 
1/3 where k is the bending mod-

lus of the sheet, defined as k = Et 3 / 12(1 − ν2 ) ( Lobkovsky et al.

1995) and Appendix A ). 

The small displacement behavior for restrained origami panels

ad not been explored in detail previously. When a relatively small

ending angle ( θB � 6 ° ≈ 0.1rad) is imposed, the panel experiences

ouble curvature with bending along both diagonals ( Fig. 7 (a)).

he double curvature matches expected behavior. The bending mo-

ent relation remains linear for small displacements: the moment

cales with θB , and the energy scales with θ2 
B 

. There is no ten-

ion in the sheet, and bending energy is distributed throughout the

anel with higher concentration at the corners on the short diago-

al ( Fig. 7 (a)). The bending stiffness for small deformation bending

s highly dependent on the geometry of the panels which is ex-

lored in detail in Appendix A . The stiffness scales with a param-

ter �α that is introduced to describe the corner geometry of the

hort diagonal. The parameter �α = α1 + α2 + α3 + α4 represents

he deviation of the short diagonal corners from being flat edges

here the restraining panels on the side are collinear (see results

nd cutout in Fig. 7 (e)). A square panel will have all corners of 90 °
nd �α = 180 ◦ = π . Based on the scaling observations the bending

oment for small displacements of the panels can be formulated

s 

 BS = θB 

(
0 . 55 − 0 . 42 

�α

π

)
Et 3 

12(1 − ν2 ) 

(
D S 

t 

)1 / 3 

. (7)

he equation is suitable for panel geometries in the range of π /2

 �α < π , which would satisfy most origami structures. 

For the large displacement analyses ( θB � 23 ° ≈ 0.4rad), we

bserve the same global behaviors as Lobkovsky et al. (1995) . The

ending becomes restricted along the short diagonal D S ( Fig. 7 (b)).

n this case, tensile forces develop over the sheet’s surface, and

exural deformations become restricted to a small area focused at

he bending ridge. For large displacements, stiffness is not signif-

cantly affected by the panel geometry and boundary conditions,

nd the bending moment scales with θ4 / 3 
B 

. This behavior differs

rom a linear hinge and, in contrast, the restrained panel becomes

tiffer with larger bending angles ( Fig. 7 (e) and Appendix A ). The

ending moment for large displacements can be approximated as

 BL = θ4 / 3 
B 

(1 . 0) 
Et 3 

12(1 − ν2 ) 

(
D S 

t 

)1 / 3 

. (8)

Eqs. (7) and (8) are used to inform the stiffness parameters for

he bar and hinge models. Each of the stiffness components in the

iagonal matrix K (see Eq. (2)) are defined using the small defor-
B 
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Fig. 7. Bending behavior of thin panels with restrained edges. (a) and (b) FE discretized thin sheet with restrained edges bent about the shorter diagonal. The total energy 

in each element is shown with color. (c) and (d) show the panel bending simulated with the bar and hinge model. In (a) and (c) the sheet is bent with θB = 0 . 1 ◦, and 

displacements are scaled by 300. In (b) and (d) the sheets are bent with θB = 70 ◦ . In (a) through (d) displacements along the diagonals are shown below the deformed 

structure. (e) The bending moment normalized by k vs. bending angle for different geometries of thin restrained sheets. The numerical FE solutions (points) are plotted 

together with the bar and hinge solutions (lines) defined using Eqs. (7) and (8) . 
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ation relations as 

K B = 

(
0 . 55 − 0 . 42 

�α

π

)
Et 3 

12(1 − ν2 ) 

(
D S 

t 

)1 / 3 

. (9) 

The N5B8 model can be used to capture both small and large

isplacements. Because two rotational hinges are used on each

iagonal of the panel, half of the appropriate stiffness ( K B /2)

s placed on each rotational constraint. The deformed shape in

ig. 7 (c) is obtained by using Eq. (9) to define each angular con-

traint with the corresponding diagonal ( D S or D L ). This allows for

he central node to deform downward and the deformed shape

ooks similar to the FE results with bending along both diago-

als. This approach also provides a good approximation for the

isplaced shape with large displacements because bending occurs

rimarily about the short diagonal, which is more flexible. Unfor-

unately, Eqs. (7) –(9) assume panel bending in only one direction,

hus the stiffness of the N5B8 model is lower when both diagonals

re defined with these approximations. A better stiffness approx-

mation is obtained when the short diagonal is defined based on

qs. (7) –(9) , and the long diagonal is defined to be approximately

00 times stiffer. This adaptation provides a reasonable represen-

ation of panel bending stiffness and the deformed shapes consist

f bending about the short diagonal. Future studies could be pur-

ued to define both the short and long diagonals in a manner that

ould capture an accurate deformed shape and stiffness simulta-

eously. 

. Bending along prescribed fold lines 

Fold lines (or hinges) between two origami panels, is where

ending is intended to occur for the kinematic folding of origami

see right column of Fig. 2 ). The characterization, modeling, and

ehavior of the fold lines has been a wide topic of study, and there
s not a one single approach that can be used for all origami struc-

ures and systems. Appendix B contains a summary of crease type

olds and provides a quantitative study on their stiffness in scal-

ble terms. The behavior of composite and hinged origami would

ikely be dependent on the specific design, and scalable stiffness

roperties can be explored on an individual basis. 

When performing detailed modeling of fold lines, it is possible

o include a finite fold width ( Peraza-Hernandez et al., 2016 ), or

o account for an offset that accommodates hinges and the mate-

ial thickness ( Edmondson et al., 2014; Chen et al., 2015 ). However,

or most origami, the fold width can be considered negligible, and

he fold is assumed to lie on the center of the adjacent panels. We

ake these assumptions for our model, and we are able to simu-

ate the bending moment behavior of the fold line by connecting

djacent panels with a rotational hinge. In this paper, we use a lin-

ar elastic bending moment behavior at the fold lines, however the

odel can be adapted to capture nonlinearity (e.g. Giampieri et al.

2011) ; Mentrasti et al. (2013b )). 

.1. Rotational hinges for fold line bending 

The folds are modeled in a similar fashion to the bending of

anels. Realistic origami behavior does not allow for out-of-plane

isplacements along fold lines due to the restrictive nature of the

heets that form fold lines ( Section 4 ). Thus, it is sufficient to use

his simplified approach where the origami fold is modeled as a ro-

ational hinge along a straight edge. A schematic of the fold model

ontains a fold spanning nodes 2 and 3 connecting two panels (1-

-3-4 and 2-5-6-3) ( Fig. 8 ). In the N4B5 and N4B6 models, the an-

ular constraint formulation ( Section 4.1 ) is used for two indepen-

ent fold elements from the two vector sets: (1) a , b , and c and

2) -a , d , and e . The N5B8 model can use an alternative set of ro-

ational constraints that connect to the central (inside) node: (3)

 , f , and g and (4) -a , h , and i . For this work, we use the con-
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Fig. 8. Placement of rotational hinges to capture the fold line stiffness. The rota- 

tional constraints for the N5B8 model includes only the central nodes of the panel 

and thus removes the ambiguity between fold and panel bending for large displace- 

ment analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Bending of a fold line that connects two restrained panels with t = 0 . 36 mm. 

Large displacement analyses are performed with θF = 40 ◦ . (a) Schematic of the fold 

and the two skewed panels with a geometry parameter of �α = 142 ◦ . (b) Bending 

of a FE model where the localized fold line is much stiffer than adjacent material 

( L ∗ = 5 mm). Double curvature bending occurs similar to a sheet with no fold line. 

(c) Bending of the system where the localized fold line is stiffer than most origami 

( L ∗ = 25 mm). Bending occurs primarily at fold line. (d) The normalized bending 

stiffness of the fold and the adjacent panels. The maximum and panel stiffness ( K m 
and K B ) are calculated with different variables (from Eq. (9) ), while the local ( K 
 ) 

and combined ( K F ) fold stiffness are plotted for different L ∗ values (from Eqs. (10 ) 

and (11) respectively). We show representative values of the length scale for the 

virgin ( L ∗V ) and the cyclic ( L ∗C ) tests. 
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straints of only the inside node because this removes ambiguity

between panel and fold bending (e.g. in the N4B5 a node 5 motion

out of plane signifies both panel and fold bending). In Section 5.2 ,

we show that the inside node constraints provide a reasonable es-

timate of the deformed shape when both panel and fold bending

is considered. The initial fold angle ( θ0 ) represents the origami at

a static and unstressed state. This angle could be different for dif-

ferent folds on the origami, and can be calculated using basic ge-

ometric relations for each chosen configuration. Here, the angle θ F 

represents a rotation away from the initial static configuration. 

5.2. Scalable stiffness parameters for fold lines 

We assume that the behavior over the length of the fold line is

constant, and that the bending moment for the fold can be ob-

tained from M 
 = θF K 
 where the factor K 
 represents the rota-

tional stiffness of the fold line. The subscript l indicates that this is

the local folding behavior over the infinitesimal small width of the

fold, and that the behavior of the adjacent panels is not included.

Based on previous research ( Lechenault et al., 2014; Pradier et al.,

2016 ), it is expected for K 
 to scale with the length of the fold line

( L F ) and the bending modulus of the thin sheet ( k ). Thus the local-

ized stiffness of the fold line can be obtained as 

K 
 = 

L F 
L ∗

k = 

L F 
L ∗

Et 3 

12(1 − ν2 ) 
, (10)

where a length scale factor L ∗ (in units of length) defines the rel-

ative stiffness of the fold based on the material, fabrication, and

geometric properties. The length scale factor L ∗ is assumed to in-

crease with the thickness of the sheet ( Lechenault et al., 2014 ).

However, there is currently no physical basis for determining the

length scale, other than from experimental data (see Appendix B ).

Here, we follow the same methodology and use L ∗, however,

we acknowledge that future research may bring about alternative

methods to quantify the local fold stiffness. 

These scale independent definitions can be used for the fold

stiffness in the bar and hinge model, as well as other simplified

approaches. However, as currently presented, Eq. (10) can result in

an unrealistically high fold stiffness as L ∗ approaches zero. An in-

finite stiffness may be realistic on a local scale (e.g. when there is

no fold), however the global stiffness of the fold would be limited

by the flexibility of adjacent panel material. 

Fig. 9 demonstrates how the local fold stiffness and adjacent

material behave for different L ∗. We use 30 mm panels, with a

thickness of 0.36 mm to allow a length to thickness ratio of ≈
100 for the short panel diagonals. This thickness is also close to

many of the experiments discussed in Appendix B . An FE model

is used where the panels and adjacent panels are simulated with

shell elements. The localized fold line is simulated using collocated

nodes that are joined in the three Cartesian directions. A rotational

spring is placed at each pair of collocated nodes to simulate the

local stiffness of the fold line (i.e. Eq. (10) ). 
The bending stiffness is calculated using a large displacement

nalysis, where the fold is bent to θF = 40 ◦. The stiffness is nor-

alized by k , and compared to different fold definitions and the

djacent panel ( K B calculated from Eq. (9) ). In a case where an un-

ealistically high stiffness is used for the fold ( Fig. 9 (b)), the system

eforms similar to the minimal ridge case (see Appendix A ). Thus,

e introduce a maximum fold stiffness K m 

that represents the stiff-

ess of adjacent panel material. We assume the case of a minimal

idge and calculate K m 

with Eq. (9 ) where we substitute L F for D S 

nd assume �α = 0 . For the example in Fig. 9 K m 

= 2 . 4 k . Consid-

ring that the localized fold and the adjacent material act in series,

e calculate a combined fold stiffness as 

K F = 1 / (1 /K 
 + 1 /K m 

) . (11)

The introduction of K m 

limits the maximum stiffness of the fold

hen L ∗ is low ( Fig. 9 (d)). The precise value of K m 

is not impor-

ant for the analysis, and the N5B8 model provides a reasonable

stimate for fold stiffness when either half or double the value of

 m 

is used. Bending of the adjacent panels typically has a higher

tiffness than the fold line ( K B > K F ) for the typical origami range

realistically large values of L ∗). In extreme cases where a fold is

ntentionally restricted from folding ( L ∗ < L ∗
V 

), the entire fold as-

embly may be about two to three times stiffer than the adjacent

anels. Thus, if the panel to fold stiffness ratio is used for evaluat-
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Fig. 10. Asymmetric bending of the fold system from Fig. 9 . (a) Bending of a FE 

model with folds stiffer than typical origami ( L ∗ = 1 mm left and L ∗ = 25 mm right). 

When the fold stiffness reaches realistic origami stiffness values ( L ∗ > 25 mm) 

bending occurs primarily along the fold. (b) The folding angle of the fold ( θ F - top) 

and the adjacent panel ( θB - bottom) with respect to the length scale parameter ( L ∗) 

for a FE model and the N5B8 model. (c) Fold and panel bending simulated with the 

N5B8 model. 
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ng system behavior, a range of K B / K F = 1/3 to 20 would provide a

ealistic estimate. The ratio may change slightly for different thick-

ess of the material or L / t ratios. 

Eq. (11) can be used to define the fold stiffness in different

ar and hinge models, as well as other phenomenological mod-

ls where fold lines are simplified to a rotational hinge (e.g. Qiu

t al. (2016) ). We use an FE model and the N5B8 model to explore

he asymmetric bending of a fold and adjacent panel where only

ne side of the panel is displaced downward ( Fig. 10 ). As shown

n Fig. 8 the connectivity of the fold line in the N4B5, N4B6, and

5B8 models is performed using two rotational hinges. Half of the

tiffness from Eq. (11) is distributed to each rotational constraint.

he N5B8 model is able to capture the deformed state of the sys-

em for realistic values of L ∗ ( Fig. 10 ). 

. Large-displacement analysis of origami 

The bar and hinge model can be adapted to capture nonlinear

nd multi-stable behaviors associated with origami. Compared to

inear analysis (see Section 2.2 ), the equilibrium function becomes

 nonlinear function of the displacements. Assuming the applied
orce is f , denoting T as the internal force vector, the equilibrium

governing equation) is written as: 

 (u ) = f . (12)

n (displacement-based) linear analysis, T is a linear function of

he displacement u , and thus T = Ku , leading to the well-known

xpression of Ku = f . In large displacement analysis, the internal

orce vector becomes a nonlinear function of the displacements. As

 consequence, the stiffness matrix is no longer a constant matrix,

nd must be updated at each displacement iteration. 

The N5B8 has been implemented in the MERLIN software ( Liu

nd Paulino, 2016 ). The formulation for large displacement analysis

s summarized here and a complete derivation can be found in Liu

nd Paulino (2017) . We show the change of the formulation from

he linear elastic to a formulation that incorporates nonlinearity. To

implify the derivations presented here, the Saint Venant–Kirchhoff

odel is adopted as the constitutive equations for bar elements.

owever, other nonlinear constitutive models can also be adopted

ithin the N5B8 framework. The presented nonlinear formulation

s an extension of the linear elastic formulation. For the hinges that

imulate bending of the panels, Eq. (8) as explained in Section 4 is

sed. For the hinges that simulate fold lines, we assume that the

ehavior remains linear even for large deformations, i.e., the stiff-

ess K F remains constant. 

Similar to the linear case, the strain energy of the structure has

ontributions from the bars, bending hinges and folding hinges.

he total potential energy of the system is then: 

= U S + U B + U F − V, (13)

here V is the potential energy due to externally applied load f . By

pplying the Principle of Stationary Potential Energy, the equations

f equilibrium, and therefore the finite element matrices, can be

erived. They take the following form: 

 = T S + T B + T F − f , (14)

 = K S + K B + K F , (15)

hich is the same general form as in the linear elastic formulation.

.1. Enriched formulation for bars 

Denote εxx as the one-dimensional Green–Lagrange strain ten-

or (under uniaxial load). The one-dimensional 2nd Piola–Kirchhoff

tress tensor becomes a linear function of the Green–Lagrange

train according to the Saint Venant–Kirchhoff model ( Wriggers,

008 ): 

 xx = Eεxx , (16) 

here E is the Young’s modulus. The Green–Lagrange strain relates

o the nodal displacements by ( Wriggers 2008 ): 

xx = 

1 

L e 
C e u e + 

1 

L 2 e 

u 

T 
e Gu e , (17)

here u e is the local displacement vector associated with a bar el-

ment e , and C e contains the directional cosines of the bar, which,

hen expressed with the global indexing of degrees of freedom, is

 row of the compatibility matrix C as mentioned in Section 2 . The

atrix G is defined as: 

 = 

[
I 3 ×3 −I 3 ×3 

−I 3 ×3 I 3 ×3 

]
, (18) 

Correspondingly, the associated elemental internal force vector

nd tangent stiffness matrix are expressed as: 
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T S(e ) = S xx A e 

(
C 

T 
e + 

1 

L e 
Gu e 

)
, (19)

K S(e ) = K 

LE 
S(e ) + K 

1 
S(e ) + K 

2 
S(e ) + K 

G 
S(e ) . (20)

The subscript S ( e ) means that the term is an elemental compo-

nent to the global internal force vector or stiffness matrix asso-

ciated with the bars (i.e. T S and K S ). The matrix K 

LE 
S(e ) 

is the linear

stiffness matrix, which is the elemental component of the stiffness

matrix K S in Eq. (2) , K 

G 
S(b) 

is the geometric stiffness matrix, and

(K 

1 
S(e ) 

+ K 

2 
S(e ) 

) forms the initial displacement matrix. The terms are

elaborated as follows: 

K 

LE 
S(e ) = (EA e /L e ) C 

T 
e C e , (21)

K 

1 
S(e ) = (EA e /L 2 e )[(Gu e ) C e + C 

T 
e (Gu e ) 

T ] , (22)

K 

2 
S(e ) = (EA e /L 3 e )[ Gu e ][ Gu e ] 

T , (23)

K 

G 
S(e ) = (S xx A e /L e ) G . (24)

6.2. Enriched formulation for bending and folding hinges 

The internal force vector and tangent stiffness matrix of each

bending hinge are also enriched with higher order terms to capture

the nonlinear behavior. They are expressed as follows, for the i th

bending hinge: 

T B (i ) = M BL 
dθi 

dp 

, (25)

K B (i ) = K BL 
dθi 

dp 

�
dθi 

dp 

+ M BL 
d 2 θi 

dp 

2 
, (26)

where, 

K BL = 

∂M BL 

∂θi 

. (27)

Notice that, 

K BL 
dθi 

dp 

�
dθi 

dp 

= K BL J 
T 
B (i ) J B (i ) . (28)

The term in Eq. (28) is the elemental component of K B in Eq. (2) .

The vector J B ( i ) is a row of J B in Eq. (6) , when assembled into global

degrees of freedom. The second term in Eq. (25) is a higher order

term which accounts for geometric nonlinearity associated with

a rotational hinge. An identical procedure applies to the folding

hinges. 

To conduct a nonlinear analysis, a Newton–Raphson iterative

procedure can be used to solve the nonlinear equilibrium equation.

However, in many occasions, origami structures may deform with

severe nonlinearity and multi-stability. Therefore, advanced nonlin-

ear solvers (i.e. numerical continuation algorithm) such as the arc-

length methods can be used to capture the full equilibrium path

of an origami structure under certain loading. In our implementa-

tion, the Modified Generalized Displacement Control Method ( Leon

et al., 2014 ) is adopted, which yields an equivalent linearized cylin-

drical constraint equation. This particular solver performs well for

origami structural analysis based on the proposed N5B8 model and

the nonlinear formulation (see Section 7.3.2 ). 

7. Applications of bar and hinge models 

The bar and hinge method provides a basic approach for global

structural analysis of origami type systems. In this section, we

show how the model can be used for both conventional struc-

tural analysis, as well as analysis techniques suited specifically to

origami. 
.1. Kinematic folding of origami 

The basic implementation of the bar and hinge model can be

sed to study the folding characteristics of an origami pattern or

tructure. As the panel and fold stiffness are treated separately in

he model, it is possible to separate these behaviors and obtain in-

ormation about the global folding characteristics from the stiffness

atrix K . Reducing the fold stiffness makes the kinematic folding

he preferred (most flexible) method of deformation, but still al-

ows for bending to occur along the panel diagonals. Here the fold

ines taken to be much more flexible than the panels by using a L ∗

hat is unrealistically high (e.g. 10 4 ). 

Having defined the geometry of the origami pattern in a com-

letely flat or three dimensional state, it is possible to explore

olding motions by obtaining the eigenvalues λi and correspond-

ng eigenmodes v i of the stiffness matrix as: 

 v i = λi v i . (29)

The eigenvalues are arranged in an incremental order ( i ) and

epresent the elastic energy that would deform the structure into

 shape represented by the corresponding eigenmode. The first six

igenmodes represent rigid body motion of the origami (three dis-

lacements and three rotations in space) and require no energy.

e omit these six modes, and study the subsequent modes that

equire elastic deformation. The most flexible eigenmodes (lowest

lastic energy) represent deformations where folding occurs along

old lines. As the eigenmodes become stiffer, folding of the pan-

ls also begins to occur, and the much stiffer eigenmodes include

tretching and shearing of panels. 

In Fig. 11 (a) eigenmodes are used to find five rigid folding mo-

ions that can be performed on a Miura–ori patterned sheet. The

op horizontal folds of the Miura sheet have a sector angle of

= 70 ◦, while the bottom have α = 55 ◦. The folding direction is

hown by mountain and valley fold assignments, and all of the pat-

erns can be reversed (i.e. valley folds become mountain and vice

ersa). 

Eigenmode 9 represents the traditional folding motion for the

iura–ori sheet where all folds of the pattern are engaged. The

ther folding motions shown in eigenmodes 7, 8, 10 and 11 are

lso valid rigid folding motions where bending occurs only at the

old lines and the panels remain completely flat. These five eigen-

odes are not a complete list of all feasible folding motions, and it

s possible to obtain other valid patterns by linear combination of

he eigenmodes (e.g. linear combination of modes 7 and 9 results

n a different pattern). Eigenmodes 12 and higher require bend-

ng of the panels. When bending of the panels is considered, it is

ossible to find folding motions that do not follow rigid folding

efinitions. 

The eigenmode analysis can also be used as a numerical

ethod to perform the kinematic rigid folding of the origami. Us-

ng a numerical approach for folding is particularly useful for more

omplicated fold patterns that have non-repetitive fold vertices.

he kinematic folding can be performed by iteratively updating the

odal locations by adding increments of a chosen eigenmode (and

orresponding rigid folding pattern). The folding can be performed

y correcting geometric errors using the Moore–Penrose pseudo-

nverse ( Tachi, 2009 ), or using Newton-Raphson iterations with a

ufficiently small (e.g. 1/10 0 0) increments of the eigenmode. The

rder of eigenvalues can change as the kinematic folding is per-

ormed, so it is necessary to track the eigenmode that corresponds

o the chosen folding pattern. Tracking of the x th eigenmode can be

chieved by finding the i th eigenmode that minimizes | v j+1 
i 

± v 
j 
x | ,

or the updated geometry at step j + 1 . When performing the fold-

ng of the structure, it is assumed that the folds move freely, and

he structure is unstressed after folding. In other words, forces and
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Fig. 11. Folding kinematics of a Miura–ori pattern. (a) Eigenmodes 7–11 of the flat 

sheet show five valid rigid folding motions with corresponding mountain and valley 

folds. The deformed modes are shown after one iteration of the folding algorithm, 

and thus they limit global deformations where bending of both folds and panels oc- 

curs. Although eigenmode 9 is typically the prescribed folding motion for Miura–ori 

sheets, it is not the only possible way in which the sheet can be folded. Eigenmode 

12 represents a global bending of the sheet which is not a rigid folding mode ( λ

is orders of magnitude higher). (b) An iterative approach is used to fold the sheet 

based on the rigid folding motion in Mode 7. A jump in eigenvalues occurs after the 

first iteration because when the sheet starts folding into a rigid motion it can no 

longer deform globally with both fold and panel bending. The kinematics of Mode 

7 are followed until the system reaches another flat state at ∼ 1100 iterations. At 

that point other folding motions are enabled, some with self intersection. 
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tresses do not accumulate at the fold lines after the kinematic

otion. 

Fig. 11 (b) shows the kinematic folding following the seventh

igenmode as a chosen fold pattern. At the first step there is a

ump in eigenvalues. The value of λ7 increases because the origami

nters a rigid folding mode, and the seventh mode becomes self-

estricting as global fold and panel bending is no longer possible

n the newly folded configuration. Eigenvalues λ8 − λ11 increase by

everal orders of magnitude. The initial kinematic motions are no

onger possible and the eigenmodes switch shape to new motions

ith global system bending (similar to the initial mode 12). The

eventh mode does not become restricted, and the folding is itera-

ively performed until the origami reaches another flat state (flat

olded at ∼ 1100 iterations). At that point the eigenvalues drop

gain, and it is possible to explore other folding motions that are

ade available by the newly folded geometry. With the current
ormulation the model does not account for self-intersection of the

anel elements and can thus suggest unrealistic folding scenarios.

n future work, the bar and hinge method may also be adopted

o study the folding patterns and kinematics of multi-DOF origami

hat has more than four folds per vertex and can result in multiple

olding motions ( Xi and Lien, 2015 ). 

The approach discussed in this section shares some similarity

ith the null space method used in Schenk (2011) , and a Singu-

ar Value Decompositions (SVD) method introduced by Kumar and

ellegrino (20 0 0) . The eigenvalue approach can be more forgiving

n detecting possible fold patterns, as the null space or SVD ap-

roach may not show a fold pattern if the updated geometry has a

mall error. The eigenmodes also simultaneously provide feedback

nto the global stiffness and behavior of the system (e.g. they show

he most flexible method of folding), and can detect bifurcation

oints where the system can be reconfigured. Lastly, for multi-DOF

atterns, the eigenmode analysis has the benefit of providing the

ost likely global deformation path. The eigenvalue method will

lobalize the deformation mode, whereas the nullspace and SVD

ill also show local deformations in multi-DOF patterns. 

.2. Informing structural behavior through eigenvalue analyses 

The eigenvalues and eigenmodes of the stiffness matrix dis-

ussed in Section 7.1 can also provide significant information about

he structural characteristics of the system. For example, Schenk

nd Guest (2011) use these analyses to evaluate how the structural

ehavior of Miura–ori and egg-box patterns is affected by changing

he relative stiffness between panel bending and fold lines. Alter-

atively, it is possible to incorporate the mass matrix of the struc-

ure ( M ), and use the linear dynamics system of equations 

 v i = λi M v i , (30) 

o find λi and v i . In this work the mass matrix M is constructed

y distributing 1/5 of the panel mass to each of the panel’s nodes,

owever more advanced shape function approaches can be used

o distribute the mass of the panel. Including mass in the analysis

an be beneficial for performing scale dependent studies, compar-

ng different systems, and exploring the dynamic properties of the

ystem. 

In Fig. 12 we use the eigenvalues and eigenmodes that incor-

orate mass to compare the behavior between an eggbox pattern

nd an origami tube. The eggbox pattern is curved with repetitive

anels that have sector angles α = 62 . 9 ◦, 117 . 1 ◦, 69 . 3 ◦, 110 . 3 ◦ and

he left panel dimension is a unit value of 1 ( Xie et al., 2015 ). The

anels have a thickness of t = 0 . 01 ( L / t ≈ 100), and mass of ρ = 1 .

he model uses a Young’s Modulus E = 10 6 and fold lines are de-

ned with L ∗ = 40 . The magnitude of the eigenvalues 7–14 for the

ggbox are relatively low, indicating that the most flexible ways to

eform the structure (folding, bending, and twisting) require only

eformation of the fold lines and panels. As the structure is ex-

ended, mode switching takes place, meaning that depending on

he configuration, it may be easier to deform the structure in dif-

erent ways. 

In Fig. 12 (b) the eggbox is closed on the bottom to create a rigid

oldable tube ( Tachi, 2009c ) that has a symmetric cross-section

ith all edges having a dimension of 1. Because mass is used with

his analysis, it is possible to compare the results between the egg-

ox and the tube. When additional panels are added, both the stiff-

ess and mass scale linearly with the change in material. Thus any

hange in the eigenmodes and eigenvalues can be attributed to the

hange in geometry. When the second part of the tube is added,

he magnitude of the seventh eigenvalue does not change drasti-

ally, however, mode switching no longer occurs, and the lowest

igenmode corresponds only to the folding and unfolding motion.

eforming the structure in bending and twisting is stiffer than for
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Fig. 12. Eigenvalues vs. configuration (% extension) of (a) a curved eggbox form and (b) a tube with the top section identical to (a). The deformation modes of the eggbox 

are more flexible than the tube and switch at different configurations. The tube has a continuous bandgap for different configurations indicating that it requires less energy 

to deploy the structure than to deform it in other ways (e.g. twisting). 
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the eggbox, and the eighth eigenmode becomes a squeezing type

of motion where one side folds and the other unfolds. The ninth

and subsequent eigenvalues are substantially stiffer and engage the

panels in stretching and shear. A bandgap ( β = λ8 − λ7 ) separates

the seventh and eight eigenvalues throughout the extension of the

structure. This separation means that it is always more flexible for

the system to be deployed than to be deformed in another fash-

ion. Previous work in Filipov et al. (2015) showed that coupling

multiple tubes can be used to substantially increase the structural

bandgap. The system becomes easy to deploy yet it is stiff in all

other directions and can be used as a cantilever. Analyzing the

bandgap between the seventh and eight eigenvalues is particularly

important for origami, because it informs whether the origami is

capable of deploying easily per design or if other motions are pos-

sible. 

The bar and hinge model and Eq. (30) could also be used to find

the circular natural frequency ( ω i = 

√ 

λi ) of the structure to inves-

tigate the dynamic characteristics and behavior of the system (e.g.

if they are to be used as mechanical systems subject to vibration). 

7.3. Static analyses of origami systems 

Static analyses are useful when a specific application of origami

is explored. For these types of analyses we provide supports that

prevent rigid body motions. Loads are applied at unrestrained

nodes and a deformed shape of the structure is obtained. It is also

useful to characterize the stiffness of different origami structures

for loads applied in the three Cartesian coordinates. 

7.3.1. Infinitesimal deformation analysis 

In this section, we present a cantilever analysis of an eight-

sided reconfigurable polygonal tube presented in Filipov et al.

(2016b ). We perform the analysis on the structure with the
5B8 model, and compare the results to a discretized FE model.

oth models are defined with unit dimensions (see Filipov

t al., 2016b for the specific geometric definitions of the tubes).

he cross-section edges for the upper section of the polygo-

al tube have slopes of [ θa , θb , θc ] = [30 , 90 , 125] ◦, and lengths

f [ b U1 , a U1 , b U2 , c U1 ] = [0 . 5 , 0 . 7 , 0 . 5 , 1] . The tube is ten segments

ong, and is created with constant projection of φ = 60 ◦ and l = 1 .

he panels have a thickness of t = 0 . 01 units ( L/t ≈ 50 − 100 ), Pois-

on’s ratio of ν = 1 / 3 , Young’s Modulus of E = 10 6 , and fold lines

re defined with L ∗ = 40 . The polygonal tube can reconfigure to

ave six different cross-sectional shapes (I - VI). 

One end of the cantilever is fixed and a uniformly distributed

oad is applied on the other end. We perform static, linear elas-

ic, small displacement analyses of the structures when they are

eployed to 95% extension. Fig. 13 (a) and (b) show the displaced

hapes obtained with the N5B8 and FE models when a load is ap-

lied in the Y direction and the structure is in configuration I. We

nd the characteristic stiffness for each of the six possible configu-

ations (I - VI), when the tubes are deployed to 95% extension. The

oad is applied in the YZ plane, and the cantilever stiffness K YZ is

alculated as the load is rotated. 

The radial plots show that the cantilever stiffness depends on

he direction of loading, and that the tube geometry has a high

nfluence on the anisotropy of the tube structures. The N5B8 and

he FE model provide similar displaced shapes and radial plots de-

icting the K YZ stiffness. However, the N5B8 model overestimates

he global stiffness of the polygonal tube by as much as 160%. This

ignificant difference is partly due to the overestimation in shear

tiffness of the origami panels, and also because the N5B8 model

annot capture localized deformations. Nonetheless, the global in-

uence of geometry is accurately captured by the bar and hinge

odel, and it provides a good qualitative and comparative analysis

f different origami geometries. 
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Fig. 13. Structural analysis of cantilevered reconfigurable tube. (a) and (c) are performed with the N5B8 model while (b) and (d) are performed with a discretized FE model. 

The displaced shapes presented in (a) and (b) appear similar but are scaled to have the same maximum displacement and do not represent stiffness. (c) and (d) are the 

tube stiffness for different loading directions in the Y − Z plane represented as a radial plot. The stiffness for the six possible tube configurations (I - VI) are shown when 

the system is at 95% extension. The N5B8 and FE plots show similar behaviors but the stiffness estimated by the N5B8 model is higher. 

Fig. 14. Large displacement analysis of a Miura–ori tube structure. (a) The load-displacement curve. The initial geometry and boundary conditions are shown by the inset. 

The left end of the tube is supported: the bottom node is fully pinned in three directions; the top node is only allowed to slide in the Z direction; the two middle-height 

nodes are only restricted in the X direction. The displacement is measured as the downward Z movement of the node marked with a circle. (b) An isometric view of the 

deformed structure. The thick line frame shows the original geometry. (c) A top view of the deformed shape. The unit sections are deployed non-uniformly under the given 

actuation. 
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.3.2. Large deformation analysis 

The bar and hinge model can also capture large global deforma-

ions of origami structures. For example, when actuating a Miura–

ri tube from one end, due to the flexibility of panels, the panels

xperience bending in a non-uniform fashion, and only part of the

ube moves (similar to squeezing in Fig. 12 (b)). The geometry of

 straight tube is shown in Fig. 14 , featured with uniform α = 60 ◦

ector angled panels. The model is defined similar to the previ-

us example ( t = 0 . 01 ( L / t ≈ 100), ν = 1 / 3 , E = 10 6 ), except that
ere we take L ∗ = 10 . The formulation for large displacement anal-

sis is presented in Section 6 . To conduct the nonlinear analysis,

e use the MGDCM as the solver ( Leon et al., 2014 ). The tube is

upported at the left end: the bottom node is fully pinned in the

hree directions; the top node is only allowed to slide in the Z di-

ection; the two middle-height nodes are only restricted in the X

irection, so they can move freely in the Y − Z plane. The exter-

al forces are applied in the Z direction as shown in Fig. 14 . A

queezing type motion occurs where the side of the tube that is
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Fig. 15. Structural linear elastic analysis of interleaved tube cellular material 

( Cheung et al., 2014 ). (a) Four folding states of the cellular material; the system 

can fold flat in both the X and Y directions. (b) Stiffness of the material in three 

directions at different folding states. (c) The analytical Poisson’s ratio ( ν) simulated 

with the bar and hinge model. (d) Four deformed states of the structure when com- 

pressed at different configurations and in different directions. The undeformed out- 

line is shown with a red line. Cases 1 and 4 have positive ν , Case 3 has ν ≈ 0 

and Case 2 has a negative ν . These results are based on infinitesimally small dis- 

placements, and would differ for large displacement simulations. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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restrained folds down to approach a flattened sheet, whereas the

other end deforms substantially less. This behavior is due to flex-

ibility of the panels. After passing the limit point shown on the

force-displacement curve, this deformation process shows a soften-

ing behavior where the stiffness decreases. A Miura–ori tube with

fully rigid panels would deploy uniformly (i.e. rigid origami with

only one degree of freedom for rigid folding). 

7.4. Characteristics of origami inspired materials 

Mechanical analysis of origami inspired materials is often per-

formed as local unit cell exploration aimed to characterize the me-

chanical properties of the system. When a larger material specimen

is to be investigated the bar and hinge model can be a useful tool

that can characterize behavior and explore geometric and other

specimen variations. The mechanical properties of the origami sys-

tem depend on the fold pattern, fold angles, material properties,

material thickness and other properties which can be easily scaled

and parametrically explored using the bar and hinge model. We

perform a static analysis on the assemblage of interleaved tube cel-

lular material ( Cheung et al., 2014 ) by applying a uniform load at

both the bottom and top of the system. The characteristic stiffness

for each direction is calculated based on the mean displacement of

the loaded surfaces. Fig. 15 shows that the stiffness of the assem-

blage can be tuned by changing the configuration. The maximum

stiffness in the X and Y directions is obtained when the structure

becomes flattened in a parallel plane (e.g. in the X − Z plane for X

loads). In the Z direction the stiffness has three maxima, with the

intermediate one occurring at a deployed symmetric state. We also

show that the Poisson’s ratio in the three Cartesian directions can

be tuned with reconfiguration. We calculate the Poisson’s ratio as

a resultant of the Y displacement with respect to a load applied in

the X direction as νyx = −(dy/l y ) / (dx/l x ) , where dy and dx are the

displacements in the two directions and l y and l x are the corre-

sponding initial lengths of the metamaterial. Due to the kinematic

deformation motion of the origami assemblage, the material can

take on Poisson’s ratios that are much larger or smaller than con-

ventional materials ( Fig. 15 (c) and (d)). 

8. Summary and discussion 

This section summarizes the properties of bar and hinge mod-

els in general and, in particular, the properties associated with the

N5B8 model. Afterwards, the limitations of those models are also

presented. 

8.1. Properties of bar and hinge models 

• The bar and hinge models are simple to understand, imple-

ment, modify and use. This makes them valuable to the grow-

ing community of origami researchers and enthusiasts. 

• The models distill structural behavior of origami into three

intuitive components: (1) bending of creases, (2) bending of

flat panels, and (3) stretching/shearing of the material. This

makes the model and methodology especially useful when de-

scribing structural behaviors of different origami systems (see

Section 7 ). 

• The bar and hinge models use few nodes per each panel al-

lowing for more simplicity and efficiency than a discretized FE

approach. 

• The speed and versatility of the models makes them suitable

for various extensions such as: (i) Parametric variations for ge-

ometric design; (ii) Optimization of cellular origami type struc-

tures; (iii) Large displacement simulations; (iv) Exploring the
effect of different nonlinear fold line models. 
.2. Properties of the specific N5B8 model 

• The model is simple and efficient while allowing for a surpris-

ing level of detail and accuracy. 

• In-plane behaviors exhibit symmetry and isotropy which is not

possible with N4B5 models. 

• The model can approximate in-plane stretching and shearing

for both regular and skewed panels. Although shear stiffness

is overestimated, the model behaves similar to expected trends

when skew is incorporated. 

• The N5B8 model can approximate deformed shapes reasonably

well when bending of both panels and fold lines occurs. The

model removes ambiguity between panel and fold line bending

that occurs with N4B5 and N4B6 models. 

• Mass can be distributed more realistically in the N5B8 model

than in the N4B5 and N4B6 models. 
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Fig. A.16. Some of the scaling relations that influence thin sheet bending. (a) The 

normalized bending moment M B / k scales roughly with θ4 / 3 
B 

from small to large dis- 

placements. (b) For small displacements ( θB = 1 ◦) the normalized bending stiffness 

( K B ) scales primarily with the geometric parameter �α = α1 + α2 + α3 + α4 . Small 

displacement (c) and large displacement (d) scaling of the normalized bending stiff- 

ness ( K B ) with respect to the length of the short diagonal ( D S ). 
• The N5B8 model is scalable as it includes length and thickness

( t ) to define the stiffness and mass of the system. 

.3. Findings applicable to the bar and hinge and other origami 

odels 

• Panel bending stiffness can be defined to scale based on the

width to thickness ratio as ( D S / t ) 
1/3 and with the bending mod-

ulus of the sheet k (suggested by Lobkovsky et al. (1995) ). 

• The out-of-plane panel bending stiffness for small displace-

ments is highly dependent on panel geometry and skew ( �α).

Skewed or elongated panels tend to be more stiff than square

panels as they restrict double curvature over the surface. 

• Alternative formulations for panel bending may be used for

large displacement bending of panels, because the stiffness

scales with θ4 / 3 
B 

(behavior first discussed by Lobkovsky et al.

(1995) ). The panel geometry does not significantly influence

stiffness for large displacements. 

• The local fold line stiffness can be defined to scale with the fold

length L F , the bending modulus of the sheet k , and a length

scale parameter as 1/ L ∗, (first suggested by Lechenault et al.

(2014) ). The length scale parameter is believed to scale with

thickness, but also depends strongly on material, fabrication,

and geometric characteristics of the fold. 

• The global fold line stiffness should be modeled as a series of

the local fold stiffness ( K 
 ) and the adjacent panel stiffness ( K m 

)

as K F = 1 / (1 /K 
 + 1 /K m 

) . 

• For origami structures fold bending is expected to dominate,

and a panel to fold stiffness ratios of K B / K F = 1/3 to 20 are

expected to be realistic. 

.4. Limitations 

• The bar and hinge model cannot capture localized effects accu-

rately, such as stress concentrations at vertices due to thickness

of the material. 

• Stiffness for shearing of the panels is overestimated in compar-

ison to the stretching and bending deformations. 

• The bar and hinge models can currently only model quadrilat-

eral and triangular panels. New formulations for both in-plane

and out-of-plane behaviors will be needed for arbitrary polyg-

onal panel geometries. 

• Bar and hinge models are not currently available in easy to use

software packages and are thus not easily accessible for wide-

spread use. 

. Conclusions 

This paper discusses bar and hinge models for the mechanical

nd structural simulation of origami type systems. We introduce

 bar and hinge model where five nodes and eight bars (N5B8

odel) are used to simulate the in-plane stiffness of origami

anels. This orientation of bars allows for the bending of the

anels along the diagonals, which is a characteristic behavior

f origami in large deformation. Rotational hinges are used to

imulate the out-of-plane bending of the panels, as well as the

oment-rotation behavior of prescribed fold lines. The model

arameters incorporate realistic material characteristics, and the

odel is formulated to provide a scalable, isotropic, and realistic

ystem behavior. The influence of panel geometry on the origami

tiffness, and a study on fold line stiffness characteristics are also

resented and implemented. 

Bar and hinge models have various applications for the charac-

erization and design of origami type structures and systems. Fold-

ng pattern characteristics and kinematic rigid folding can be per-

ormed using eigenvalues and eigenmodes of the stiffness matrix.
hen mass is incorporated with the eigen-analysis, it can provide

 scalable basis for comparing the mechanical characteristics of

rigami structures. Static analyses can be used for stiffness char-

cterization of origami inspired deployable structures or mechan-

cal metamaterials. We show the model’s capabilities for studying

arge displacements and instabilities that are possible with the thin

heet systems. The bar and hinge model cannot capture localized

henomena of origami, but has the benefits that it is versatile, ef-

cient, and adaptable for a wide range of applications. The bar and

inge model can be a useful analytical and design tool that facili-

ates practical application of origami in science and engineering. 
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ppendix A. Stiffness characteristics for thin sheet bending 

This appendix presents stiffness scaling characteristics for the

ending of thin restricted sheets. The scaling properties are eval-

ated through parametric studies of the FE model presented in

ection 4.2 . First we verify and compare with existing findings for

arge deformation bending introduced by Lobkovsky et al. (1995) ,

nd subsequently we explore the influence of the panel geometry

http://dx.doi.org/10.13039/100000001
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Fig. A.17. Influence of panel skew on bending stiffness. The panels with different skewed configurations are quantified by �α = α1 + α2 + α3 + α4 . Normalized bending 

stiffness vs. panel corner geometry ( �α), for (a) small displacement bending ( θB = 1 ◦) and (b) large displacement bending ( θB = 70 ◦). Skew has an influence on the bending 

stiffness for small displacements, but not for large displacements. 
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on the bending stiffness. Fig. A.16 (a) shows that as bending transi-

tion from small to large displacements, the bending moment scales

reasonably well with θ4 / 3 
B 

. This behavior differs from a linear hinge

and, in contrast, the restrained panel becomes stiffer with larger

bending angles. When considering only small deformations of the

panel, Fig. A.16 (b) shows that the bending stiffness scales with a

geometric paramater �α (discussed in more detail below). Some

of the stiffness scaling characteristics are similar for both small

and large deformations. In particular, Fig. A.16 (c) and (d) show

that bending moment scales roughly with k ( D S / t ) 
1/3 where k is

the bending modulus of the sheet, defined as k = Et 3 / 12(1 − ν2 ) .

Although not exact, our results show similar scaling trends of

( D S / t ) 
1/3 that were presented both analytically and numerically by

Lobkovsky et al. (1995) . 

Beyond verifying previous scaling relationships, this appendix

also explores the influence of the panel geometry and skew on the

bending stiffness. Analyses were performed on panels with differ-

ent geometries and a constant short diagonal D S . Fig. A.17 , shows

seven different geometries, with Cases 1–3 using a rhombus ge-

ometry similar to Fig. 7 , and Cases 4–7 using a modified geometry

derived from the minimal ridge case where �α = 0 ( Witten, 2007 ).

The geometric parameter �α for Cases 1–3 is modified by chang-

ing the length of the long diagonal D L . Cases 4–7 are modified by

increasing the angles α starting from the minimal ridge case. The

bending stiffness for small displacements is highly dependent on

the corner geometry �α. We note that this parameter ( �α) is ef-

fective at representing the panel stiffness of panels with vastly dif-

ferent geometries. 

An elongated panel with �α = 0 . 6 π ( D L ≈ 2 D S ) would have

about double the stiffness of a square panel with �α = π . When

the panel is a square it experiences double curvature with uniform

bending energy over the entire area of the panel. The system is

f  
tiffer when the panel shape is more skewed, elongated, or the

orners of the short diagonal are more obtuse (e.g. Case 3 or Case

). The stiffer cases occur because bending becomes restricted at

he obtuse corners and double curvature is limited. For the large

isplacement cases the skew and geometric parameter �α do not

ave a significant effect. In these cases bending is restricted to the

hort diagonal of the panel, thus the elongation and skew of the

anel have little effect on the global stiffness. These observations

hat boundary conditions and geometry are not of significant in-

uence for large displacement cases were also noted in previous

esearch ( Di Donna and Witten, 2001; Witten, 2007 ). More details

n the scaling relations of thin sheet origami panels, and how skew

nd geometry affect the bending energy in these systems can be

ound in Filipov (2016) . 

ppendix B. Stiffness characteristics of creased fold lines 

In the modeling of origami fold lines, a length scale factor L ∗ (in

nits of length) is often used to define the relative stiffness of the

old based on the material, fabrication, and geometric properties.

o better understand realistic values of L ∗ this appendix presents a

tudy of published experimental research on creased fold lines, as

ummarized in Table 1 . The experiments consist of the following:

 - Beex et al. (2009) ; 2 - Huang et al. (2014) ; 3 - Lechenault et al.

2014) ; 4 - Mentrasti et al. (2013) ; 5 - Nagasawa et al. (2001) ; 6

 Nagasawa et al. (2003) ; 7 - Nagasawa et al. (2008) ; 8 - Pradier

t al. (2016) ; and 9 - Yasuda et al. (2013) . Table 1 documents the

aterial properties, testing direction for the paper based samples,

he creasing type and the general bending behavior. Several of the

xperiments crease and cycle the fold before testing (3,8,9) and

n one case the thickness is partially cut or a dash cut is per-

ormed through the thickness (4ab). In the remainder of the cases
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Table 1 

Experimental results of fold line testing. 

# Paper Material Crease type Direction E (GPa) t (mm) K 
 / L F (Nm/m/rad) L ∗ (mm) c Comment 

1 Beex et al. (2009) Laminated paperboard Die crease - V MD 1.3 a 0.9 1.72-11.5 7.7 - 52 Elasto-plastic response affected by 

creasing depth. 

2 Huang et al. (2014) Multi-ply layered 

paperboard A 

Die crease - V MD 4.4 a 0.383 0.9 - 2.1 11-25 Elasto-plastic response affected greatly 

by creasing depth. The creasing 

direction (MD/CD) and the material 

properties of different plys (samples 

A,B,C) can influence behavior. 

CD 1.5 a 0.383 0.32 - 1.1 7.2–25 

Multi-ply layered 

paperboard B 

Die crease - V MD 4.5 a 0.39 0.7 - 1.8 14–36 

CD 2.6 a 0.39 0.5 - 1.4 10–29 

Multi-ply layered 

paperboard C 

Die crease - V MD 4.6 a 0.332 0.4-1.4 11–40 

CD 1.9 a 0.332 0.25 - 0.8 8-26 

3 Lechenault et al. (2014) Mylar sheets Folded by hand and 

weight - C 

N/A 4 0.13 0.029 28 Essentially elastic response for large 

angle variations. Behavior depends on 

origami length scale. 

N/A 4 0.35 0.27 60 

N/A 4 0.5 0.5 94 

4 Mentrasti et al. (2013b ) Paperboard a. Cut - C/V U 3.5 b 0.4 - 0.44 0.041-0.095 222–667 Essentially elastic response. 

b. Dash cut - C/V U 3.5 b 0.4 0.38-0.73 29–55 Elasto-plastic response. 

c. Die crease - V U 3.5 b 0.4 - 0.44 0.16-0.69 30–133 Response can vary significantly. 

5 Nagasawa et al. (2001) Paperboard Die crease - V MD 3.5 b 0.44 2.6-3.7 7.6–11 Elasto-plastic response, peak strength 

was affected by creasing but stiffness 

was not. 

6 Nagasawa et al. (2003) Paperboard Die crease - V MD 3.5 b 0.46 0.5-5.4 5.9–64 Elasto-plastic response affected greatly 

by creasing depth. The stiffest cases 

correspond to no creasing 

CD 3.0 b 0.46 0.3-2.9 9.5–91 

7 Nagasawa et al. (2008) Paperboard Die crease - V MD 1.6 0.37 1.6-4.7 1.6-4.8 Elasto-plastic response affected greatly 

by creasing depth. Aluminum coating 

increases stiffness in non creased cases. 

CD 1.05 0.37 0.7-2.8 1.8-7.1 

Paperboard coated with 

aluminum foil 

Die crease - V MD 1.6 0.37 1.6-5.2 1.6-4.8 

CD 1.05 0.37 0.7-3 1.7-7.1 

8. Pradier et al. (2016) ECF woodfree pulp 

uncoated paper 

Folded by hand and 

weight - C 

MD/CD/45 ° 4 MD 0.129 0.042 19 Essentially elastic response with 

stiffening when fold opens. Direction 

(MD/CD) does not influence behavior 

significantly. 

9 Yasuda et al. (2013) Paper C U 2.9 a 0.27 0.106 50 Linear behavior with stiffening when 

fold reaches closed state. 

Notes: Crease type: V - virgin folding of material; C - material is pre-folded and cycled or pre-cut; MD - Machine (grain) Direction; CD - Cross-machine (parallel) Direction; U - Unknown information. 
a Value interpolated from results presented in paper. 
b Value assumed for typical paper/paperboard. 
c Except for ref. #3, the authors computed the L ∗ values. 
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Fig. B.18. The length scale L ∗ with respect to the thickness for the experiments in Table 1 . The red (gray in B&W) points are cases where the crease is cycled or pre-cut. The 

black points represent cases where a virgin loading is applied to a die crease. The distribution of L ∗ from the different experiments does not show a strong correlation with 

thickness, and likely material, fabrication and other properties have a more significant influence. We show representative values of the length scale for the virgin ( L ∗V ) and 

the cyclic ( L ∗C ) tests for a material thickness of 0.36 mm. Two outliers from the experiments (experiment 1 and 4a) are represented off the plot with the numerical value of 

the central points ( t, L ∗). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(1,2,4c,5,6,7), a die crease mechanism is used and a virgin load-

ing (folding) of the sample is tested. From the experimental re-

sults, we find the initial stiffness of the fold line with respect to

the bending angle (in radians) and normalize by the fold length to

obtain a normalized stiffness K 
 / L F (in units of Nm/m/rad). Most

cases where a virgin loading is performed exhibit a highly non-

linear elasto-plastic type of response, and for our calculations we

only use the initial stiffness at the beginning of the experiment.

For each set of experiments a range of values of the length scale

are calculated as L ∗ = L F k/K 
 . The bending modulus ( k ) uses thick-

ness of the tested material ( t ) and the recorded elastic modulus ( E )

where available. The value of E is assumed for typical materials if

not available from the experimental data, and we assume that the

Poisson’s ratio is ν = 1 / 3 for all cases. In some studies the range

in L ∗ resulted from sample variability (4,5,8), while in other stud-

ies the range in L ∗ can be attributed to the creasing penetration

depth (1,2,6,7). Cases with deeper creasing typically result in more

damage to the material and a more flexible fold line (higher values

of L ∗); experiments 1, 5, 6, and 7 contain some samples where no

creasing is performed. 

To show the variability in fold stiffness, in Fig. B.18 we plot

the length scale L ∗ with respect to the thickness for the nine

tested specimens. The cases where cyclic loading or cutting is per-

formed tend to have higher length scales, indicating a more flexi-

ble fold line. The cases where only the virgin loading is recorded

(1,2,4c,5,6,7) would likely have much higher length scales (be more

flexible) if the fold is cycled or the entire loading curve is con-

sidered. The results from Lechenault et al. (2014) (tests 3) show

a trend that L ∗ increases with thickness, however, in general it

appears that the material, fabrication, and fold properties have a

much greater effect on L ∗. Consequently, we do not attempt to fit

the data. To provide a point of reference, for a material thickness

of 0.36 mm we pick two points to show: (1) flexible folds typi-

cal for origami with cutting and cyclic loading ( L ∗
C 

= 80 mm), and

(2) a high stiffness estimate of folds with little creasing or virgin

loading ( L ∗V = 25 mm). Future experiments can provide improved

estimates for the scaling of L ∗ with respect to thickness, and other
fold characteristics. 
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