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A B S T R A C T

Large facial bone loss usually requires patient-specific bone implants to restore the structural integrity and
functionality that also affects the appearance of each patient. Titanium alloys (e.g., Ti-6Al-4V) are typically used
in the interfacial porous coatings between the implant and the surrounding bone to promote stability. There exists
a property mismatch between the two that in general leads to complications such as stress-shielding. This
biomechanical discrepancy is a hurdle in the design of bone replacements. To alleviate the mismatch, the internal
structure of the bone replacements should match that of the bone. Topology optimization has proven to be a good
technique for designing bone replacements. However, the complex internal structure of the bone is difficult to
mimic using conventional topology optimization methods without additional restrictions. In this work, the
complex bone internal structure is recovered using a perimeter control based topology optimization approach. By
restricting the solution space by means of the perimeter, the intricate design complexity of bones can be achieved.
Three different bone regions with well-known physiological loadings are selected to illustrate the method.
Additionally, we found that the target perimeter value and the pattern of the initial distribution play a vital role in
obtaining the natural curvatures in the bone internal structures as well as avoiding excessive island patterns.
1. Introduction

The internal architecture of bone is complex and remodels continu-
ously. The stress trajectories and material distribution in human bone
have been studied extensively. Also, a lot of efforts have been invested in
understanding the evolution of the internal architecture of bone and their
physiological loading [1,2]. Under the assumption that it achieves
maximum mechanical stiffness with minimum mass, bone is considered
to be structurally optimized where it adapts to long-term loading by
controlling its density and internal structure [3–5]. Lanyon and Rubin [6]
further reported that bone showed apposition only when dynamically
loaded. Living bone continuously remodels itself by growth, reinforce-
ment, and resorption. This complex multiphysics phenomenon has been
broadly studied since the pioneering works in the 1960s. Among the
earlier works, Cowin and Hegedus [7] proposed the use of a thermo-
mechanical model that considers chemical reaction with a mass transfer
within two constituents to model the bone remodeling. The model
described therein predicts strain stimulated remodeling process that
takes place in porous elastic solids. Authors found the bone remodeling
prediction qualitatively agrees with the clinical observation of bone
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remodeling features. Carter et al. [8] suggested proportional relations
between bone strength, modulus and the strain rate which can be used to
predict bone tissue strength and stiffness through compression test of
human and bovine trabecular bone specimens. Their work led to a
mathematical (self-optimizing) theory that relates bone density, orien-
tation, and stress [9]. Huiskes et al. [10] assumed Strain Energy Density
(SED) as the stimulus for bone growth and proposed adaptive bone
remodeling theory for prosthetic design. Beaupre et al. [11,12] handled
both the internal and external remodeling simultaneously as
time-dependent surface-mediated phenomena followed by energy effec-
tive stress stimulus from load history. Weinans et al. [3] combined this
time-dependent remodeling rule with per element (apparent SED based)
stimulus in Finite Element Analysis (FEA) to investigate the stability and
convergence behavior in proximal femur which disclosed good
morphological similarity to reality. Many of the aforementioned works
model the bone remodeling as a combination of the mechanical and
biological process with various assumptions on mechanical stimulus.

Recent advances in high-performance computing and additive
manufacturing have also made it possible to create patient-specific
biomedical implants replacing bones. Typically, porous coatings are
018
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Fig. 1. Cantilever problem, (a) design domain (2:1
aspect ratio discretized by 100� 50 Q4 elements)
and boundary condition, (b) result from regular
compliance minimization without perimeter
constraint, (c) active perimeter constraint
(Pmin¼ 830).

Fig. 2. Maximum perimeter value, Pmax , is progres-
sively reduced in the Cantilever problem. (a)
Pmax ¼ 800, (b) 750, (c) 700, (d) 500, (e) 300.
Following number, P in the figure, represents the
achieved perimeter.

Fig. 3. Minimum perimeter value progressively
increased in the Cantilever problem. (a) Minimum
perimeter 900, (b) 950, (c) 1000, (d) 1500, (e) 2000.
Following number, P in the figure, represents the
achieved perimeter.
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used at the interface of these implants and the surrounding bone to in-
crease the stability of the implants and the bone tissue in-growth. Tita-
nium alloys (e.g., Ti-6Al-4V) have been used to fulfill the requirements of
low stiffness, high strength, and good corrosion and fatigue resistance
[13]. Nevertheless, these implants exhibit a mechanical property
mismatch with surrounding bone tissue leading to stress-shielding [14].
This results in unfavorable stress, irregular bone healing, and undesired
bone remodeling. The biomechanical mismatch can also vary within
patients, locations, and dimensions [15,16]. To address the stiffness
imbalance in the case of the traditional solid cage, various pillar struc-
tures were designed and tested in intervertebral cages [17]. Also, the
improvement of the regular Ti-6Al-4V bone scaffolds was proposed
employing analytic solutions for particular beam networks that consist of
the scaffold geometries [18]. To create the next generation of implants,
understanding and mimicking the bone internal structure through a
design methodology is of immense importance for the design of the
implant and the subsequent remodeling. In this regard, current work
attempts to bridge a numerical optimization technique with the design of
implants which has trabeculae-like internal structure.

Topology optimization formulated for compliance minimization can
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be a good candidate in serving as the essential tool to study bone internal
architecture. Topology optimization provides the optimized material
layout within a given computational design domain for prescribed
boundary conditions so that the resulting material arrangement satisfies
a set of required performance goals. The basic concept of the popular
density based method is to represent the geometry as a rasterized image
where the color of each pixel corresponds to the value of a physical
parameter [19]. The method iteratively updates the material field based
on the performance of the current design and sensitivity information of
each parameter. Unlike traditional structural optimization methods, to-
pology optimized structures can be massively different compared to the
initial geometry and do not require any geometric feature a priori. This
makes topology optimization suitable for early design stages by giving
insightful ideas to the designer and providing a wide variety of design
options for distinct problems across different scales [19–22]. Topology
optimization has proven as a powerful design tool in aerospace engi-
neering [23], and other industrial design applications [24–26], among
others.

Topology optimization has been used to predict bone density distri-
bution and to obtain rough estimates of the bone internal structure. Rossi



Fig. 4. Cantilever problem is optimized with a
perimeter constraint value of 2000. Regular patterns
in initial density distribution are used. (a). Checker-
board, (b). Regular square pattern, (c). Regular cir-
cular pattern. Numbers represent the perimeter.
Checkerboard patterns and density islanding are
visible in the results.

Fig. 5. Random circles (left) are used in the initial density distribution for the
cantilever beam problem. With perimeter target of 2000, the topology on the
right is obtained. Pattern preservation or density islanding is significantly
reduced in the result.
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and Wendling-Mansuy [27] used a laminated anisotropic microstructure
to propose a bone adaptation model. Xinghua et al. [28] used topology
optimization to simulate the external shape and internal density distri-
bution of human femur and vertebrae. In the field of bone remodeling,
the trabecular adaptation was studied in Refs. [29–31] using a design
space optimization. An iterative remodeling scheme has been proposed
in Ref. [32] with a remodeling rate equation that maximizes the struc-
tural stiffness (minimizing the total bone strain energy) in each time step
for a time-dependent loading in the human proximal femur.

Fibrous trabecular architecture can be obtained by introducing a re-
striction on the perimeter in the topology optimization formulation.
Perimeter control originally emerged in topology optimization to miti-
gate the numerical instabilities by limiting the maximum perimeter [33].
A minimum value of the perimeter can be prescribed to attain structures
with thin members resulting in increased perimeter value in the design
suitable for capturing bone trabecular architecture. In general, additional
design constraints directly affect the design update by slowing the
convergence rate and possibly directing the solution to undesired local
minima. In this work, we attempt to accelerate the convergence by
Fig. 6. Convergence plots of compliance, volume fraction, and perimeter valu
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employing various patterned structures as initial designs. The results
from numerous biomedical examples indicate this approach achieves the
necessary geometric complexity in a controlled manner. We believe that
current work can bring positive impact on not only the performance of
current bone implants but also design problems that involve geometri-
cally complex structures.

The rest of the article is organized as follows: Section 2 discusses the
general topology optimization, and the method used to treat perimeter
control constraint. Section 3 shows the numerical implementation of the
formulation along with interesting findings on initial density distribu-
tion. The section also showcases various biomedical examples including
femur, calcaneus, and midface. Section 4 summarizes the study and its
overall contributions.

2. Methods

In this section, the approach employed in this work to obtain natural
looking bone internal structure designs is shown. First, the conventional
topology optimization for compliance minimization under a volume
fraction constraint is discussed. The problem is cast as a material distri-
bution problem in topology optimization. The perimeter constraint that
allows the user to control the sum of the length of inner and outer
boundaries is also explained. By combining these two ideas, we seek to
acquire the optimized structure with controlled topological complexity.
2.1. Topology optimization for minimum compliance

Topology optimization is a branch of structural optimization which
originated from Ref. [34]. This method iteratively distributes materials
available in a design domain to give an optimized structure for an
objective function. A typical topology optimization algorithm combines
two distinct modules; one for analysis and the other for optimization. In
e for cantilever beam problem with random circular patterns are shown.



Fig. 7. Numerical representation of three common daily loadings on the proximal femur is shown.
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each iteration, the design is updated based on the structural performance
obtained from the finite element analysis. A common topology optimi-
zation formulation is the compliance minimization. In this setting, the
resulting structure evolves to have the maximum possible stiffness under
certain constraints (e.g., a volume fraction constraint) for given loads and
boundary conditions. Consider a design domain Ω 2 R2 or R3. The
discrete topology optimization problem statement reads as,
Fig. 8. Design domain for proximal femur model and regular patte
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min
ρ

Φðρ;uðρÞÞ
XN
s:t: : ∫
Ω
vρdΩ ¼

e¼1

veρe � V�

KðρÞu ¼ f ;
giðρ;uðρÞÞ � g�i ; i ¼ 1;…;M

ρe ¼
�
0 void; e ¼ 1;…;N
1 material;

(1)
rns (circular and criss-cross) in the initial density distribution.
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where Φ is the compliance, ρ is the density vector, u is the global
displacement vector, ve is the elemental volume, ρe is the elemental
density, V� is the prescribed volume fraction and N is the number of el-
ements. The first constraint describes the maximum allowable volume in
the result. The second constraint is the equilibrium equation where K is
the global stiffness matrix, f is the global load vector. The third constraint
(g) is a set of M different functions which describe generic design or
performance requirements that depend on the design variable ρ and the
state variable u. However, this integer optimization problem is consid-
ered mathematically intractable. Allowing the density to vary makes the
objective function and the constraints both continuous and
differentiable.

0 � ρ � 1; (2)

There have been several approaches that account for the material
model with intermediate densities. An approach named Solid Isotropic
Material with Penalization (SIMP) was proposed [35] and later improved
in Ref. [36]. In modified SIMP, the elastic property of elements is ob-
tained as,

EðρÞ ¼ Emin þ ρp
�
E0 � Emin

�
: (3)

Here, Emin is a small stiffness applied to void regions in order to avoid
singular stiffness matrix, p is the penalization factor generally chosen as 3
to steer intermediate densities to either extreme (0 or 1), and E0 is the
elastic property of the base material. Additionally, the gradient of the
compliance, ∂Φ

∂ρe
, needs to be computed, and each element density value is

updated based on this sensitivity information. ∂Φ
∂ρe

has the closed form
Fig. 9. Femur results for abduction and adduction with regular patterns. The
initial patterns are retained (i.e., bias exists) in the final result.
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expression as follows,

∂Φ
∂ρe

¼ �pρp�1
e

�
E0 � Emin

�
uT
eK0ue; (4)

where K0 is the constitutive matrix with unit Young's modulus and ue is
the displacement vector of an element e.

There have been numerous techniques developed for solving topol-
ogy optimization including Optimality Criteria (OC), Sequential Linear
Programming (SLP), Sequential Quadratic Programming (SQP), Convex
Linearization (CONLIN), etc. OC updates the design variables (ρ in the
current formulation) proportionally to the objective function values. It is
known to be simple and efficient for optimization problems with a single
constraint [19]. SLP locally linearizes a nonlinear problem at a design
point then optimizes within move limits that bound the admissible re-
gion. CONLIN uses variables that characterize the optimization problem
to perform linearization of the original problem. Method of Moving As-
ymptotes (MMA) [37] falls into this category because it uses aggressive
moving asymptotes as function characterizing parameters to ensure sta-
bility and convergence speed. In this work, we have used MMA to handle
the additional perimeter constraint. Readers are referred to [38,39] for
more in-depth discussions and explanations on different optimization
techniques used in topology optimization.
2.2. Perimeter control constraint

Perimeter control constraint was introduced in conventional topology
optimization to alleviate these checkerboard effects [33]. The checker-
board pattern is a numerical instability seen in results of the topology
optimization and refers to areas containing alternating solid and void
elements [40,41]. A perimeter of a structure is defined as the length of
inner and outer boundaries. In the current problem setting, the perimeter
would be the total variation of density distribution in design domain,
perimeter (PðρÞ) of a 2-dimensional structure with void elements (ρ ¼ 0)
surrounding it can be mathematically calculated similarly to [33] as
follows,

PðρÞ ¼ ∫
Ω
jrρjdΩ: (5)

By constraining the maximum perimeter, larger void regions can be
obtained. Inversely, the larger void regions can be divided into smaller
voids with a constraint on the minimum perimeter. The following can be
added to the original topology optimization problem in Equation (1) to
specify a lower bound on the perimeter,

P � Pmin; (6)

where Pmin is the minimum perimeter value allowed in the final solution.
The sensitivity of the perimeter constraint is necessary for the update

of the density values. The perimeter sensitivity is formulated similar to
[30] for the case of square elements in 2D rectangular domain as,

∂PðρÞ
∂ρe

¼
XA
j¼0

XB
i¼1

L ⋅
∂ρi;j
∂ρe

⋅sign
�
ρi;j � ρi�1;j

�þXB
i¼0

XA
j¼1

L ⋅
∂ρi;j
∂ρe

⋅sign
�
ρi;j � ρi;j�1

�
;

(7)

where L is the edge length of an element A� B represents the mesh size
of the design domain and signðxÞ is the sign function of the real variable x.

Note that the minimum perimeter constraint can potentially lead to
checkerboard patterns in the final solution. A linear filter is employed to
the density fields to reduce this effect as follows,

~ρe ¼
P

Ωe
wne⋅ρeP

Ωe

wne
; (8)

where ~ρe is the filtered density value, andwne ¼ maxð0; rmin � distðn; eÞÞ is



Fig. 11. Femur result for combined loading (with a ratio of 3:1:1 for one-
legged stance, abduction, and adduction) with random square patterns.

Fig. 10. Femur result for combined loading (with a ratio of 3:1:1 for one-
legged stance, abduction, and adduction) with random circular patterns.
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defined as the distance function between the center of the filter (n) to
elements (e) within the zone of filter influence Ωe with a radius of rmin.

3. Numerical implementation

In this section, we demonstrate the implementation using the canti-
lever beam which is a popular benchmark problem in topology optimi-
zation. We first ran the problem without the perimeter control and
calculated the perimeter value of the reference result. Targeting the
reference perimeter, another result with perimeter control was obtained
and compared with the reference result. We then show the necessity of
modifications in the initial material distribution to avoid numerical
artifacts.
Fig. 12. Design domain with higher resolution (2018� 1817 Q4 elements) for
distribution.

79
3.1. Cantilever beam with uniform initial density distribution

A design domain with an aspect ratio of 2 (length) to 1 (height) is
fixed on the left edge. This design domain is subjected to a vertical point
load in the bottom-right corner as shown in Fig. 1(a). The domain is
discretized with 100� 50 Q4 elements. Design parameters include a
volume fraction constraint of 30%, penalization factor of 3, and linear
filter with a size of 1.2 of a Q4 element. The SIMP approach without any
constraint on the perimeter yields the result shown in Fig. 1(b). This
reference gives a perimeter of 829.16 according to Equation (5). We add
a constraint which defines the limit of 830 on the perimeter to the same
problem to compare the result with the reference in Fig. 1(b). The
perimeter-constrained solution is provided in Fig. 1(c). Both of the results
are obtained from the same uniform initial distribution.

Results in Fig. 1(b) and (c) look similar since most of the major
members are located in the same place. However, they are not identical
since the result in Fig. 1(c) was obtained considering the perimeter
sensitivity in Equation (7) during the design update, whereas the result in
Fig. 1(b) was not.

We first look at the effect of decreasing the target perimeter value. To
achieve this, P � Pmax replaces the constraint in Equation (6). The
maximum perimeter, Pmax, is prescribed while all other parameters are
kept the same. Starting from the reference perimeter 830, perimeter
constraint values are decreased gradually until 40% (i.e., 800, 750, 700,
500, and 300). Uniform initial density distribution is used for all results.
The results are provided in Fig. 2.

Topology optimization with perimeter constraint gives a result with
no numerical issues if the target perimeter value is close to the reference
as in 800, 750, 700 cases in Fig. 2. The desired perimeter value is ach-
ieved by removing the least necessary set of members from results in Fig.
1(b) and (c). However, gray regions start to form as the target perimeter
is set far from the reference value. These gray regions are not coveted in
topology optimization since they are regions with intermediate density
values which is not realistic.

The values are progressively increased up to 400% from the reference
value of 800 (i.e., 900, 950, 1000, 1500, and 3000). Perimeter constraint
now defines a lower limit on the perimeter, and thereby the perimeter is
increased in the same design domain. Again, all other design parameters
are kept the same. Fig. 3 presents the result from the increasing target
perimeter.

A higher perimeter value is obtained either by creating more mem-
bers or by branching if the constraint value is close to the reference value
in Fig. 1(b). Density islands are formed when the target perimeter is
significantly greater than the reference value. Density islands are not
desirable because it does not improve the performance of the structure.
The current algorithm leads the solution to converge to unacceptable
local minima when target perimeter is set far from the reference value.
Thus, we attempt to alleviate the issue by modifying the initial density
distribution in the next subsection.
proximal femur model and random circular patterns in the initial density



Fig. 13. Design evolution is shown using intermediate results.
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3.2. Effects of the initial density distribution

The state problem that is solved in topology optimization can be
complex with many potential extreme points and thus, depends heavily
on the initial density distribution. Due to this fact, various initial density
distributions are tested for the cantilever problem to check whether the
preferred convergence can be achieved. The rectangular design domain
with the same discretization and cantilever boundary condition with a
target perimeter (Pmin) value of 2000 is considered for all numerical ex-
amples in this subsection. Other parameters such as filter size and
penalization factor remain as 1.2 and 3, respectively. First, simple regular
patterns including checkerboard, rectangular, and circular grids are used
as initial density distribution. The results with these regular patterns in
the initial design are presented in Fig. 4.
Fig. 14. Comparison between (a) X-ray of the femoral head and (b) femur mode
cretization. All key load transfer paths can be observed in the result. (c) Topology o
(3D systems Projet 3500 HDmax with VisiJet M3 Crystal).
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The results indicate that topology optimization gives results without
numerical artifacts if the initial perimeter value is close to the target
value. A large discrepancy between the initial and target perimeter leads
to stability issues in the form of islanding and checkerboard patterns.
Another important observation is that the initial density distributions
with regular patterns retain the same pattern in the final result. Although
this phenomenon can be useful in some pattern design applications, it
creates bias in the solution during the update from its initial density
distribution. Consequently, randomness can be introduced in the initial
density distribution to remedy the bias. The design domain with 700
overlapping circles with a radius of 5 (pixels or elements) is used to test
this hypothesis. Each circle is placed at randomly selected points. With all
the other parameters kept as is, the result in Fig. 5 is obtained. The
convergence plots for compliance, volume fraction, and perimeter are
provided in Fig. 6.

The introduction of randomness reduces the undesired numerical
artifacts in the design. Design bias is not noticeable, and the islanding
phenomenon is substantially mitigated even with a significant difference
in the original perimeter (4022) and the target (2000). However, density
islanding has not completely removed. This is because the objective and
the perimeter control constraint are conflicting. In the present setting
without any modification, careful selection of initial design pattern and
design parameters such as volume fraction and target perimeter is
necessary in some cases. One can enlarge the filter to limit the minimum
feature size yet this may affect the desired geometric complexity in the
solution. Another procedure would be to filter out the isolated islands
during the iterations which may add an extra functional relation between
the design variable and physical density values. Undesired numerical
artifacts can be minimized if the perimeter and the volume fraction be-
tween the initial density distribution and the target values are close to
each other.

4. Bone internal structure

The proposed approach is applied to mimic the internal structures of
three bone regions: the human femur, ovine calcaneus, and human
midface. The human proximal femur has been widely used in various
computational studies due to common total hip replacement and implant
placement. The femur is attached to the pelvis and is responsible for not
only supporting weights from the torso but also forces associatedwith the
daily activities including one-legged stance, adduction, and abduction
(See Fig. 7). Its trabecular architecture is believed to be efficiently formed
for these loading conditions. We also use the methodology in designing
the internal structure of calcaneus of ovine using simple cantilever beam-
like boundary conditions.
l from topology optimization with perimeter constraint on 2018� 1817 dis-
ptimized femur model from 550� 500 grid is 3D printed using material jetting



Fig. 16. Evolution of solution for the ovine calcaneus problem is provided.
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4.1. Human proximal femur

The cross section of the femur from the frontal plane is selected as the
model for the study. The joint reaction force of 2317N directed 24� from
the vertical axis, and hip adductor force of 703N at 28� from the vertical
axis are distributed using a quadratic distribution function on the femoral
head and the greater trochanter, respectively to represent the one-legged
stance as shown in Fig. 7. Abduction and adduction are modeled similarly
to [30,42,43]. These works also report that typical human daily activity
gives 3:1:1 frequency ratio for the one-legged stance, abduction, and
adduction, respectively. These multiple loading conditions and the cor-
responding frequency factors are all considered in the topology optimi-
zation problem.

4.1.1. Regular pattern
The femur cross-section is discretized into a 500� 550 grid. The

active design domain (trabecular region) confined by the non-designable
cortical bone region is filled with regular patterns: regular circles (5-pixel
radius) and crisscross. The regular pattern with circles gives the perim-
eter of 56,480 whereas crisscross produces a value of 72,830. A sche-
matic of the initial material distributions is provided in Fig. 8.

The target perimeter is chosen to be 70,000, which is close to the
initial perimeter to minimize the density islanding, for the two separate
loading conditions (abduction and adduction) for both initial material
distributions. A linear filter with a radius of 1.2 is used, and the volume
fraction is constrained at 0.3.

As shown in Fig. 9, initial patterns are retained in the results for both
loading conditions for the regular circular and criss-cross patterns. This
bias is undesirable because it limits the design options such as curved
members.

4.1.2. Random pattern
Random patterns can be used for the initial material distribution to

mitigate the bias issue and alleviate factors that may restrict the designs.
Two different random patterns are tested for this hypothesis. The same
design domain is now filled with 1) circles with 5-pixel radius and 2)
squares with 6-pixel sides, both located randomly with each overlapping
each other. One-legged stance, abduction, and adduction are all consid-
ered in this analysis with weights of 3, 1, and 1, respectively. Perimeter
values (P) are calculated to be 68,816 and 79,846 for random circles and
random squares, respectively. The target perimeter value is selected to be
60,000 for both cases with volume fraction constraint of 0.3. The linear
filter covers the circular region with a radius of 1.2 elements. Two
random initial material distributions and their respective results are
provided in Figs. 10 and 11.

Important to note, utilizing random patterns in the initial material
distribution leads to very similar internal architectures. The initial
pattern bias is minimal in both the solutions. Also, members have various
curvatures to create more natural-looking structure.

The computational domain is further discretized in an attempt to
further eliminate the pattern bias and generate a more refined result with
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a room for more geometric features in the design. The new domain is
discretized into 2018� 1817 by roughly doubling the pixel densities in
both directions. Twenty thousand circles with a radius of 14 are
randomly placed using the same algorithm leading to an initial perimeter
of 426,535 as shown in Fig. 12. The volume fraction constraint remains
equal to 0.3, and the target perimeter is chosen as 300,000.

The evolution of the solution is shown in Fig. 13 with intermediate
designs displayed at selected iterations. The final result is compared with
the functional groups in the X-ray of the human femur in Fig. 14. A to-
pology optimized femur model is also 3D printed using the jetting ma-
chine (3D systems Projet 3500 HDmax with VisiJet M3 Crystal) with
16 μm layer height and shown in Fig. 14(c).
4.2. Ovine calcaneus

Calcaneus (heel bone) experiences significant compressive loading
while walking which can be modeled as a simple cantilever-beam like
loading scenario. Topology optimization was also previously used to
investigate the internal bone architecture of ovine calcaneus in Ref. [44].
They found that typical minimization of strain energy under the afore-
mentioned boundary condition results in simplistic structure when
compared to the X-ray of an ovine calcaneus although the direction of
core members are in the same direction. The same problem is solved with
the perimeter control constraint presented in this work. The same design
domain and the boundary conditions are extracted from earlier work in
Ref. [44] and discretized by 352� 709 Q4 elements. The active design
domain is filled with 7000 circles with a radius of 5 at randomly selected
locations, resulting in an initial perimeter of 87,850. The design problem
and the initial random material distribution are shown in Fig. 15.

With a target perimeter of 60,000 and using 0.3 for volume fraction
constraint, the following solution in Fig. 17 is obtained. The evolution of
the result is provided in Fig. 16.
Fig. 15. Design domain and boundary condition for
calcaneus model and random circular patterns in the
initial density distribution.



Fig. 17. Comparison between (a) X-ray of the ovine calcaneus, (b) Result
from Kim et al. [44] by topology optimization without design restrictions, and
(c) Result from topology optimization with perimeter control Pmin ¼ 60;000.
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The result from perimeter controlled topology optimization shows a
good agreement with the X-ray scan of the ovine calcaneus.

4.3. Internal structure in bone implant for midface reconstruction

Human midface serves as crucial load transfer paths for forces from
daily basic life functions such as breathing, speaking, chewing, and
swallowing. It also forms the basis for the unique physical appearance of
every human being. Sutradhar et al. [45,46] suggested using topology
optimization to design implants in case of large facial injuries. Later, they
proved that the topology-optimized shape sustains the maximum chew-
ing load of 530N and also provides proper load transfer mechanism [47,
48]. It is also shown that cross-sectional geometry of human midface (on
the vertical plane) through the first molar can be mimicked using 2D
topology optimization with realistic supports, cavities, and loads (e.g.,
chewing and traumatic forces).

In this work, perimeter control constraint is added to design the in-
ternal structure of a bone implant to improve the structural efficiency and
performance potentially. The design domain and the boundary condi-
tions are adopted from Ref. [45]. The active design domain is patterned
with 10,000 circles in randomly selected locations that have radius and
thickness equal to 5 and 1 pixel, respectively, in a 608� 402 dis-
cretization. This design domain and the boundary conditions are pro-
vided in Fig. 18(a) and (b). The initial perimeter is 46187, and the target
optimization parameters are set as 30,000 for the perimeter and 20% for
the volume fraction constraint. The filter size remains as 1.2 elements,
Fig. 18. Human midface implant problem. (a) Design domain and boundary con
Topology optimization result with perimeter control constraint (Pmin ¼ 30;000). V
increase in the compliance value.

82
and the penalization factor is set at 3. The result from topology optimi-
zation is shown in Fig. 18(c).

5. Discussion

Although the mechanical stimulus that was assumedmay be different,
the fundamental idea of bone remodeling researches have similarities
[4]. They assume the bone is a nonlinear system and their behavior is
represented by a family of differential equations. Also, these equations
can be recast as element-wise optimization problems when combined
with FEA. This allowed an application of structural optimization tech-
niques to predict bone remodeling process. Garcia et al. [49] combined
CAO, a shape optimization based on biological growth, with damage
theory and in their later work, they applied it to predict remodeling
behavior on the proximal femur after total hip replacement and implant
placement [50]. They found that it can generate thermodynamically
consistent solutions while predicting the vital physical effects including
anisotropic remodeling criterion. In fact, the connection between the
bone remodeling rate equation and the structural optimization of total
strain energy was found in the 1990s [51]. Among many structural
optimization techniques topology optimization gathered attention in
modeling the bone remodeling process due to its similarity to earlier FE
based bone remodeling models in that the density being the design
variable; apparent density and normalized density. The microtrabecular
bone architecture was realized using homogenization by calculating
effective stiffness and stress [52]. Similarly, Jacobs et al. [53] found a full
anisotropic elasticity tensor which was optimized for a given strain at
each location in the bone. Along with anisotropic material parameters
and time-dependent loading, a structural stiffness is iteratively maxi-
mized (compliance minimization) and it showed bone adaptation from
altered loading [32]. Hybrid cellular automata (HCA) method incorpo-
rating the tissue level bone adaptation has been used in topology opti-
mization to describe bone remodeling process [54]. It has been reported
the structural optimization techniques tend to produce cancellous
structures similar to bone [55]. Another interesting finding by Jang et al.
[4] states that SED based bone remodeling algorithm and topology
optimization for compliance minimization have mathematical analogies.

The present work shows how to obtain a trabeculae-like structure
using topology optimization. The objective is to design a structure (e.g., a
bone implant) that would efficiently withstand applied forces with
different loading scenarios by minimizing deformation energy under a
perimeter control constraint. Here, we found that the randomness in the
initial design domain along with the perimeter control plays a crucial role
in getting natural looking structural members with various curvatures.
The purpose is to provide a tool that can produce a bone-like internal
structure that is dominated by mechanical loadings rather than trying to
understand the bone remodeling itself. Thus, we would want to
emphasize that the algorithm described here to be more applicable to any
ditions, (b) Initial density distribution used in the analysis (P¼ 46,187), (c)
olume fraction constraint of 20% is used. 80% volume decrease led to a 56%



J. Park et al. Computers in Biology and Medicine 94 (2018) 74–84
engineering problem that requires geometric complexity to cope with
uncertainties in the design domain and to promote reliable structures
with high porosity. For example, issues with stress shielding and inade-
quate mass transfer in medical implant industry could be tackled with the
technique described in this work.

6. Conclusions

We present a topology optimization approach with perimeter control
to obtain the complex bone internal structure. In order to obtain the
natural design of bones, a regulation on solution space is necessary. A
constraint-based restriction approach that gives the user control on the
perimeter measure in the solution is presented. The approach can also be
used to design complex porous structures. A lower bound in the perim-
eter of a structure is introduced in the topology optimization formulation
to control the fine members in the final design. Numerical issues such as
gray regions, checkerboards, or density islands are commonwith uniform
initial density distribution when very low or very high perimeter values
are chosen as the target. These numerical issues can be alleviated by
introducing controlled randomness in the initial design using the
perimeter constraint. The convergence can be improved without any
undesired numerical artifacts or instabilities. Natural looking configu-
rations with various curvatures can be obtained, and this makes the
presented approach suitable for mimicking geometrically complex nat-
ural designs. Results from numerical examples using three different bone
regions (femur, calcaneus, and mid-face) show agreements with X-ray
scans. This methodology is expected to be useful in addressing me-
chanical property mismatch issue between the implant and its neigh-
boring bones. The proposed approach can also be used in reverse-
engineering the natural design principles by investigating the domi-
nating loads to generate such design. The study shown in this work can be
considered as a proof of concept as it only deals with simplified 2D
problems. Authors are currently extending this idea to so it can address
problems involving 3D space. Efficient solver with parallelization may be
necessary in order to handle larger system matrices.
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