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Abstract Topology optimization of truss lattices, using the
ground structure method, is a practical engineering tool that
allows for improved structural designs. However, in general,
the final topology consists of a large number of undesirable
thin bars that may add artificial stiffness and degenerate the
condition of the system of equations, sometimes even lead-
ing to an invalid structural system. Moreover, most work
in this field has been restricted to linear material behav-
ior, yet real materials generally display nonlinear behavior.
To address these issues, we present an efficient filtering
scheme, with reduced-order modeling, and demonstrate its
application to two- and three-dimensional topology opti-
mization of truss networks considering multiple load cases
and nonlinear constitutive behavior. The proposed scheme
accounts for proper load levels during the optimization
process, yielding the displacement field without artificial
stiffness by simply using the truss members that actually
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exist in the structure (spurious members are removed), and
improving convergence performance. The nonlinear solu-
tion scheme is based on a Newton-Raphson approach with
line search, which is essential for convergence. In addition,
the use of reduced-order information significantly reduces
the size of the structural and optimization problems within
a few iterations, leading to drastically improved compu-
tational performance. For instance, the application of our
method to a problem with approximately 1 million design
variables shows that the proposed filter algorithm, while
offering almost the same optimized structure, is more than
40 times faster than the standard ground structure method.

Keywords Ground structure method · Filter · Hyperelastic
trusses · Topology optimization · Potential energy ·
Tikhonov regularization · Newton-Raphson · Line search

1 Introduction

Truss latticenetworkscanbeoptimized using the ground structure
method (GSM) (see, e.g., Dorn et al. 1964; Kirsch 1989;
Rozvany et al. 1995; Bendsøe and Sigmund 2003;
Christensen and Klarbring 2009). In the field of struc-
tural topology optimization of trusses using the GSM, it
is important to take into account material nonlinearity,
because real materials generally display nonlinear con-
stitutive relationship. Topology optimization considering
linear material behavior (the prevailing approach in the
literature (Bendsøe and Sigmund 2003)) has a limited
scope, which can be extended by accounting for nonlinear
material as it can significantly alter the optimized struc-
ture layout. In fact, the studies of material nonlinearity
using the GSM (e.g., Achtziger 1996; Ohsaki 2010; Sokół
2011; Ramos Jr and Paulino 2015) show the importance
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Fig. 1 Influence of material properties in topology optimization: a
Hyperelastic Ogden-based material models with convex1specific strain
energy; b initial ground structure and boundary conditions; c final
filtered topology from the tension-dominated Ogden-based material

model; d either linear elastic material or the compression-dominated
Ogden-based material model yields a self-equilibrated filtered topol-
ogy. Blue bars are in tension and the red bar is in compression (online
version in color)

of accounting for nonlinear material properties and load
levels in structural optimization. Figure 1 further illustrates
and motivates the influence of material nonlinearity in
optimization. Two hyperelastic material models with con-
vex specific strain energy, representing tension-dominated
and compression-dominated Ogden-based materials, lead
to completely different final topologies. In addition, the
self-equilibrated filtered structure in Fig. 1d (from the
compression-dominated material) is a motivation for solv-
ing systems with a singular stiffness matrix (Ramos Jr and
Paulino 2016).

1.1 Structural engineering perspective

From the perspective of structural engineering, one limita-
tion of the standard GSM is its inability to define a valid
final structure and the unlikelihood of manufacturing an
optimized structure. Because a cut-off value is needed to
define the final topology for the standard GSM (a sizing
problem), the topology may either consist of a large num-
ber of undesirable thin bars (if the cut-off value is too small)
or violate the global equilibrium (if the cut-off value is too
large) because of the removal of some structurally impor-
tant bars. This is illustrated by means of Fig. 2, which
shows a bridge (Fig. 2a) with a bilinear material model
(Fig. 2b). For comparison purposes, Fig. 2c shows the case
when a proper cut-off is chosen and Fig. 2d shows the

1The tension-dominated material has (β1, β2) = (4264.0, −0.9) and
the compression-dominated material has (β1, β2) = (1.1,−4253.4),
where β1 and β2 are material parameters for Ogden-based material
models – see Section 3.1 for the constitutive model definition.

case when global equilibrium is violated because of an
improper choice of the final cut-off value, both of them
using the same lower bound on the design variable, xmin =
1.36 × 10−8. Figure 2e and f illustrate the final topolo-
gies without a cut-off value. Figure 2e is obtained using
the standard GSM with an arbitrarily small lower bound
of the design variable, xmin = 1.36 × 10−14. As a result,
the entire ground structure is included in the final topol-
ogy. Figure 2f shows the final topology with xmin = 0
as the lower bound, in which the final topology consists
of numerous thin bars. Note that the zero lower bound on
design variables leads to singular tangent stiffness matrices.
In this case, state equations were solved by minimization
of potential energy with Tikhonov regularization (Ramos Jr
and Paulino 2016). For other methods of solving the state
equations, readers are referred to Bruns (2006), Washizawa
et al. (2004), and Wang et al. (2007). Attempts have been
made to treat undesirable thin members and obtain valid and
constructible structures. By introducing discrete variables
(either as design variables or as the existence variable) into
the optimization, the undesirable thin bars may be avoided.
For example, Tangaramvong et al. (2014) impose a real-
istic design constraint with a binary variable (to represent
presence or absence) on the braces with geometric non-
linearity, which only selects braces within specific bound
limits. However, these formulations with discrete variables
to treat thin members become mixed integer linear/nonlinear
problems. For a detailed review of the truss optimization
with discrete design variables, readers are referred to Stolpe
(2016). Another approach consists of including “slender-
ness constraints” using a plastic formulation - see Achtziger
(1999a, b). Here we adopt an elastic formulation as moti-
vated by a recent study by Ramos Jr and Paulino (2016),
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who propose a discrete filter that can be used to control
the final resolution of the optimized structure, resulting in
a valid structure in which global equilibrium is guaranteed.
This discrete filter has only been applied to linear optimiza-
tion problems; therefore, in an effort to provide a practical
design tool that targets the real-life demands of material,
structural design, and manufacturing aspects, we propose a
filtering scheme with reduced-order modeling that accounts
for material nonlinearity in this paper.

1.2 Analysis perspective

From an analysis perspective, the standard GSM consid-
ering material nonlinearity, contains numerous small area
truss members, which can be problematic in two aspects:
first, because small area members are included in the solu-
tion of the structural problem, they add artificial stiffness
to the structure, leading to a degree of unreliability of the
optimization results. Moreover, in the nonlinear finite ele-
ment method (FEM) of the standard GSM, certain nodes
that only connect to thin members produce small eigen-
values in the stiffness matrix, which could degenerate the
condition of the state equations and result in difficulties
in convergence. Nevertheless, the removal of these thin
members can result in a violation of global equilibrium,
as shown in Fig. 2d. The proposed filter algorithm, how-
ever, filters out the small area members and the associated
nodes in the structure thus solving such structural prob-
lems (state equations) solely by using other relevant mem-
bers. As a result, the displacement field is obtained, which
improves the convergence performance in the nonlinear
FEM and allows global equilibrium verification in the actual
topology.

1.3 Efficiency perspective

From the perspective of efficiency, another major prob-
lem with the GSM that accounts for material nonlinearity
is the high computational cost of the iterative procedure
for solving nonlinear structural systems. Furthermore, the
incorporation of the multiple load cases into the nonlin-
ear problems leads to higher computational cost, because
each load case requires an independent iterative nonlinear
FE analysis. To minimize the cost, a fully reduced-order
model is used in the filtering scheme, which solves both
the state and optimization problems of the filtered struc-
tures. As a result of the smaller sizes of the tangent stiffness
matrix and the sensitivity vector, the use of the proposed
filtering scheme with the fully reduced-order model sig-
nificantly improves the computational performance of the
optimization algorithm.

1.4 Paper context and content

This work is based on an elastic formulation with the total
potential energy used in both the objective function and the
structural problem2 (see, e.g., Stricklin and Haisler 1977;
Haftka and Kamat 1989; Toklu 2004; Hassani and Hinton
1998; Khot and Kamat 1985; Klarbring and Strömberg
2012, 2013; Ramos Jr and Paulino 2015). Other types of
objective functions in nonlinear problems have been studied
by other authors (see, e.g., Buhl et al. 2000; Kemmler et al.
2005; Sekimoto and Noguchi 2001).

The remainder of the paper is organized as follows.
Section 2 presents the standard, modified standard, and
filter formulations adopted for the nonlinear optimization
problem under multiple load cases, followed by sensitivity
analysis, convexity proof, and KKT conditions. Section 3
describes the truss models with material nonlinearity, cor-
responding potential energy, linearization of the governing
equations, and the methods of solving the state equations.
Section 4 introduces the reduced-order model in the state
and the optimization problems. Section 5 presents numer-
ical examples in two- and three-dimensions highlighting
the properties of the proposed method, and Section 6 pro-
vides concluding remarks with suggestions for extending
the work.

2 Nested optimization formulations for nonlinear
problems considering multiple load cases

In this section, we examine the standard and the modified
standard nested formulations as well as the filter formu-
lation of the nonlinear optimization problem considering
multiple load cases. In addition, the sensitivity analysis,
convexity proof, a conceptual example with unbounded
solution, and the KKT conditions are presented.

2.1 Standard and modified standard formulations
(without filter)

First, we present the standard nested formulation and the
solution algorithm of topology optimization for trusses with
nonlinear constitutive models and small deformation. The
topology design consists of determining the cross-sectional
areas of the truss elements using the ground structure (GS)
approach. By definition, the standard total potential energy

2In general, it can be seen as a surrogate for understanding the field of
nonlinear topology optimization.
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Fig. 2 Some pitfalls of the standard GSM through a case study of
a bridge design with a full-level standard GS containing 7,083 non-
overlapping members: a Bridge domain and boundary conditions; b
bilinear material model with Ec/Et = 0.04; c final topology (41
members) considering a lower bound on area, xmin = 1.36 × 10−8,
with a proper cut-off value which shows that global equilibrium holds;
d final topology (34 members) considering a lower bound on area,
xmin = 1.36 × 10−8, with an improper cut-off value which shows that

global equilibrium does not hold; e final topology (7,083 members)
without the cut-off value considering a relatively small lower bound
on area, xmin = 1.36 × 10−14(standard GSM formulation); f final
topology (975 members with non-zero area) without the cut-off value
considering zero lower bound on area, xmin = 0 (modified GSM with
Tikhonov regularization). Blue bars are in tension and red bars are in
compression (online version in color)

of the structure is Π (u) = U (u) + Ω (u), where u is the
displacement vector, U (u) is the strain energy, and Ω (u) is
the total potential of the loads, given by

U (u) =
n∑

i=1

∫

V (i)

Ψ (i) (u) dV

=
n∑

i=1

V (i)Ψ (i) (u)

=
n∑

i=1

x(i)L(i)Ψ (i) (u) , (1)

and

Ω (u) = −FTu, (2)

where Ψ (i) (u), x(i), L(i), and V (i) are the specified strain
energy function, the cross-sectional area, the length, and
the volume of truss member i, respectively. The specified
strain energy function, Ψ (i) (u), is assumed to be convex
and differentiable for any given u. The parameter n denotes
the total number of truss members and F is the external

load vector. We use the following nested formulation for the
optimization problem under m load cases:

min
x

J (x) = min
x

m∑

j=1

−wjΠj

(
x, uj (x)

)

s.t. g (x) = LTx − Vmax ≤ 0 (3)

0 < x
(i)
min ≤ x(i) ≤ x(i)

max, i = 1, ..., n

with uj (x) = arg min
u

Πj (x, u) , j = 1, ..., m,

where the objective function3 J (x) = ∑m
j=1 −wjΠj (x,

uj (x)) is the additive inverse of a weighted sum of the total
potential energy of the system in equilibrium state from
each load case (Ramos Jr and Paulino 2015), where Πj is
the total potential energy of the equilibrated system under
the j th load Fj , wj is the corresponding weight (strictly
positive), uj is the equilibrating displacement field (state
variable) under load case Fj , x and L are the vectors of

3In order to provide a physical explanation for the objective function, notice
that when the prescribed displacements is zero on the boundary Su,
J = Uc where Su is the portion of the boundary where displacement
boundary condition is applied and Uc is the complementary energy at
the equilibrium configuration (see Ramos Jr and Paulino (2015)).
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cross-sectional area (design variable) and length of truss
members, respectively, Vmax is the maximum material vol-
ume, and x

(i)
min and x

(i)
max denote the positive lower and upper

bounds of the design variable of member i, respectively.
The objective function is based on the min-max formulation
described in Klarbring and Ströberg (2012, 2013). Follow-
ing common practice (Christensen and Klarbring 2009), in
this standard approach, we introduce the strictly positive
lower bound x

(i)
min to prevent the singular tangent stiffness

matrix from forming (Christensen and Klarbring 2009). As
a result, this standard nested formulation in (3) is a sizing
problem. At the end of the optimization scheme, we use a
“cut-off” approach for design variables to define the final
topology. In this paper, we assume that the specific strain
energy is a convex function and the structural model can
carry each load case Fj , j = 1, ..., m, (i.e., the equilib-
rium condition is satisfied, T

(
x, uj

) = Fj , j = 1, ..., m

). For the standard formulation (3), these assumptions, with
the strictly positive lower bound on design variables, lead
to the convexity of the potential energy with respect to
the displacement field u (strict convexity of the potential
energy requires the strictly convex specific strain energy and
x

(i)
min > 0), which ensures the attainability of a finite solu-

tion, uj , for each load case Fj in the structural model for
any fixed feasible x.

For the modified standard optimization formulation for
trusses with material nonlinearity, we relax the lower bound
of the design variables and require x(i) ≥ 0 for i = 1, ..., n.
The formulation then becomes,

min
x

J (x) = min
x

m∑

j=1

−wjΠj

(
x, uj (x)

)

s.t. g (x) = LTx − Vmax ≤ 0 (4)

0 ≤ x(i) ≤ x(i)
max

, i = 1, ..., n

with uj (x) = arg min
u

[
Πj (x, u) + ηj

2
uTu

]
, j = 1, ..., m.

In the modified standard formulation, the lower bound of
the design variables becomes the value of zero, showing that
truss members can be removed by the update scheme from
the problem (Ramos Jr and Paulino 2016). This modifica-
tion on the lower bound of design variables transforms the
sizing problem in (3) into a topology optimization problem.
In addition, to prevent the possibility of a singular tan-
gent stiffness matrix from forming in the Newton-Raphson
method for the structural nonlinear equations, we intro-
duce a Tikhonov regularization term (Tikhonov and Arsenin
1977; Felippa n.d; Ramos Jr and Paulino 2016; Talischi and
Paulino 2013),

ηj

2 uTu, for j th load case, where ηj is the
regularization parameter. The details of the Tikhonov regu-
larization on the potential energy are shown in Section 3.4.
For the modified standard formulation in (4), because
we assume that specific strain energy is a convex func-
tion and the structural model can carry each load case

Fj , j = 1, ..., m, (i.e., the equilibrium condition is satis-
fied, T

(
x, uj

) = Fj , j = 1, ..., m ), the potential energy is
a convex function with respect to the displacement field u
and the obtained uj is a global minimum. By further includ-
ing the Tikhonov regularization in the potential energy in
the structural problem, the potential energy becomes strictly
convex with respect to u, in this case, the global minimum
uj for load case j is unique.

2.2 Filter formulation

Here, denoting αf as the filter parameter for controlling the
resolution of the topology, we introduce the filter operation
as follows:

Filter
(
x, αf , i

) =
{

0, if x(i)
max(x)

< αf < 1,

x(i), otherwise.
(5)

We perform the filter operation every Nf steps during the
optimization process to remove the information associated
with the set of truss members with normalized areas below
the filter parameter αf , where Nf is prescribed by the user
to determine how frequently to perform the filter operation.
We denote x

(i)
f as the filtered cross-sectional area associated

with truss member i. In order to compare the final resolu-
tion of the results, we define the resolution of the filtered
structure, αTop, as follows,

αTop = min
(
xf

)

max
(
xf

) . (6)

Figure 3 illustrates the filtering scheme. With the fil-
ter operation above, we introduce the filter formulation
for optimization of trusses with material nonlinearity as
follows:

min
x

J (x)=min
x

m∑

j=1

−wjΠj

(
xf (x) , uj (x)

)

s.t. g (x) = LTxf (x) − Vmax ≤ 0 (7)

0 ≤ x(i) ≤ x(i)
max, i = 1, ..., n

with uj (x) = arg min
u

[
Πj

(
xf (x) , u

)+ ηj

2
uTu

]
, j = 1, ..., m

and x
(i)
f = Filter

(
x, αf , i

)
, i = 1, ..., n.

where the subscript f denotes a filtered value. Algorithm
1 shows the implementation of our proposed algorithm. We
note that this is a simplified procedure aiming at relatively
low values of the filter αf . For a more detailed discussion
of the filter, see Ramos Jr and Paulino (2016).

2.3 Sensitivity analysis

In this paper, we perform sensitivity analysis in the filtered
structure, i.e. by means of a reduced-order model in the
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optimization problem, which indicates that the dimension of
the sensitivity vector is the same as that of the filtered design
variables. Under the assumption of global equilibrium, and
since uj is the equilibrating displacement field under load
case Fj , then the sensitivity of the objective function is
given by,

∂J (x)
∂x(i)

= −
m∑

j=1

wj

∂Πj

∂x(i)

(
x, uj (x)

)
. (8)

The external work in (2) for each load case is (explicitly)
independent of the design variables. By using (1), we obtain
the sensitivity as,

∂J (x)
∂x(i)

= −
m∑

j=1

wj

∂Πj

∂x(i)

(
x, uj (x)

)

= −
m∑

j=1

wj

∂
[∑n

k=1 x(k)L(k)Ψ (k)
(
uj (x)

)]

∂x(i)

= −
m∑

j=1

wjL
(i)Ψ (i)

(
uj (x)

)
. (9)

Note that the sensitivity given by (9) is always non-
positive because L(i)Ψ (i)

(
uj (x)

) ≥ 0, j = 1, ..., m.
The sensitivity of the volume constraint for member i is
calculated as

∂g (x)
∂x(i)

= L(i). (10)

2.4 Convexity proof

In this subsection, we investigate the convexity condition
of the modified standard topology optimization formula-
tion in (4), i.e. the optimization formulation considering
multiple load cases with hyperelastic nonlinear materials
with convex specific strain energy and design variables
x ≥ 0. Note that the standard nested formulation with lin-
ear structural model and end-compliance objective function
has been proved to be convex by Svanberg (1984) for pos-
itive definite stiffness matrix, and by Achtziger (1997) for
positive semi-definite stiffness matrix. The standard formu-
lation in (3) with hyperelastic truss model and the objective
function of total potential energy under single load case has
been proved to be convex by Ramos Jr and Paulino (2015)
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Fig. 3 Illustration of the filter
operator: a theoretical and b
numerical, displaying the output
of a function with αf = 0.4 and
a given random vector xr for
i = 1, ..., 20.6 The function,
implemented in Matlab, is
provided in Appendix A

a b

for positive definite tangent stiffness matrix. Since the constraint
function, LTx − Vmax ≤ 0 is convex, we need to study the
convexity of the objective function,

J (x) = −
m∑

j=1

wj min
u

Πj (x, u)

=
m∑

j=1

wj max
u

[−	j (x, u)
]

=
m∑

j=1

wj max
u

{
FT

j u − U (x, u)
}

=
m∑

j=1

wjJj (x) , (11)

to prove the convexity of the optimization formula-
tion. Assuming that the strain energy is a convex func-
tion4 and the structural model can carry each load case
Fj , j = 1, ..., m, (the equilibrium condition is satisfied, i.e.,
T
(
x, uj

) = Fj , j = 1, ..., m ), we then have a finite solu-
tion, i.e. uj (x), for each load case Fj in the structural model
for a fixed x. Under these conditions, since the strain energy
U (x, u) = ∑n

i=1 x(i)L(i)Ψ (i) (u) is a linear function in x
for a fixed u, then Jj (x) is a pointwise supremum function
of a set of linear functions in x,

Jj (x) = sup
u

{
Jj,u (x) |u ∈ R

N
}

, (12)

where Jj,u(x) = FT
j u − ∑n

i=1 x(i)L(i)Ψ (i) (u) is convex,
and N denotes the number of degrees of freedom (DOFs).
We know that a function defined as the pointwise supre-
mum of a set of convex functions is convex (Rockafellar
1970) and the weighted sum (with strictly positive weights)
of convex functions is still convex. Therefore, J (x) is con-
vex under the assumptions that specific strain energy of
the structural model is convex and the equilibrium condi-
tion is satisfied (see Achtziger 1997; Stolpe and Svanberg
2001 for proofs in the linear case under single load case).
This proof is valid even when the tangent stiffness matrix
is positive semidefinite, i.e., x ≥ 0 for the design variables

4Both Odgen-based and bilinear materials with the condition
dσ (λ) /dλ ≥ 0 have convex specific strain energy – see Section 3.1
for constraints on the model parameters.

and dσ(λ)/dλ ≥ 0 for the nonlinear structural model (no
requirement on the strict convexity), generalizing the con-
vexity proof of Ramos Jr and Paulino (2015) for positive
definite tangent stiffness matrix.

2.5 Conceptual example: unbounded solution

Figure 4 illustrates the case with unbounded solution
because the structural model cannot carry the load, i.e., the
equilibrium condition cannot be satisfied: T (x, u (x)) �= F,
with the bilinear model 1 (compression is not allowed in
this material). Although the specific strain energy of this
material model is convex, this case results in J (x) → +∞
and leads to unbounded solution (Achtziger 1997), as shown
in Fig. 4c.5 The compression-dominated bilinear model 2
leads to a self-equilibrated structure in Fig. 4d. Note that
the specific strain energy of these material models (Fig. 4a)
is convex (not strictly convex). For the modified formula-
tion (4), the potential energy with these material models
and Tikhonov regularization becomes strictly convex. For
the standard formulation (3), the potential energy with these
material models is convex (not strictly convex).

2.6 KKT conditions

Since we have shown that the modified standard optimiza-
tion formulation in (4) is convex, its KKT conditions are
both necessary and sufficient optimality conditions. To
derive the KKT conditions, the Lagrangian of (4) takes
the following form by introducing a Lagrange multiplier φ

corresponding to the volume constraint:

L (x, φ) = J (x) + φ

(
n∑

i=1

x(i)L(i) − Vmax

)
. (13)

5Notice that the theoretical unbounded solution is represented by a
numerical solution displaying infeasible displacements (i.e., relatively
large values).
6The given random vector xr = [7.78, 7.23, 0.76, 4.30, 0.38, 9.25,
3.80, 5.05, 6.94, 3.99, 6.77, 5.24, 7.74, 3.41, 6.10, 9.73, 5.44, 6.33,
2.32, 5.19]T . In the full-order model, the filtered vector xrf = [7.78,
7.23, 0, 4.30, 0, 9.25, 0, 5.05, 6.94, 3.99, 6.77, 5.24, 7.74, 0, 6.10, 9.73,
5.44, 6.33, 0, 5.19]T . In the reduced-order model, the filtered vector
xrf = [7.78, 7.23, 4.30, 9.25, 5.05, 6.94, 3.99, 6.77, 5.24, 7.74, 6.10,
9.73, 5.44, 6.33, 5.19]T . For related content, see Section 4 (and Fig. 6).
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Fig. 4 Topology optimization: unbounded versus bounded solutions.
a Bilinear material models; b initial ground structure and boundary
conditions; c the tension-dominated “bilinear model 1” leads to an
unbounded solution because the structural model cannot carry the

loads (the equilibrium condition is not satisfied, i.e., T (x, u (x)) �=
F) with this material model; d the compression-dominated “bilinear
model 2” leads to a bounded solution and self-equilibrated structure

If we denote x∗ as the optimal solution of design variables,
and φ∗ as the optimal solution for the Lagrange multiplier,
we have (Christensen and Klarbring 2009),

∂L
∂x(i)

(
x∗, φ∗) ≤ 0, if x(i)∗ = x(i)

max, (14)

∂L
∂x(i)

(
x∗, φ∗) = 0, if 0 < x(i)∗ < x(i)

max, (15)

∂L
∂x(i)

(
x∗, φ∗) ≥ 0, if x(i)∗ = 0, (16)

where the derivative of the Lagrangian is given by

∂L
∂x(i)

(x, φ) = −
m∑

j=1

wjL
(i)Ψ (i)

(
uj (x)

)+ φL(i). (17)

Combining (17) with (14)–(16), we obtain the KKT condi-
tions for the optimal solution (x∗, φ∗) of the optimization
formulation in (4):

m∑

j=1

wjΨ
(i)
(
uj

(
x∗)) ≥ φ∗, if x(i)∗ = x(i)

max, (18)

m∑

j=1

wjΨ
(i)
(
uj

(
x∗)) = φ∗, if 0 < x(i)∗ < x(i)

max, (19)

m∑

j=1

wjΨ
(i)
(
uj

(
x∗)) ≤ φ∗, if x(i)∗ = 0. (20)

From (19), we observe that for those members whose
optimal design variables fall between the upper and lower
bounds (with inactive area constraints), the weighted sums
of the corresponding specific strain energy over m load
cases in the optimal topology are identical, which equal to
φ∗. Moreover, we note that under the single load case, i.e.,
m = 1, (19) implies that the specific strain energy for all

the members with inactive area constraints in the optimal
topology is identical (Khot and Kamat 1985; Ramos Jr and
Paulino 2015), which corresponds to the full stress design
in the linear case (Christensen and Klarbring 2009).

3 Truss model with material nonlinearity

We present the theory in which the structural analysis part
of the paper is based upon. This includes the kinematics,
hyperelastic constitutive models, the potential energy, the
linearization of the nonlinear equations, the Tikhonov reg-
ularization, and the line search. In fact, the use of line
search to solve topology optimization problems governed by
nonlinear state equations is an important aspect of this work.

3.1 Kinematics and constitutive models

To construct the kinematics and constitutive models, we
assume small deformation kinematics and nonlinear consti-
tutive relationships. For a given truss element, its linearized
stretch λ is computed as (Bonet and Wood 2008)

λ = 1 + NT
(
uq − up

)

L
, (21)

where up and uq are the nodal displacement vectors of
nodes p and q of the truss element, N is the member’s
unit directional vector, and L is the length of the ele-
ment. To account for the nonlinear constitutive relation, we
use the energy density function based on Ogden (1984),
which provides flexibility to specify the material behav-
ior and thus has the capability to reproduce a variety
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of hyperelastic models. For the hyperelastic Ogden material,
the strain energy per unit of the undeformed volume is given
as

ΨOG (λ1, λ2, λ3) =
M∑

j=1

γj

βj

(
λ

βj

1 + λ
βj

2 + λ
βj

3 − 3
)

, (22)

where λi, i = 1, 2, 3, denote the principal stretches in three
directions, and M , γj , and βj are material parameters (con-
stants). We assume that the axial stretch of the truss member
is the principal stretch λ1, namely, λ1 = λ, and the stretches
in the other two directions are taken to be λ2 = λ3 = 1,
such that (22) becomes

Ψ̂OG (λ) =
M∑

j=1

γj

βj

(
λβj − 1

)
. (23)

Accordingly, the principal (Cauchy) stress for the Ogden-
based model is obtained as

σOG,1 = ∂ΨOG

∂λ1
and σOG,2 = σOG,3 = 0. (24)

Throughout this work, the energy density function is used
with M = 2; thus, we obtain

σOG (λ) = dΨ̂OG

dλ
(λ) = γ1

(
λβ1−1 − λβ2−1

)
, (25)

with γ2 = −γ1. By taking the derivative of the stress, the
tangent modulus is obtained as follows:

ET (λ)= dσOG

dλ
(λ)=γ1

[
(β1−1) λβ1−2−(β2−1) λβ2−2

]
.

(26)

Notice that, at undeformed state, the tangent modulus
reduces to the Young’s modulus in linear elasticity, namely,

ET (1) = γ1 (β1 − β2) = E0 = � + 2μ, (27)

where � and μ are the usual Lamé constants.
In terms of the convexity of this Ogden-based material

model, if the parameters satisfy the following conditions:
β1 ≥ 1, β2 ≤ 1, β1 �= β2, and γ1 > 0, which results
in ET > 0 (dσOG (λ) /dλ > 0), then the material model
is convex, i.e., Ψ̂OG (λ) is convex for λ > 0. The material
parameters (β1, β2, γ1) are solved using (27) and the relation

σt

σc

= σ t

σ c

, (28)

where

σ t = σt

γ 0
1

=
(
λ

β1−1
t − λ

β2−1
t

)
and σc = σc

γ 0
1

=
(
λβ1−1

c − λβ2−1
c

)
. (29)

Note that σt , σc, E0, λt , λc and γ 0
1 are specified by the

user. Therefore, the stress-stretch relationship of the Ogden
model is obtained as,

σOG (λ) = E0

β1 − β2

(
λβ1−1 − λβ2−1

)
. (30)

By varying the set of parameters (β1, β2), this Ogden-based
model generates a variety of material behavior, as shown in
Fig. 5a.

In this work, we also adopt a bilinear material to
account for constitutive relationships. The bilinear constitu-
tive model has a kink at the origin (see Fig. 5b). To treat
this class of nonsmooth problems, we refer the reader to
Klarbring and Rönnqvist (1995). Within the same context of
the Ogden-based model, the energy density function can be
written as,

ΨBi (λ) =
{ 1

2Et (λ − 1)2 , if λ > 1,
1
2Ec (λ − 1)2 , otherwise,

(31)

where Et and Ec are the Young’s moduli for tension and
compression, respectively. Accordingly, the Cauchy stress
for the bilinear material is then obtained as,

σBi (λ) =
{

Et (λ − 1) , if λ > 1,

Ec (λ − 1) , otherwise.
(32)

Note that this bilinear material model is always convex
as dσBi (λ) /dλ ≥ 0. The term dσBi (λ) /dλ may become
zero, which occurs, for example, when the material that is
unable to carry compression (e.g., cables, Ec = 0), that is
dσBi (λ) /dλ = 0 in the compression range.

3.2 Potential energy

A brief derivation of the equilibrium equations is given here
for the sake of completeness–details of the derivation were
reviewed in Ramos Jr and Paulino (2015). By definition, the
standard total potential energy of the structure is Π (u) =
U (u) + Ω (u). The equilibrium of the structure is enforced
by requiring Π to be stationary; that is,

R (u) = ∂U

∂u
+ ∂Ω

∂u
= T (u) − F = 0, (33)

where T (u) is the internal force vector in terms of the state
variable u, and F is the external force vector. The internal
force vector T (u) is given as,

T (u) =
n∑

i=1

x(i)L(i) ∂Ψ (i)

∂u
. (34)

In the above relation, ∂Ψ (i)/∂u is obtained as

∂Ψ (i)

∂u
= dΨ (i)

dλ(i)

∂λ(i)

∂u
. (35)

Using (21), we obtain

∂λ(i)

∂u
= 1

L(i)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

.

.

−N(i)

.

.

.

N(i)

.

.

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

L(i)
B(i), where B(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

.

.

−N(i)

.

.

.

N(i)

.

.

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (36)
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Fig. 5 Material models: a
Hyperelastic Ogden-based
models with different parameters
(β1, β2); b bilinear material
model with elastic behavior
(different Young’s moduli for
tension and for compression)
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Therefore, the local internal force vector is obtained by
substituting (35) and (36) into (34), which gives

T (u) =
n∑

i=1

x(i)σ (i)B(i). (37)

3.3 Linearization of the nonlinear algebraic equations
(Newton-Raphson method)

In solving the nonlinear system of equations, the resid-
ual force R (u) of (33) can be linearized and rewritten for
iteration k as follows:

R
(
uk+1

)
= R

(
uk
)

+ Kt

(
uk
)

�uk, (38)

where Kt is the global tangent stiffness matrix,

Kt

(
uk
)

= ∂R
∂u

(
uk
)

= ∂T
∂u

(
uk
)

. (39)

The nonlinear structural problem is solved using the
Newton-Raphson method (Wriggers 2008) :

R
(
uk+1

)
= R

(
uk
)

+ Kt

(
uk
)

�uk = 0, (40)

therefore,

Kt

(
uk
)

�uk = −R
(
uk
)

= F − T
(
uk
)

, (41)

and

uk+1 = uk + �uk, (42)

where Kt = ∑n
i=1 K

(i)
t , and K(i)

t is the element tangent stiff-
ness matrix in global coordinates. For a given truss element
i with nodes p and q, the associated internal force vector
t(i) and local tangent stiffness matrix k(i)

t are expressed as
follows:

t(i)
(
u(i)
)

= x(i)σ (i)
(
u(i)
){−N(i)

N(i)

}
, (43)

and

k(i)
t = ∂t(i)

∂u(i)
=
[
kpp kpq

kqp kqq

]
, (44)

where

kpp = kqq = −kpg = −kqp = x(i)

L(i)

dσ (i)

dλ(i)
N(i)

(
N(i)

)T
.

(45)

3.4 Solving the state equations: Tikhonov regularization

To prevent the possibility of a singular tangent stiffness
matrix from forming in the Newton-Raphson method of
the structural nonlinear equations in the proposed scheme,
we introduce a regularization term (Tikhonov and Arsenin
1977; Felippa n.d; Ramos Jr and Paulino 2016; Talischi and
Paulino 2013). The total potential energy accounting for the
Tikhonov regularization term is written as

Πη (u) = U (u) + Ω (u) + η

2
uTu, (46)

where η is a positive Tikhonov regularization parameter. By
taking the derivative of the above equation,

Rη (u) = ∂Πη

∂u
= ∂U

∂u
+ ∂Ω

∂u
+ ηu = T (u) −F+ ηu = 0.

(47)

In the Newton-Raphson method, the residual force Rη (u) of
(47) can be rewritten for the iteration k + 1 as follows:

Rη
(
uk+1

)
= Rη

(
uk + �uk

)
= Rη

(
uk
)

+ ∂Rη
(
uk
)

∂uk
�uk,

(48)

where

∂Rη
(
uk
)

∂uk
= Kt

(
uk
)

+ ηI. (49)

Hence, the linearized equilibrium equation of the nonlinear
system becomes
[
Kt

(
uk
)

+ ηI
]
�uk = F − T

(
uk
)

− ηuk. (50)
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In above equations, the term ηI is the regularization term for
the tangent stiffness matrix. We select the value of η as

η = η0

N
tr
(
Kt,Top

)
, (51)

where typically η0 = 10−8, and Kt,Top is the stiffness matrix
of the filtered structure that will be discussed in the subse-
quent section. Note that the term ηuk on the right-hand side
of (50) can be neglected since η has relatively small value
and we seek to satisfy equilibrium condition, T

(
uk
) = F.

3.5 Inexact line search

In an effort to improve the convergence of the first several
iterations of the nonlinear FEM (the structural configuration
tends to be more flexible than the solution being sought), we
adopt an inexact (Armijo-type) line search strategy (Armijo
1966; Bertsekas 1999; Ascher and Greif 2011) within the
Newton-Raphson procedure, which modifies (42) to

uk+1 = uk + ξk�uk. (52)

A scalar step length ξk is calculated in each itera-
tion, which guarantees a decrease in the potential energy,
Π
(
uk+1

)
. The rationale is to search along uk+ξ�uk to find

ξ = ξk such that

Π
(
uk+1

)
= Π

(
uk + ξk�uk

)
≤ Π

(
uk
)

+τξk∇Π
(
uk
)T

�uk, (53)

where τ is the guard constant, e.g., τ = 10−4. Note that

∇Π
(
uk
) = R

(
uk
)
. If the current step length ξ

k
is unsatis-

factory, the following procedure is used to decrease the step
length. We first calculate a quadratic polynomial and min-
imize the interpolant based on (53), obtaining a scale κ of
the step length for the next potential step length:

κ =− ξ
k∇Π

(
uk
)T

�uk

2
(
Π
(
uk+ξ

k
�uk

)
− Π

(
uk
)− ξ

k∇Π
(
uk
)T

�uk
) ,

(54)

and updating ξk as ξk = κξ
k
. If a relatively small scalar

value, e.g., κ < 0.1, is obtained, we simply use κ =
0.5. Under the assumptions in Section 2.1, the Newton-
Raphson method with this line search method ensures the
convergence to a displacement field that is a stationary point
(Bertsekas 1999) in the potential energy. Furthermore, if the
potential energy is strictly convex with respect to u, which
is the case in our paper with the Tikhonov regularization,
then the stationary point (u) is the unique global minimum.

4 Reduced-order model

This section introduces the fully reduced-order model
(ROM) in nonlinear topology optimization with GSM using
the discrete filter. The ROM is applied to both the nonlin-
ear structural system analysis (the state problem) and the
optimization analysis.

4.1 Reduced-order model in nonlinear structural
system analysis

Utilizing the reduced-order model, after each filtering pro-
cess, we form a reduced-sized structure and a new set of
degrees of freedom (DOFs). The subscript (Top) repre-
sents the new set of variables associated with the filtered
structure. Solving the nonlinear structural problem requires
filtering out the topology from the ground structure based
on the following mapping of variables:

u = QuTop, (55)

where the matrix Q maps the DOFs between the ground
structure and the actual topology after applying the filter.
This matrix is defined based on the nodes connected with
those elements with finite cross-sectional area value (larger
than zero) and the associated new set of DOFs. Based on
this mapping, we establish the associated structural problem
as follows (Ramos Jr and Paulino 2016):

TTop
(
uTop

) = FTop, (56)

(
Kt,Top + ηI

)
�uk

Top = FTop − Tk
Top = Rk

Top, (57)

and

uk+1
Top = uk

Top + �uk
Top, (58)

where Kt,Top, FTop, and Tk
Top are the tangent stiffness, the

external and internal load vectors, respectively, associated
with the actual topology, defined by

Kt,Top = QTKtQ, FTop = QTF, and Tk
Top = QTTk.

(59)

For simplicity, we use notations Tk , Tk
Top, and Rk

Top to

denote T
(
uk
)
, TTop

(
uk

Top

)
, and RTop

(
uk

Top

)
. A mapping

example for the ROM in the nonlinear structural system
analysis is presented in Appendix B. The tangent stiffness
matrix from the formulation in (7) can be singular when
truss members are removed. Therefore, we minimize the
potential energy with the Tikhonov regularization. After
solving for uTop, we use this displacement field to calculate
the sensitivity of the filtered structure. Thus, for the pro-
posed filtering scheme, during and after the optimization
process we check the global equilibrium residual by

||Rk
Top|| ≤ ρ||FTop||, (60)
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where ρ represents the tolerance. We choose the value of ρ

as 10−4 throughout this paper. For the standard GSM, we
check the global equilibrium residual on the structure after
applying the final cut-off, i.e. a posteriori. For the linear
cases with the filter that are used in the examples, we check
the global equilibrium residual using

||KTopuTop − FTop|| ≤ ρ||FTop||. (61)

We remove information about the deleted members,
including the areas, stiffness matrix, from the problem. We
do not simply set areas of the removed members to zero or
store nodes, but instead, remove the information from the
entire problem, as shown in Fig. 6. This reduced number of
truss members significantly influences the size of the global
stiffness matrix. Typically, the formation and inversion of
the stiffness matrix is one of the most time-consuming parts
of nonlinear FEM. To quantify the influence of using the
ROM, we conduct studies in Sections 5.1 and 5.3. As we
will see, the size of the problem significantly decreases as
the iteration proceeds.

The application of the filtering scheme with the ROM in
truss optimization that accounts for material nonlinearity has
the advantage of solving structural problems in the filtered
topology. As a result of the smaller sizes of the tangent stiff-
ness matrices, the use of the ROM incorporated into the pro-
posed scheme significantly improves the performance of the
computations in the iterative Newton-Raphson algorithm.

4.2 Reduced-order model in optimization analysis

To reduce the order of information needed in the sensitiv-
ity analysis and update scheme to achieve fully reduced-
order in the entire optimization process, we further use the
reduced-order model in the optimization analysis, because
we assume that the null area members do not return to the
topology. This situation is automatically considered by the
construction of the optimality criteria (OC) (Groenwold and
Etman 2008), which is the update scheme that we choose.
The size of the information input for the update (i.e., vectors
of sensitivity and design variables) is the same as that used
for solving the nonlinear structural system. Note that the

proposed scheme uses reduced-order information in sensi-
tivity and design variable vectors with the removal of infor-
mation associated with null-area members; this excludes
the sensitivity information of members with zero areas but
non-zero nodal displacement (because according to (9), the
sensitivities of those null-area members are not zero). As a
result, regardless of which update scheme is adopted (the
optimality criteria or the method of moving asymptotes
(MMA) by Svanberg 1987), the removed members will not
return to the topology once they have been removed. There-
fore, although the OC by its construction does not allow the
return of the members, it is sufficient for the reduced-order
model and is adopted in this paper.

However, we note that the return of the bars may be
helpful when a large filter value is used. Application of a
large filter may lead to the removal of many bars, and thus
the resulting structure may not be in equilibrium, or the
objective may increase dramatically (large displacement).
For instance, if some structurally important members are
removed, large displacements may occur. In such cases,
the excluded sensitivity information is potentially useful
for accomplishing the optimization and maintaining equilib-
rium, in which case the MMA could be used, which enables
the return of the bars.

5 Numerical examples

This section illustrates the proposed formulation using
four representative examples. The first example verifies
the methodology in two dimensions; the second example
demonstrates how altering the material constitutive relation
changes the final topology. Then we compare the optimized
structures from the proposed scheme under single and multi-
ple load cases with those from the linear plastic formulation
under single load case. The last two examples, which are
in three dimensions, establish the capability of the proposed
method, including a practical structural design with various
materials. All of the examples, except Example 2, use hyper-
elastic Ogden-based materials under small displacements.
Example 2 uses bilinear material models. The examples are
illustrated by Table 1.

Fig. 6 Evolution of the design
variables during the optimization
process: a full-order model; b
reduced-order model
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Table 1 Numerical examples
Example Dimension Description Feature

1 2D Central load in a simply supported
square domain

Verification

2 2D Long-span bridge design using
bilinear materials

Comparison of elastic and plastic
formulations of the ground struc-
ture

3 3D Central load on the top surface
of a laterally constrained paral-
lelepiped

Influence of load level in the non-
linear response

4 3D Arch bridge Potentially translational design:
from academia to structural engi-
neering practice

For all of the examples, we generate the initial ground
structure and remove overlapped bars (Bensøe and Sigmund
2003). For the generation of three-dimensional (3D) initial
ground structures and the plotting of the 3D final structures,
we employ the software GRAND3 and the collision zone
technique by Zegard and Paulino (2014) and Zegard and
Paulino (2015b). The CPU run-time in this paper reflects
the time spent on the optimization process, not including the
time spent on problem formulation. Both the standard GSM
in (3) with a final cut-off and the proposed filter formulation
in (7) may lead to structures with aligned nodes, i.e., hinges
connecting two collinear members that cause mechanism. In
this work, for the standard formulation after the final cut-off,
we remove aligned nodes (and floating members) by replac-
ing two collinear members with one long member that takes
the larger area from the two, and the resulting objective
value decreases. For the proposed filter, we remove aligned
nodes by replacing the two collinear members with one long
member that takes the same area, and the resulting objec-
tive value stays unchanged. All the data presented in this
paper are obtained after removing aligned nodes. For both
methods, we check the final topologies to ensure that they
are at equilibrium. However, we do not verify the instabil-
ity of the members because the issue of stability is beyond
the scope of this work. All examples have the initial tangent

modulus, E0 = 7×107(= Et for Example 2); the stopping
criteria: tolopt = 10−9; move value: 104x0, where x0 is the
initial guess of the design variables. For the standard GSM,
we apply a cut-off value that defines the final structure at
the end of the optimization process; the cut-off value for
Examples 1 and 3 is 10−2 for the cases that use the standard
GSM. For the cases with the proposed filtering scheme, we
use a relatively small filter, αf = 10−4, in all the exam-
ples during the optimization process, and the filter operation
is performed at every optimization step, i.e., Nf = 1. The
lower and upper bounds for the standard GSM are defined
by xmin = 10−2x0 and xmax = 104x0, respectively. For
the proposed filter algorithm, xmin = 0 and xmax = 104x0

(unbounded in practical terms).

5.1 Example 1: Central load in a simply supported
square domain

The purpose of Example 1 is to verify the present methodol-
ogy with the results obtained from standard GSM using two
hyperelastic Ogden-based material models without the fil-
tering scheme (Ramos Jr and Paulino 2015). We also study
the influence of material models on the resulting structural
topology by comparing the two Ogden-based models with
a linear model. The geometry, load, and support conditions

Fig. 7 Example 1 with a full-
level ground structure (12 × 12
grid) and 6,920 non-overlapped
bars: a Geometry (L = 6m),
load (P = 100kN) and support
conditions; b Ogden-based
material models. Material 1 is
tension dominated, while
Material 2 is compression
dominated (online version in
color)
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(two fixed supports) are shown in Fig. 7a. The initial ground
structure contains 6,920 non-overlapped members and 169
nodes using full-level generation. We use two Ogden-based
material models, illustrated in Fig. 7b. The figure shows
that the tension of Material 1 (β1 = 188, β2 = −68) is
stronger than its compression, and the compression of Material
2 (β1 = 71, β2 = −182) is stronger than its tension. We use a
small filter αf = 10−4 throughout the optimization process.

The filtering scheme yields topologies almost identical
to those obtained using the standard GSM with a final cut-
off for both linear and nonlinear materials, as shown in

Fig. 8, and in the paper by Ramos Jr and Paulino (2015).
This comparison verifies the proposed filtering scheme.
The choice of material models significantly influences the
final topology. Note that each material model results in
a unique topology, and each differs from the linear case.
If a material used in practical design exhibits nonlinear
behavior, an analysis based on a linear material may be
misleading. Various topologies resulting from the use of
several materials show the importance of accounting for
material nonlinearity. In addition, since single load case
is used here, we observe that in every model considering

Fig. 8 Results of the
optimization for Example 1: a
Final topology of the linear
model; b corresponding final
normalized cross-sectional areas
for the truss members of the
linear model; c final topology
and convergence plot for
Ogden-based “Material 1”
(tension-dominated); d
corresponding final normalized
cross-sectional areas for truss
members of Ogden-based
“Material 1”; e final topology
and convergence plot for
Ogden-based “Material 2”
(compression-dominated); f
corresponding final normalized
cross-sectional areas for truss
members of Ogden-based
“Material 2”. The blue bars are
in tension and the red bars are
under compression (online
version in color)
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Table 2 Numerical information for Example 1 (Fig. 7)

Model J (x∗) Ψ (u(x∗)) Max|u| Max λ Min λ # Opt. CPU αf αTop Equilibrium

(kN · m)
(
kN/m2

)
(cm) Steps (sec) Residual

Linear (Filter) 1.096 68.48 2.19 1.0014 0.9986 465 20 10−4 0.3143 1.00×10−13

Mat.1 (Filter) 1.073 65.62 2.12 1.0013 0.9986 353 24 10−4 0.3494 1.10×10−13

Mat.2 (Filter) 1.073 65.67 2.12 1.0014 0.9987 355 24 10−4 0.3485 1.83×10−13

Mat.1 (Standard) 1.085† 67.12 2.15 1.0013 0.9986 428 300 N/A 0.3497 3.34 × 10−8

Mat.2 (Standard) 1.085† 67.18 2.15 1.0014 0.9987 432 302 N/A 0.3487 2.80 × 10−8

†For the standard GSM, we use an end filter with αf = 10 − 2 at the end of the optimization (end filter). This value was obtained considering the
filtered structure solved using Tikhonov regularization. The objective value in the standard GSM for both Materials 1 and 2 before applying the
final cutoff is 1.081

material nonlinearity, the members in the optimized struc-
ture all have the same value of strain energy density, which
corresponds to the full stress design in the linear case,
as discussed in Section 2.6. The final topologies, corre-
sponding convergence plots for the objective function, and
stress-stretch plots are shown in Fig. 8a, c and e. The nor-
malized cross-sectional areas for the truss members in the
final designs are shown in Fig. 8b, d, and f for linear material,
Ogden-based materials 1 and 2, respectively.

Table 2 presents a summary of the data associated with
Example 1, all the data are obtained after removing aligned
nodes. From the CPU run-time comparison, the computa-
tional efficiency using the filtering scheme is greater than
those without the proposed filter, which shows the advan-
tages of using the filtering technique, particularly for a
nonlinear problem. Figure 9 further shows the size reduc-
tion history for optimization using Ogden-based Material 2
with the proposed filtering scheme, the numbers of nodes
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Fig. 9 Size reduction history for optimization using Ogden-based
“Material 2” with the proposed filtering scheme. Numbers of truss
members and nodes are reduced dramatically by the proposed filtering
scheme during the optimization process, which shows the evolution of
the ROM

and truss members at optimization steps 50, 150, 250,
and 355 (final step) are shown together with the corre-
sponding topologies during the optimization process. The
numbers of truss members and nodes in the problem are
reduced dramatically by the use of the proposed filtering
scheme (with ROM) during the optimization process. For
the nonlinear cases, note that the objective values from the
proposed filtering scheme are smaller than those without
the filtering scheme even though both cases generate iden-
tical topologies (for the same material), and from the Max
|u| column (maximum value of the absolute displacement),
the structures from the proposed filter have less maximum
displacement than those with the standard GSM (the maxi-
mum displacement for all cases occurs at the loading point).
When the proposed filter is applied, it takes into account
only the members that appear in the filtered topology at
every optimization step. However, for cases of the standard
GSM, all the small area members in the nonlinear FEM
process are taken into consideration throughout the opti-
mization process; the members with small area, not plotted
in the final topology, still support the load and contribute to
the stiffness and objective function (total potential energy
at the equilibrium configuration) of the structure, and after
applying the cut-off, the resulting objective values increase.
This observation shows that the proposed filtering scheme
addresses the artificial stiffness problem associated with the
standard GSM.

Cauchy stress, σ

Stretch,
σ

σ

λ1

Fig. 10 Stress-stretch diagram for plastic formulation with different
stress limits for tension and for compression
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Fig. 11 Two-dimensional bridge domain with a full-level ground structure (18 × 7 grid) and 7,083 non-overlapped bars: geometry (L = 1m),
load (P = 40kN), and support conditions of a single load case; b multiple load cases

5.2 Example 2: long-span bridge design using bilinear
materials

This example shows the influence of different levels of
tension and compression of the yield stresses in structural
optimization and improvement in the final resolution after
using the filter technique. The optimized structures obtained
by the proposed algorithm with the single load case and
multiple load cases (i.e., the elastic nonlinear formulation
with a filter) are then compared with those obtained by the
plastic linear formulation with the single load case given
in Achtziger (1996). A schematic plot for plastic behavior
is shown in Fig. 10. A bridge is modeled using a two-
dimensional (2D) domain, shown in Fig. 11a for the single
load case and Fig. 11b for the multiple load cases. The
domain is discretized by an 18 × 7 grid, followed by the
generation of a full-level initial ground structure that con-
tains 7,083 non-overlapping members and 152 nodes. For
the multiple load cases, the weighting factor for each load
case is the same, i.e., w1 = w2 = 0.5. To study how an
alteration of the tension and compression yield stresses can
change the final topology, we use various bilinear materi-
als, each has a unique ratio between the compression and
tension Young’s moduli, denoted by Ec/Et . For a linear
material with equal tension and compression stress limits,
elastic and plastic formulations lead to the same optimized
structure up to a rescaling (Hemp 1973; Achtziger 1996). In
the case of materials with different tension and compression
strengths, the two formulations may not lead to the same
solution unless the material properties are defined properly.
To compare the results of the elastic nonlinear and plastic

linear formulations, the relationship between yield stresses
in the plastic formulation and Young’s moduli in the elastic
formulation is as follows (Achtziger 1996),

σc

σt

=
√

Ec

Et

. (62)

The compression-tension ratios Ec/Et that we use here
are 1, 0.09, 0.04, and 0.0225, shown in Fig. 12, where
Et = 7 × 107. In the plastic formulation, the absolute yield
stress for tension is fixed, and the absolute yield stress for
compression varies from 1 to 0.15. We use a small filter
αf = 10−4 throughout the optimization process.

Fig. 12 Bilinear material models. Tension modulus is fixed, and the
compression-tension ratios Ec/Et are 1, 0.09, 0.04, and 0.0225
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Figure 13 shows the final topologies of the long-span
bridge for the four material models considered. While the
top and bottom figures in each sub-figure show the opti-
mized structures from the proposed scheme (i.e., the elastic
nonlinear formulation with the filtering scheme for single
load case and multiple load cases), those in the middle
in each sub-figure show the optimized structures from the
plastic linear formulation for single load case by Achtziger
(1996). An observation of the final topologies using differ-
ent ratios of compression-tension strength reveals that the
optimized structure transforms from an arch bridge to a

suspension bridge. A weaker compression modulus results in
fewer bars under compression and more bars under tension.
As we decrease the ratio, the arch gradually disappears.

Tables 3 and 4 provide summaries of the numerical
information for single load case and multiple load cases
in Example 2, respectively. All the data are obtained after
removing aligned nodes. Since the tension is fixed and
the compression properties vary, a comparison of the final
objective values of the different material models indicates
the stiffness of each structure differs. When the tension
and compression moduli are balanced (Material 1), the final

Fig. 13 Optimized structures for a “Material 1” with Ec/Et = 1 and
σc/σt = 1; b “Material 2” with Ec/Et = 0.09 and σc/σt = 0.3; c
“Material 3” with Ec/Et = 0.04 and σc/σt = 0.2; d “Material 4” with

Ec/Et = 0.0225 and σc/σt = 0.15. The blue bars are in tension and
the red bars are under compression. The brown bars represent results
from multiple load cases (online version in color)
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Table 3 Numerical information for the long-span bridge (Example 2) considering the elastic formulation with the proposed filter under single
load case

Et/Ec J (x∗) Ψ (u (x∗)) Max|u| Max λ Min λ # Opt. CPU αf αTop
||RTop||
||FTop|| #Top.

(kN · m)
(
kN/m2

)
(cm) Steps (sec) Elem.

1 1.92 38.4 1.43 1.0010 0.9990 2,284 49 10−4 0.0165 2.34×10−13 50

0.09 12.25 245.0 8.98 1.0026 0.9912 950 23 0.000382 4.09×10−13 58

0.04 21.96 439.3 18.05 1.0035 0.9823 585 17 0.00657 1.21×10−13 41

0.0225 29.57 591.4 25.85 1.0041 0.9726 272 12 0.0265 1.21×10−13 30

topologies (Fig. 13a) for both the single and multiple load
cases have the smallest objective values among all mate-
rials, which suggest that those structures have the greatest
stiffnesses for this design problem. We confirm this obser-
vation by comparing the maximum displacement and strain
energy density of all the materials, the topology of Material
1 exhibits the smallest deflection and strain energy density.
In contrast, the topology using Material 4 (i.e., Fig. 13d),
which has the weakest compressive strength, exhibits the
most flexible optimal structures for both single and multiple
load cases. Since tension is preferable, the distributed loads
must be supported by truss members under tension, forming
a suspension bridge in which compression does not appear
in the topology except in the supporting two columns.
Nevertheless, optimization using Material 4 requires the
least amount of computational time. Therefore, the differ-
ent tension and compression strengths of truss members
significantly influence the optimization of a structure.

We further compare the optimized structures from the
proposed algorithm (i.e., the elastic nonlinear formulation
with a filter) under single load case with those from the
plastic linear formulation under single load case used by
Achtziger (1996). The comparison shows that the two for-
mulations lead to similar optimal structures for each mate-
rial and that the proposed filtering scheme improves the
resolution of the final topologies and eliminates some of
the small area members from the final topology, shown
in Fig. 13a, c and d. Comparison between the single and
multiple load cases shows that the designs accounting for
multiple load cases provide alternative structures, showing

the capability of the elastic formulation in accounting for
multiple load cases as oppose to the plastic formulation.

5.3 Example 3: top central load on a laterally
constrained parallelepiped domain

In this example, we first show the influence of the load level
on the resulting topology when both linear and nonlinear
materials are taken into account, followed by the demonstra-
tion of the computational capability of the proposed method
on models with varying number of design variables. We use
a small filter αf = 10−4 throughout the optimization pro-
cess, followed by a larger filter αf = 10−2 in the final
step of the optimization to control the resolution of the
final topology. After the last filter, we ensure equilibrium
of the final structure by checking the global equilibrium.
The comparison of different load levels utilizes a coarse
discretization with an Ogden-based material and has three
imposed load levels (5 kN, 20 kN, and 100 kN). This com-
parison also includes a linear material with one imposed
load level (5 kN) since the linear case is independent of the
load level. We use a 14 × 14 × 5 grid for the coarse dis-
cretization and generate a level 5 initial ground structure
containing 279,653 non-overlapped members. The geome-
try, the load, and support conditions are shown in Fig. 14a,
and the Ogden-based material model with greater strength
in tension is shown in Fig. 14b.

Figure 15 shows the optimized topologies for the nonlin-
ear material under three load levels: P = 5 kN, P = 20 kN,
and P = 100 kN. Note that Fig. 15a also represents the

Table 4 Numerical information for the long-span bridge (Example 2) considering the elastic formulation with the proposed filter under multiple
load cases

Et/Ec J (x∗)
∑2

j=1 wjΨ
(
uj (x∗)

)
# Opt. CPU αf αTop

||RTop||
||FTop|| # Top.

(kN · m)
(
kN/m2

)
Steps (sec) Elem.

1 5.40 108.1 6399 216 10−4 0.00111 9.98×10−14 117

0.09 31.28 625.6 2891 116 0.000198 1.08×10−13 94

0.04 56.60 1132.0 1193 66 0.000207 1.18×10−13 96

0.0225 75.77 1515.4 224 32 0.00532 2.26×10−13 52
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Fig. 14 A laterally constrained
rectangular domain with single
load case. a Problem domain
(L = 1m), load, and boundary
conditions; b Ogden material
model (tension-dominated)
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Fig. 15 Final topologies by imposing different load levels in the pro-
posed filtering scheme with a level 5 ground structure (14 × 14 × 5
grid) and 279,653 non-overlapped bars using a Ogden-based material
and linear material, each carrying a 5 kN load (these two materials
under 5 kN load lead to the same topology); b Ogden-based material
carrying a 20kN load; and c Ogden-based material carrying a 100 kN
load (online version in color)

and displacement values are due to the minor nonlinear-
ity that exists at this load level in the nonlinear material
case. As the load level increases, the topology of the linear
model does not change; the corresponding topologies of the
nonlinear cases, however, change dramatically. As a conse-
quence of the relatively stiffer tension strength of the chosen
material model, a higher load leads to a relatively larger
stretch, which results in more truss members under tension
than at the lower load levels. This observation shows the
importance of accounting for material nonlinearity. In addi-
tion, to demonstrate the influence of the line search method,
which is described in Section 3.5, we solve the nonlinear
model of P = 100kN by the Newton-Raphson method with
and without the line search method. The nonlinear FEM
iterations for first, second, and final optimization steps are
shown in Table 5. In the initial optimization step, while the
case without the line search method fails to converge, the
case with the line search converges within 11 FEM itera-
tions. As a result, the Newton-Raphson method with line
search reaches the optimal solution. Table 6 presents a sum-
mary of the numerical information for the comparison of
different load levels with Max |u| confirming the small dis-
placement assumption used in this work, all the data are
obtained after removing aligned nodes.

Furthermore, we demonstrate the potential of the fil-
tering scheme in dealing with problems with a relatively
large number of design variables by comparing the com-
putational efficiency of the proposed filtering scheme with
that of the standard GSM without the proposed filter. For a
fair comparison, both approaches (filter and standard GSM)
use the same Ogden-based material (Fig. 14b), initial grid
(18 × 18 × 6), connectivity level (level 7), and load level
(P = 1, 000KN), leading to the same initial ground struc-
tures with 1,062,090 non-overlapped members and 2,527
nodes. The final topologies for both cases are shown in
Fig. 16, and their associated numerical data are recorded
in Tables 7 and 8. Using the standard GSM, since numer-
ous small area bars are not plotted on the final topology
while still supporting the structure, after the final cut-off,
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Table 5 Influence of the line
search method for the case
P = 100kN (Example 3)

Newton-Raphson with line search Newton-Raphson without line search

Opt. step FEM iter. Step length, ξ
||RTop||
||FTop|| Opt. step FEM iter.

||RTop||
||FTop||

1 1 0.0313 7.408 ×10−1 Fails to converge

2 0.250 1.277

3 1.000 9.015

4 1.000 3.323

5 1.000 1.206
.
.
.

.

.

.
.
.
.

12 1.000 1.095 × 10−9

2 1 1.000 2.778 ×101

2 1.000 1.000 ×101

.

.

.
.
.
.

.

.

.

9 1.000 1.378 ×10−9

522 (Final) 1 1.000 2.800 ×10−5

2 1.000 5.023 ×10−9

Table 6 Numerical information for Example 3 (Fig. 14) - influence of the load level considering material nonlinearity. We use αf = 10−4 during
the optimization process followed by an end filter with αf = 10−2

J (x∗) Ψ (u(x∗)) Max|u| Max λ Min λ # Opt. CPU αTop Equilibrium #Top.

(kN · m)
(
kN/m2

)
(cm) Steps (sec) Residual Elem.

Linear
5kN

0.00724 0.59 0.29 1.0000∗∗ 0.9999 3,005 85 1.00 1.64×10−8 24

NonL
5kN

0.00759 0.40 0.31 1.0000∗∗ 0.9999 3,005 800 1.00 3.55×10−9 24

NonL
20kN

0.0968 4.87 0.97 1.0004 0.9996 707 634 0.143 8.10×10−10 48

NonL
100kN

1.856 64.42 3.15 1.0010 0.9984 522 582 0.0108 1.42×10−9 132

**The exact maximum stretch value for both linear (P = 5kN) and nonlinear (P = 5kN) cases is 1.000023

a

1000kN

b

1000kN

Fig. 16 Results of the optimization for the comparison of the filter-
ing scheme with the standard GSM using a level 7 ground structure
(18 × 18 × 6 grid) and 1,062,090 non-overlapped members at a
1,000 kN load level: a The final topology obtained from the proposed

filtering scheme (αf = 10−4), CPU time 54 minutes; and b the
final topology (almost identical to the previous one) obtained from the
standard GSM, CPU time 40.3 hours



Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme 2065

Table 7 Numerical information for Example 3 (Fig. 14) - comparison of filter with standard GSM. For both the filter approach and the standard
GSM, we use an end filter with αf = 10−2 at the end of the optimization (end filter)

J (x∗)
(kN · m)

Ψ (u(x∗))(
kN/m2

) Max|u|
(cm)

Max λ Min λ # Opt.
Steps

CPU αf αTop
||RTop||
||FTop|| #Top.

Elem.

NonL
1000 kN
(Filter)

63.53 998 8.41 1.0024 0.9947 962 54 mins 10−4 0.0109 1.30×10−13 425

NonL
1000 kN
(Standard)

63.74† 1,001 8.43 1.0024 0.9948 1,050 40.3 hours N/A 0.0101 3.51×10−12 417††

†This value was obtained considering the filtered structure solved using Tikhonov regularization. The objective value in the standard GSM before
applying the final cutoff (end filter) is 63.72
††The number of truss elements in the standard GSM during the entire optimization process is 1,062,090

we observe a larger maximum displacement and a larger
objective value.

The proposed filter approach, while offering a nearly
identical topology and objective value as the standard GSM,
drastically reduces the computational cost. The CPU time
used in the optimization process is almost 45 times as fast
(54 minutes vs. 40.3 hours), as shown in Table 7, all the data
are obtained after removing aligned nodes. As explained
previously, the use of the proposed filtering scheme with
the ROM reduces the sizes of design variables, the stiffness
matrices, and the sensitivity vectors, which significantly
decrease the CPU time and memory usage; the standard
GSM maintains a constant size during the entire optimiza-
tion process. To quantify the influence of using the proposed
filtering scheme with the reduced-order model on the non-
linear optimization problem, we measure the sizes of the
DOFs and design variables at optimization step 1 (initial
step), 10, 100, and 962 (final step) during the optimiza-
tion process for the case with 1000kN load level with the
proposed scheme (Fig. 16a). The size reduction history,
recorded in Table 8, shows that after performing only 10
steps in the optimization process (962 steps in total), the size
of the design variables reduces to nearly 1 % of its original size.

5.4 Example 4: arch bridge

To illustrate the influence that nonlinear materials may
have on actual structures, we use a 3D bridge design with
three Ogden-based materials. The bridge domain in Fig. 17a
and b has simple supports, a non-designable layer that
represents the bridge deck, and a void zone for practical
design purposes (Zegard and Paulino 2015b). In an effort

to obtain constructible structures, we use a 10 × 6 × 10
grid to discretize the domain followed by the generation
of a full-level initial ground structure that contains 231,567
non-overlapping members. To represent the effect of the
bridge deck, we use a layer of beam elements excluded
from the optimization process but included in the non-
linear FEM analysis. To study how any alteration in the
material behavior changes the optimized structure, we use
three Ogden-based materials, shown in Fig. 17c. Material 1
(β1 = 1, 850, β2 = −695) has higher tensile strength than
compressive strength, Material 2 (β1 = 723, β2 = −720)
has the similar tension and compression, and Material 3
(β1 = 698, β2 = −1, 845) is relatively stronger in compres-
sion than tension. It should be noted that, in addition to a
small filter (αf = 10−4) used in the entire optimization, we
use a larger filter (αf = 10−2) in the final step of the opti-
mization to control the resolution of the final topology. We
ensure the equilibrium of the final structure with the global
equilibrium check. Figure 18 shows the optimized structures
obtained using the three materials. A detailed summary of

Table 8 Size reduction history for the proposed filter with reduced-
order modeling (NonL, 1000kN & Filter)

Opt. step DOFs Design variables

Size % of initial size Size % of initial size

# 1 (initial) 7,581 100 % 1,062,090 100 %

# 10 2,457 32.4 % 13,850 1.3 %

# 100 645 8.5 % 1,094 0.1 %

# 962 (final) 303 4 % 437 0.04 %
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Fig. 17 Three-dimensional bridge design with a level full ground
structure (10 × 6 × 10 grid) and 231,567 non-overlapped members.
a Design domain (L = 10m) with load and boundary conditions;
b design domain with void zone; c Ogden-based material models:

“Material 1” has high tensile strength, “Material 2” has a close-to-
linear constitutive relationship, and “Material 3” has high compressive
strength (online version in color)

the numerical results is provided in Table 9, and all the data
are obtained after removing aligned nodes.

The various topologies obtained from using the three
materials show the importance of accounting for material
nonlinearity. As shown from both Fig. 18 and Table 9, while
having only a minor effect on the computational cost of
the optimization problem, the choice of material models
markedly influences the optimized structures. Optimization
using Material 2 with similar compressive and tensional
behaviors yields a final topology that resembles an arched

bridge, with a significantly larger volume of compression
members than of tension members, indicating that the struc-
ture requires more compression members because of the
nature of the design problem. When Material 1 (with a
stronger tension behavior) is used for the design, the overall
topology features are similar to those obtained with Material
2, but the final topology contains fewer long compression
bars, especially those with small areas in the arch region
(because long and thin compression bars result in a large
internal energy and, therefore, a large objective), which

Table 9 Numerical information for Example 4 with the proposed reduced-order model. We use αf = 10−4 during optimization process followed
by an end filter with αf = 10−2

Material J (x∗)
(kN · m)

Ψ (u(x∗))(
kN/m2

) Max|u|
(m)

Max λ Min λ Tension Vol. Compr. Vol. CPU (sec) αTop
||RTop||
||FTop||

1 370.6 3,934 1.15 1.0030 0.9926 19.8 % 80.2 % 771 0.0474 1.86 × 10−13

2 394.2 4,742 1.20 1.0066 0.9935 30.4 % 69.6 % 643 0.0115 6.74 × 10−14

3 259.9 2,773 0.72 1.0074 0.9972 41.0 % 59.0 % 637 0.121 1.06 × 10−13
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Fig. 18 Final topologies from
the proposed filtering scheme
using: a “Material 1”; b
“Material 2”; and c “Material
3”. Blue represents bars in
tension and red represents bars
in compression (online version
in color)

top view3D view side view 1

side view 2

top view3D view side view 1

side view 2

top view3D view side view 1

side view 2

a

c

b

leads to a clearer topology. We also notice that the total
volume of the compression members for Material 1, com-
pared to the one obtained for Material 2, increases and the
objective value decreases.

When we use Material 3, with stronger compressive
behavior, the final topology shows patterns that differ from
those obtained for both Materials 1 and 2, especially in the
arch region. The fan area of the arch contains fewer tension
members with larger cross-sectional areas that are all con-
nected by long compression members. Indeed, Material 3
exhibits the clearest final topology, as shown by αTop val-
ues. Moreover, as a result of the relatively weaker tension
behavior, the total volume of the tension bars increases. The
objective value is the smallest of the three cases because,
as mentioned previously, the structure requires compression
members in this problem. A comparison of the heights of
the three optimized structures in Fig. 19 shows that higher
tensile strength in a material leads to a higher arch in the
optimized design. As the tensile strength of the material
decreases and compressive strength increases, the height
of the arch gradually decreases. The design with Material
3 has the lowest height 5.2L. The observed differences in
the final topologies associated with the three materials with

various constitutive relationships demonstrate the impor-
tance of accounting for nonlinearity in material models in
the practical design optimizations of 3D structures. This
example shows that the proposed filtering scheme, which
combines the practical demands of material behavior and
manufacturing, is a functional design tool. The optimized
bridge design with Material 3 (Fig. 18c) is further manufac-
tured by the 3D printing technique using a fused deposition
modeling (FDM) process, as shown in Fig. 20. This bridge
model is directly manufactured without post-processing of
the numerical result.

7.2L
6.2L
5.2L

0

10L

Fig. 19 Comparison of bridge heights for optimized structures using
three material models
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Fig. 20 3D printed model of the optimized bridge design with “Material 3” in Example 4 using a FDM process. The dimension of the
manufactured model is 11.5 in × 3.5 in × 3 in

6 Concluding remarks and extensions

This paper proposes an efficient reduced-order discrete fil-
ter that can be applied to truss optimization considering
single and multiple load cases, and nonlinear constitutive
behavior. The proposed scheme utilizes reduced-order mod-
eling on both the state and optimization problems. It exam-
ines two types of materials: hyperelastic Ogden-based and
bilinear materials, both of which offer alternative options
for material behavior. Using a Tikhonov regularization, we
solve the singular state equations in the modified standard
formulation with design variable x ≥ 0 (see (4)). This mod-
ification on the lower bound of design variables transforms
the sizing problem (standard formulation) into a topology
optimization problem (modified standard formulation). We
prove the convexity of the modified standard formulation
(4) under the assumptions of convex energy density function
and equilibrium satisfaction. This proof is valid even when
the tangent stiffness matrix is positive semidefinite. Further-
more, as shown by the KKT conditions (see Section 2.6),
our formulation leads to constant weighted sum of spe-
cific strain energy under m load cases for those members
whose optimal design variables are in the optimum range
0 < x(i)∗ < x

(i)
max (see (19)). An inexact (Armijo-type) line

search is adopted in the Newton-Raphson method, which is
shown to improve convergence in the first few FEM itera-
tions of the nonlinear structural problem. The line search is
essential for convergence.

Based on the present investigation and outcome of the
examples, we conclude that the discrete filter with mate-
rial nonlinearity is a practical tool that accounts for real-life
demands of materials, layout, and manufacturing. While
traditional topology optimization typically assumes linear
material behavior, which may be limiting; we examine
material nonlinearity in the optimization that takes into
account the effect of proper load levels. Through several
examples, we observe the difference in topologies resulting

from changes in the material models and load levels, which
shows the importance of accounting for nonlinear mate-
rial behavior in practical design optimization of 2D and 3D
structures. In addition, while the optimized structures under
single load case obtained from the proposed algorithm (elas-
tic nonlinear formulation with filter) and those from the
plastic linear formulation are similar, the designs account-
ing for multiple load cases provide alternative structures,
illustrating the capabilities of the elastic formulation in
accounting for multiple load cases and nonlinear behavior.

With the proposed filtering scheme, we solve structural
problems solely from information about truss members
remaining in the structure. In addition, through comparison
with the standard GSM, we conclude that while includ-
ing the small area members that are below the cut-off (i.e.,
standard GSM) to solve nonlinear structural problems may
result in artificial stiffness and convergence difficulties,
excluding them with the Tikhonov regularization technique
(with or without the filtering scheme) provides better con-
trol in the condition number of the tangent stiffness matrix.
Moreover, because we can use the proposed filter to control
the final resolution of the optimized structure, the results
may be manufactured without post-processing (see Fig. 20).

The use of the (fully) reduced-order modeling in the
proposed filtering scheme significantly reduces the size of
both the structural and optimization problems within a few
optimization steps, leading to drastically improved compu-
tational performance. Through one study conducted in this
paper (see Section 5.3), the proposed filter algorithm, while
offering almost the same optimized structure, was 45 times
faster than the standard GSM for nonlinear optimization
problems.

The proposed regularization technique to solve nonlinear
problems can be combined with other types of filters, for
instance, only applying an end filter at the end of the opti-
mization process, or applying the filter at different intervals,
i.e., Nf ≥ 1, instead of applying at every optimization
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step. This work provides several directions for future
research, including applying the proposed filtering scheme
to multi-material optimization and additive manufacturing
(Zegard and Paulino 2015a), optimization accounting for
geometric nonlinearity, and combining this technique (the
filtering scheme with discrete optimization) with the contin-
uum optimization (density-based) method.
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Appendix A: filter function

Appendix B: Mapping for the state equations
using the proposed filtering scheme
with reduced-order modeling

Based on the equations outlined in Section 4.1, this
section illustrates the mapping of the external and internal

force vectors and the tangent stiffness matrix from the
ground structure to the topology through a simple example.
Figure 21a shows the ground structure with numbered DOFs
under the prescribed load and boundary conditions. During
the optimization process, once the members are removed by
the filter, area of members become zero , (e.g., the dashed
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members in Fig. 21b), we can define the topology and new
numbered DOFs by excluding those zero-area members, as
shown in Fig. 21c.

For the ground structure, the external force vector are
given by,

{F = 0 0 − P 0 0 }T . (63)

The internal force vector and tangent stiffness matrix are
obtained by assembling the contributions from each element,

T =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t
(1)
1 + t

(2)
1

t
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2 + t
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2

t
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3 + t

(3)
3 + t

(5)
3

t
(4)
4 + t

(5)
4

t
(4)
5 + t

(5)
5

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (64)

Fig. 21 Mapping of the state
equations from the ground
structure to the topology with
the proposed filtering scheme: a
Initial ground structure, DOFs,
load and boundary conditions; b
ground structure and DOFs after
the filtering process at iteration
k (dashed lines correspond to
bars with zero cross-sectional
area); c corresponding topology
and DOFs after filtering process
at iteration k
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We can define a transformation matrix Q to represent the
transformation of the topology displacements to the ground
structural displacements (i.e., u = QuTop),

Q =
⎡

⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤

⎦
T

. (66)

With the transformation matrix, the external force vector for
the reduced-order topology is given by

FTop = QTF = {
0 0 − P

}T
. (67)

Similarly, the internal force vector and tangent stiffness
matrix for the reduced-order topology can be obtained as
follows:

TTop = QTT =

⎧
⎪⎨
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t
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t
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(69)

Upon realizing that member 5 is a zero-area member, all the
components of its internal force vector and tangent stiffness
matrix are zero. As s result, we obtain the final expression
for the internal force vector and tangent stiffness matrix for
the reduced-order topology as

TTop =

⎧
⎪⎨
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t
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1 + t
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1

t
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Appendix C: Nomenclature

αTop Resolution of the structural topology
αf Filter value
ξk Step length at iteration k in the line search

scheme
η, η0 Tikhonov regularization parameters
γi , βi Ogden material parameters
κ Scale parameter of the step length in line

search
λ Linearized stretch
�, μ Lamé constants
λi Principal stretches
Ω Potential energy of external loads
Π Total potential energy
Ψ Strain energy density function
ΨBi Bilinear strain energy density function
ΨOG Ogden strain energy density function
ρ Global equilibrium tolerance in nonlinear FEM
σc Reference Cauchy stress in compression
σij Components of the Cauchy stress tensor
σt Reference Cauchy stress in tension
τ Guard constant in the line search scheme
B(i) Unit directional vector in global coordinates of

member i

F External force vector
FTop External force vector in the structural topology

defined by the filter
Kt Global tangent stiffness matrix
K(i)

t Tangent stiffness matrix for member i in global
coordinates

k(i)
t Tangent stiffness matrix for member i in local

coordinates
Kt,Top Global tangent stiffness matrix for structural

topology defined by filter
L Truss member length vector
R Residual force vector
T Internal force vector
t(i) Internal force vector in local coordinates for

member i

u Displacement vector
u(i) Displacement vector for member i

uj Equilibrating displacement vector for load case
Fj

uTop Displacement vector in structural topology
defined by the filter

up, uq Displacements of nodes p and q

xf Filtered subset of the design variables
d Number of dimensions
E0 Initial tangent modulus (Young’s modulus)

ET Tangent modulus
g Volume constraint
J Objective function
L(i) Length of truss member i

M Ogden material parameter
m Number of load cases
N Number of degrees of freedom
n Number of truss members
N(i) Unit directional vector for member i

Nf Specified frequency of applying the discrete filter
tol Tolerance value
U Internal energy
Uc Complementary energy at the equilibrium con-

figuration
V (i) Volume of member i

Vmax Prescribed maximum volume
x(i) Cross-sectional area of member i (ith design

variable)
x

(i)
f Filtered cross-sectional area of member i

x
(i)
min, x

(i)
max Lower and upper bounds for the cross-

sectional area of member i
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