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ARTICLE INFO ABSTRACT

This paper considers a co-rotational beam formulation for beams, which is used for the finite element analysis of
flexible risers and pipelines made of functionally graded materials. The influence of material gradation is ad-
dressed using an exponential variation of properties throughout the thickness of the pipe. Space discretization of
the equilibrium equations is derived based on the Euler-Bernoulli assumptions considering two-node Hermitian
beam elements which are referred to a co-rotation coordinate system attached to the element local frame of
coordinates. The geometric non-linear effects of the beam are considered under large displacement and rota-
tions, but under small-strain conditions. The deflections of the riser result from forces caused by self-weight,
buoyancy, sea currents, waves, the action of floaters, seabed-structure interactions, and ship’s motion. We
provide numerical examples and compare our results with the ones available in the literature. In addition,
applications related to practical offshore engineering situations are considered to highlight the behavior of
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functionally graded materials (FGMs) as compared to homogeneous risers.

1. Introduction

Flexible marine risers are used to transport oil from a wellhead on the
seabed to platforms based on floating production systems, such as Spar,
Floating Production Storage and Offloading (FPSO), semi-submersibles
and Tension-Leg Platform (TLP). A marine riser is continuously subjected
to severe environmental loading from currents, waves, and winds. For this
reason, marine risers are considered one of the most critical parts of a
complex offshore production system. Their failure can severely deteriorate
the marine environment and interrupt the oil production, causing costly
environmental recovery and lost production.

Owing to their low flexural rigidity, as compared to their axial ri-
gidity, marine risers undergo large changes in curvature under oper-
ating loads. As a result, one needs to consider geometric nonlinearities
for their structural evaluation. In some special circumstances in which
marine piping undergoes (a) large deformations and (b) negligible
tensile loading, its bending stiffness may become insignificant as com-
pared to other local effects, such as cross-section ovalization [1]. In
these special cases, the analysis of marine piping requires a more de-
tailed numerical model [2,3].

Computational models based on the finite element method for static
and dynamic analysis of risers involving geometric nonlinearity have
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been the subject of extensive research [4-12]. These models employ the
classical theory of beams under finite rotations and the governing
equilibrium equations are obtained from the following three basic de-
scriptions: total lagrangian, updated lagrangian and co-rotational. The
first two approaches use, respectively, the undeformed and deformed
configurations, as a reference for both static and kinematic variables.
Both total and updated Lagrangian formulations have been extensively
used in the literature in various beam element formulations [13-17]
and the only advantage of using one over the other lies in their nu-
merical efficiency. However, under significantly large rotations, these
two formulations may cause spurious stiff solutions because of the non-
vectorial nature of rotation variables. To overcome such a difficulty, co-
rotational formulations have been proposed in the literature [18-21] as
a framework for nonlinear analysis of one-dimensional finite element
models such as beam elements. In this approach, the total motion of a
beam is decomposed into two parts: rigid body and pure deformational.
The deformation is measured from a rotating frame attached to the
element undeformed configuration, and standard linear formulation
solutions are employed in the numeric incremental procedure in such a
way that non-linearity is considered by the spatial rotation of the un-
deformed reference frame. This procedure is particularly well fitted for
the finite element representation of slender pipe kinematics, such as in
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marine riser structures undergoing large three-dimensional displace-
ments. This study considers axial, bending, and torsional deformations,
but neglects transverse cross-section deformations of the pipe.

Oil exploration has shifted into more remote locations and ultra-
deep water under severe operating conditions, demanding lightweight,
strong, durable riser structures to reduce production costs and increase
efficiency. In this regard, the use of composite materials for risers
[22,23] is quite promising because, as compared to traditional mate-
rials, they offer a high stiffness to weight ratio, high tensile and fatigue
strength, improved structural damping, low thermal conductivity, and
good corrosion resistance. However, delamination is a critical damage
mechanism in traditional composite materials under extreme mechan-
ical and thermal loadings [24]. As a solution to this problem, material
scientists from Japan proposed in the mid 1980s the concept of func-
tionally graded materials (FGMs) [25] to design a thermal barrier
capable of withstanding a temperature gradient of 1000 K across a 10-
mm cross-section. These materials provide continuous graded macro-
scopic properties with gradual change in microstructure and are de-
signed to take advantage of the desirable features of their constituents
phases. Due to the material gradation, FGMs have no material inter-
faces, thus eliminating the possibility of delamination, as it is the case
in traditional composite materials.

Over the last years, FGMs have been used in different industrial
fields such as aerospace, nuclear science, defense, automotive and en-
ergy conversion. For instance, functionally graded (FG) plates as well as
FG cylindrical shells have been reported in the literature on bending,
vibration and buckling analysis [26-34].

An ideal material for marine risers would combine the best prop-
erties of metals at inner surfaces, such as toughness and machinability,
and of ceramics at outer surfaces, such as high strength and tempera-
ture resistance. This would be a very effective engineering solution but
requires material usage to an extent not feasible for production in our
days. However, FGMs could be employed as a transition material in
multi-layer riser cross-sections to prevent abrupt differences in me-
chanical and thermal properties and avoid debonding at certain ex-
treme loading conditions. Because cracks are likely to initiate at in-
terfaces and propagate into the weaker material sections, FGMs can
reduce the effects of thermal, residual, or stress concentration factors
[17]. Although still not available in full-scale industrial production,
FGMs are man-made materials in which the method of fabrication,
geometry, reinforcement location, and matrix alloy may be tailored to
achieve certain desired properties.

In this study, we present a concept for marine risers that considers
material gradation throughout the pipe thickness. The FGM model is
isotropic with constant Poisson’s ratio and its non-homogeneity arises
from the variation of the Young’s modulus (E) and the density (p) in the
thickness direction according to a power law [31,35]. A beam element
model based on Euler-Bernoulli kinematics is adopted, which considers
both geometric nonlinearities and a mass matrix derived in closed form.
In the next two sections, details of a 3D co-rotational beam finite-ele-
ment formulation are given with constitutive relations associated to
FGM capabilities incorporated. The formulation was implemented, and
in Section 4 the results of some sample analyses are presented that il-
lustrate the important features of graded material usage in marine risers
and the effect of its non-homogeneity on the stress distribution.

2. Description of the 3D co-rotational beam model

This section presents details of the 3D co-rotational beam formula-
tion used in the present study.

2.1. Basic assumptions

The following hypotheses are adopted to derive the behavior of the
beam element:
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® plane sections remain plane and perpendicular to the beam center-
line after deformation (Euler-Bernoulli hypothesis);

® large displacements are allowed but only under small strain conditions;

® the material behaves elastically, and thus, element model non-
linearities result from both the spatial configuration at each instant
of the analysis and the coupling of axial tension and bending de-
formation mechanisms; and

® under torsion loadings, the cross-section remains plane, i.e., it does
not warp.

2.2. Coordinate systems

A co-rotational beam element undergoing large displacements and ro-
tations is shown in Fig. 1. In this figure, we identify three configurations:
initial configuration (%), which is the element in its initial (undeformed)
position at time t = 0; co-rotated configuration (%), which is the element
after it has been subjected to rigid body movements from its initial con-
figuration; and deformed configuration (%), which is the element in its
current configuration at time t under external loading. Coordinate systems
attached to the beam element at each configuration are also shown in Fig. 1
and are described as follows:

the global frame (Xg, Y5, Zg) is a coordinate system describing the
structure, and this system remains fixed during the entire analysis;
the element base frame (Xo, Yo, Zo) is the coordinate system of the
element at its initial configuration (%); in this configuration, the
beam element is assumed to be straight and the X,-axis coincides
with the element longitudinal direction; the other axes (Y, and Z)
are set to the cross-section principal directions;
® the co-rotated frame (Xc, Yc, Z¢c) is associated with the co-rotated
configuration (7c); the Xc-axis passes through two end nodes of the
element; on this system, the entire element formulation is written; and
® the convective frame (Xp, Yp, Zp) is associated with the deformed
configuration (%p); this system follows the element centerline in the
deformed configuration and is attached to its center; the Xp-axis
defines the cross-section orientation, and the other axes (Y, and Zp)
are chosen along the cross-sectional principal directions.

2.3. Local beam kinematics

In this section, compatibility relations for a 3D beam model used to
represent the structural behavior of risers are derived. Fig. 2 presents
successive positions at two instants of analyses separated by a time
increment At. A general point P in the riser moves from points P* to Pt+4!

Deformational motion

Rigid body
motion

{DEFORMED)

(<
INITIAL

X G
GLOBAL
FRAME

Fig. 1. Co-rotational frame of a deformed beam element.
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Fig. 2. Beam kinematics and coordinate systems.

with a displacement increment vector up = 5*~ % obtained from

position vector differences defined in the global coordinate system

(ot LRAL _ AL
P= ctXa2tX33 P = ¢ TX 21X 3 (€]
h tand At : li s -
where L and 5 are cross-section centerline position vectors in co-

rotated and deformed configurations, respectively, and the two pairs of
unit vectors , and ; and, » and r; are axes of principal directions of
inertia attached to the cross-section of the beam in both configurations.

Considering the element cross-section, local coordinates X and x3
should satisfy the geometric condition 1 < (x3 + x)"2 < r,, where r,
and 1, are, respectively, cross-sectional internal and external radii.
Orthogonal vector bases r; and ; (i = 1, 2, 3), are related by a trans-
formation (rotation) matrix

i= 1 (i=1,23) (2)

In large displacement analyses, the cross-section rotations of risers
are no longer small enough to be treated as rotational vectors because
the obtained finite measures do not satisfy classical linear algebra rules
such as the commutative vector property [36]. Thus, a pseudovector
rotation is conveniently defined as

=V 1+ Vv ,+V33= tﬁl (3)

where v (i = 1, 2, 3) are cross-section rotation increments at time in-
terval At referred to vector base r;. This definition stems from a geo-
metric property that any finite rotation can be properly represented by
a single rotation of an angle

Y= v +0d+ 0} @

about the spatial axis parallel to the unit vector e.
The orthogonal rotation matrix  in Eq. (2), written in terms of W,
has the following representation

E11 = U1 — XaV3 g T X3V

+x3

1 2.2 2
+§ (XEVB.I + .I%Vll) - ()CQX:-‘,) V3 1V21

Yiz = M21 — V3 — X3V

Y13 = U3 + vy + vy

1
) (viavs +vivar) —uz1vig
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where I is the identity matrix (third order) and ( ) is a skewed
symmetric matrix defined by

0 —v3 v,
(J)=fvs 0 -w
-V, W 0 6)

Applying Taylor series expansion to the trigonometric functions in
Eq. (5) and retaining all terms up to the second order, an approximate
expression for the transformation matrix  gives

1

By substituting Eq. (6) into Eq. (7), we obtain

vZ4v2
273 Viva Viv3
- —n+ 2 v+ 2
2 s+ 3 2t 3
vZ +v2 Vo
= v+ n2 =0y v
2 2
2402
_ Vv vav3 _vitvs
Lt it 5 1-——= (8)

which substituted into Eq. (2) and the obtained expressions for ; into
Eq. (1), results in the following components of displacement increment
vector components

1 1
Mp, = U] — XaVy + X3V2 +§X21’11v'2 + ixj\*l’v‘j;

1 2 1 1
Up, = Uz s L & (\"1 + ‘*'1) T 5 Xavavs
- 2 i 2
1 1 5 5
Wp, = U3 =+ X2V +5J.'11»'1V'_7, - EX'; (L‘l + 1»'2)
Linear 9

Non-Linear

where 1, 1;, and u; are the cross-section centerline displacement in-
crements, components of vector ug = 5%~ £, in Fig. 2.

The Green-Lagrange deformation components contributing to the
deformation energy in the principle of virtual work (PVW), are ex-
pressed, with respect to the local reference axes r; [13], in terms of the
displacement of a point P in the form

- 1 1 21 2
g =up , + Q(MPM)Z + 7(“132,1) + E(HPM)
Yio SUP, tupyy tUp UP, T U, UP,, FUPUPS,

Vi3 =Upyy tUpy, +Up  Up ; + Upy Up,y s + Upy Up,y s 10

In Egs. (10), a comma after an index means differentiation of a
displacement increment component with respect to the coordinate.
Displacement increment measures in Eqgs. (10) are expressed up to a
second-order approximation. The incremental numerical procedure al-
lows us to follow the exact solution if sufficiently small load increments
are used.

Substituting Eq. (9) into Eq. (10) and eliminating the algebraic

1,, 2 1
+E(u2‘1 + u“) + xp 3 (viave + vivag) + us v

1
+ - (x% + x%)vil

(o]

1 1
+E‘v’1vz + Uz vy — EXS (va1vs —vavay)

1
+EV1V3 —uzvy + Exz (va1vz —vavay)

Linear (ey) Non-Linear(n;;)
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terms of order higher than two, deformation increments in terms of the
displacement increments of a cross-section results in the following
equations

which are geometrically compatible with deformation kinematics.

3. Incremental equilibrium equations for highly deformed FGM
risers

3.1. Co-rotational updated Lagrangian formulation

The element formulation is obtained considering the linear (g;) and
nonlinear (1) strain contributions in the imposition of the PVW. Thus,
considering the equilibrium of the structure at time t+ At, with respect
to the latest co-rotated configuration at time t, the PVW for the updated
Lagrangian formulation gives

L+AL t+AL _ AL
fﬁv 158 eV =
where (+4

= Js

In Egs. (12) and (13), du; is the virtual variation in the displacement
components Ay, and '*4S; and "%, are the components of the
second Piola-Kirchhoff stress and the Green-Lagrange strain tensors,
respectively. These two tensors correspond to the configuration at time
(t+ At) but measured in the reference frame at time t.

To develop a linearized incremental solution [13] for the nonlinear
Eq. (12), the following decompositions are used

(12)
is the external virtual work due to surface and body forces

AL
0Ji

t+AL t+AL B5uid°V

Ssuds + [, A,

(13)

A A
t+ ,‘Sij = LL'ij+ A‘L'i); t+ €ij = tEij + AEiJ; 14
where ‘z; are the Cauchy stress tensor components at time t and Ag; and
Ag; are the stress and strain tensors increments. As shown in Eq. (11),
the strain increment components are decomposed in linear (Ae;) and

nonlinear (Anij) as

Ag; = Ag + An,-j (15)
From the above discussions, Eq. (12) can be written as
‘ﬁ/ ([Tij + ATij)5([Eij + Aejj + Anij)d’V= At (16)

where §'e; = 0 (because the element is subjected to rigid body motions
only in the reference configuration), and assuming a linear elastic ap-
proximation for the incremental stresses and strains Az = ; Gjrs Aeys, one
obtains:

S, CimderddedV + [} wdandV =" — [ tionedy

a7
In this equation, the left-hand side leads to the linear and nonlinear
stiffness matrices, and the right-hand side leads to the external and
internal force vectors. Eq. (17) was employed in the static analysis.

In the formulation of dynamic problems, including the beam inertia,
the PVW was generalized by the D’Alembert’s principle [37]. Then,
using Newton’s second law and the term corresponding to the body
forces in Egs. (12) and (13), one obtains

S, st edy = [fi A usds + f) (A%t ii)oud v
(18)

By adding the term corresponding to the viscous damping in Eq.
(18), we obtain the incremental equation of dynamic equilibrium
.ﬁv Opt+Aliy; Su; dOV + -ﬁv k!5t 51 dOV + j;/ ¢ Gjrs Aers S Aeid 'V
+ [o moandv= [l Thfausdos+ fi A fPaudov
- ‘[V 5 6Ae;d'V (19)

In the next section, equilibrium Eq. (19) will be written in its matrix

286

Engineering Structures 173 (2018) 283-299

1 2
U, u,
& 1 ' 2
1 1 u 2 2 u 2
Va ry v, Vq r SR
(4 lﬁ\i/—rb—b (
"\. v l"\' J V2 u 2
Nodel v u Node 2 1™
| |

£=L

Fig. 3. 3D beam element.

£=0

form considering the structure displacements discretization by using
interpolation functions.

3.2. Derivation of interpolation matrix and global dynamic equilibrium
equation

For the finite element solution of Eq. (19), a two-node beam model
was considered under Euler-Bernoulli assumptions with active axial,
bending, and torsion displacements, all interpolated along its length L
using a one-dimensional Hermite polynomial - £ coordinate along the
element as shown in Fig. 3. Thus, the incremental displacement field of
the cross-section center line within the element results in

wE)=¢ (g)”l] + ¢ (g)ulz

w €)= ¢ Euz + ¢ O’ + ¢sE)vi—¢ €3
ws €)= ¢ ©us + ¢ Eus—ps € s + @5 €2
vi €)= ¢ Ewi + ¢, Ew?

v2(€) = —¢, ©us + ¢, s + gy Eva—¢y(E)v3
v (€)= ¢, Eua—¢, €)us + ¢y E)vs—¢y €5
where ¢, are the finite element shape functions for beams, as defined in
Appendix B.1.

The linear terms in Eq. (9) relative to the displacements at any point
P in the pipe cross-section are expressed as

(20)

up, (&, %, X3) = u1—xv3 + X302
up, (€, %, x3) = Up—x3m;

up,(§, %, X3) =us + Xv; 1)

The displacement fields in Eq. (21) can be written in a matrix form
after replacing Eq. (20) in (21), and one obtains

u=[urn Up, Up]" = (X, x3)u (22)
where (& x3 x3) is the element interpolation matrix defined as
¢1 _x2¢7 _x3¢7 0 x3¢3 _x2¢8 ¢2 x2¢7 x3¢7 0 _x3¢9 x2¢9
=|0 ¢3 0 —X3¢1 0 ¢5 0 ¢4 0 —X3¢2 0 _¢5
0 0 #5 %P — ¢ 0 0 0 4 %é, %6 0
(23)

and u is the incremental nodal displacement vector associated to the
beam element defined as

[} wy ug v vy viouf ufoug ol vy v @49
Using the interpolation matrix to evaluate Eq. (19), the global dy-

namic equilibrium equation in the matrix form is

- . t t
LN N +( +4 _

t
+ ) =t !

(25)

where M is the global mass matrix, D is the global damping matrix, | |
is the global linear incremental stiffness matrix, ;  is the global
nonlinear geometric stiffness matrix, ‘*4* is the updated global vector
of external nodal forces, | is the global vector of internal nodal forces,
U is the global vector of incremental nodal displacements, and ‘U
and ‘™™ " are the updated global nodal velocity and acceleration vec-
tors, respectively. Table 1 summarizes these calculations.
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Table 1
Integral form and corresponding matrix form of terms of Eq. (19).
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Integral form

Matrix form

Jo, %" Miiiou,dV

oo, KBt 61 0V

Sty tGiirs Do S A d'v

[, 5 8An;d'V

HAL = T oud %S + o, AR suid®y
S I7;60¢;d'V

t+AL”

Zm [jbv(m) Op(m) (m)T (m)d[)v(m)] t+AL

AT =3 [ foym %M 00T (mgOym]ekat:

= Sl Syt Tt 0 Mty

= Tl T 60 gy

= X Jogom SOOTHA STOSI 4T fo oy OTHHE B0y (m
S Syt (P00 gty

A step-by-step time integration of the equilibrium equations was
implemented with the HHT algorithm [7], and the numerical solution
was obtained using the Newton-Raphson iterative technique [13].

3.3. Linear stiffness matrix

The linear strain components in Eq. (11) are defined at any point of
the riser cross-section by

e = U, 1—XV31 + X3vz1
2ep = Uy 1— V3=V

2e13 = W3 1—Vr—%Vi,1 (26)

The first strain component e;; corresponds to the linear strain (ex-
tensional) in the direction & (Fig. 2), and components e1» and e;3 refer to
the shear strains (angular). The relation between the linear strains and
the incremental nodal displacements is expressed in the matrix form
using Egs. (20) and (26) as

e=[en 2e2 2e3]"= u @7

where | is the linear strain-displacement transformation matrix as
defined in Appendix B.2.

The components of the Cauchy stress tensor () are related to the
components of the linear strain tensor (&) through the linear elastic
constitutive matrix (C) as

~=[on on op]T = (28)
where
C =diag(E, G, G), G =E/(2( +v)) (29)

In the constitutive matrix, E is the Young’s modulus and v is the
Poisson’s ratio.

Because we assume that the risers are made of a FGM, we use a non-
homogeneous material model in which the elastic modulus, E, varies
according to the following power law:

E =E,(riry)f r<r<m (30)

where § is a non-homogeneity parameter of the Young’s modulus and
r=(x} +x°)"? is used to refer to the radial coordinate through the
pipe thickness.

The linear stiffness matrix Ky results from the discretization of the
term f"/Cij,SAerséAeijdV in Eq. (19), as follows

j“/ CijrsAerSSAeijdV='/‘;(5 Y o dv=@6 )T(‘/"/ T

= f T
v
After replacing Eq. (29) and  in Eq. (32) and by integrating the vo-
lume of the riser element (Fig. 2), we obtain the final expression for the
linear stiffness matrix. To calculate the volume integral of Eq. (32), it is
convenient to convert the local co-rotated coordinate system of the riser
element (£, %, x3) to the cylindrical coordinate system (£, r, 6) by using

the following transformations: X, = rcosf, x; = rsinf and
n<r=(x3+x)Y? <1, which leads to

dV)u (31)

where dv

(32)
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where K is presented in Appendix B.3 in a closed form and is expressed
as a function of the equivalent rigidity moduli (e.g., EA, EI, and GJ).

(33)

3.4. Geometric stiffness matrix

The geometric stiffness matrix results from the discretization of the
incremental (virtual) work done by the Cauchy stress tensor on the
virtual strain increment (nonlinear part) in the incremental equilibrium
equation (Eq. (19)),

- — T
S woandv= [ 57 av (34)
where § T =[dn,, &n, 9n;;] is the first variation of the nonlinear
strain tensor and "7 = [6; 01> 0di3]is the vector of the updated Cauchy
stress tensor components.

After some algebraic manipulations and making use of Eq. (20), we

obtain the geometric stiffness matrix | as
T _ T T
foTav=6) (j; dv)u 35
h S L dédrdo
where = ‘/(; ‘/r: -/0‘ rdédr (36)
and | is the nonlinear strain-displacement transformation matrix and

T is the matrix of the updated Cauchy stress tensor components. Ap-
pendices B.4 and B.5 present 1 and T matrices explicitly.

3.5. Consistent mass matrix

The consistent mass matrix, M, is obtained from the work done by
the inertial forces in Eq. (19), as follows:

S o diiduidv = (8 )T('/“/p r dv)wﬁ

= [ S fOLp T rdédrdd

where is the element interpolation matrix (Eq. (23)) and p is the
material density, which varies along the radial coordinate of the pipe
cross-section according to the following power law

37

(38)

e =p,/n)% nK<r<n (39)

where @ is a non-homogeneity parameter of the material density. The
consistent mass matrix M is shown in Appendix B.6 in a closed form.

3.6. Vector of external forces

The vector of external forces results from the discretization of the
first and second terms on the right-hand side of Eq. (19) (virtual work
done by loads acting on the riser). Thus

— STtAt S Tt+At B
=f v as + f L Bqy (40)
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The external forces considered in this study were self-weight, buoyancy,
hydrodynamic (owing to maritime waves, currents, and added mass
inertia), prescribed displacements at the floating platform, action of
floaters, and seabed-structure interactions (for further information
about these external forces, see for example Ref. [7]).

4. Numerical results

The co-rotational approach for nonlinear analysis of FGM risers was
implemented in a Fortran code and representative numerical (static and
dynamics) examples were carried out to validate the element perfor-
mance. The influence of material gradation on the numerical response
in comparison with homogeneous material risers is discussed.

4.1. Static analyses

4.1.1. Cantilever beam under buckling

In this example, a cantilever FGM beam subject to a compressive
centric force at the end of the tip is analyzed in a post-critical buckling
condition. A small lateral force Q (0.1% of the compressive force P) is
applied to move the column from its vertical position. The numerical
input data used, including beam dimensions and material property
parameters, are presented in Fig. 4. The Young’s modulus varies along
the radial direction of the pipe cross-section according to the power law
E (r) = 404(r/1,)*%% GPa, having TiC and N} Al at the external radius
and inner radius, respectively.

The FGM column is modeled using 10 straight beam elements, the
compression loading is applied in 400 equal increments, and the dis-
placement tolerance is set to 0.001. The critical load for the first
buckling mode is calculated by the Euler Formula [38] as

P = (’2—2)(%) = 1.745 N. Fig. 5 presents the deformed configurations
of the column for different levels of compressive load (P=ARyi;). The
normalized tip displacements of the column for different values of P/R;
ratio are shown in Fig. 6. The results are in good agreement with the
solution presented by Timoshenko [38] for a homogeneous material.

Finally, Fig. 7 shows the results of the normal stress distributions at
the clamped end of the beam for 4 = 2.19. These longitudinal stresses
are analytically evaluated using the expression

P sz]

oyy = E(r)gy =E(r)(—z +

EI 41)

where P= 2.19P.; and M, = —Puy (neglecting the contribution of the
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Fig. 5. Beam configurations for various tip loadings.

small force Q). Fig. 7a and b present normal stress distributions furn-
ished by the numerical analysis for the FGM beam and by Eq. (41) along
the beam for two different cross-section cuts: at a vertical cross-section
and at 45° apart from this position, respectively. A very good agreement
between these distributions is observed. Also, these results are com-
pared to the stresses in a homogeneous beam cross-section having the
same equivalent bending rigidity. For this particular loading, the plots
show stress redistributions for the FGM material with 15% increase in
the maximum longitudinal stress and a 43% decrease in its minimum
value, as compared to the linear distributions shown in the homo-
geneous material beam.

4.1.2. Cantilever arch beam under out-of-plane loading
This example proposed by Bathe and Bolourchi [13] aimed to
evaluate the accuracy and robustness of the 3D beam element
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Fig. 6. Normalized numerical displacements as compared to Timoshenko’s so-

lution [38].
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implemented with axial forces, bending, and torsion. The analysis
considers a 45° cantilever arch beam with radius of 100 in measured
from the centerline of the pipe subjected to a vertical end load, as

shown in Fig. 8.

The model is idealized using eight equal straight-beam elements.
The structure is subjected to a maximum load factor of 4 = 7.2 which is
applied in 60 equal increments. Fig. 9 shows the normalized tip dis-
placements ug, vi, and wy in the X, Y, and Z directions, respectively. A
good agreement is observed between obtained numerical results and
the solutions provided by Bathe and Bolourchi [13].

Fig. 10 shows the deformed configurations for three different
loading levels and the tip displacements, which are compared to Bathe

and Bolourchi [13].

4.1.3. Lee s frame

This well-known problem was proposed and solved analytically by
Lee et al. [39] and has been studied elsewhere [14,40,41]. It is a
benchmark problem to the validation of formulations for geometric
nonlinear analysis and exhibits complex equilibrium paths featuring
snap-through and snap-back phenomena. The FGM frame is composed

® FGM Beam

o Homogeneous Beam

— Analytical Solution (Eg. 41)

a) r {mm) b) r (mm)
F 3 F
12.7 127
I I G- Y - LA
O f | H
8 P
[ ! (m]
5" i o
42 o | / 42 o \
i W \\ \
| i Vo | H |
-2149 |-188.2  -62.3 -34.8 § il 1617 -133.1 44.0 -24.5 R P
| ) 355 /2.2 188.2] 216.4° I L i 252 440 1331 1532
i i [
i / | ayy (MPa) | ovv (MPa)
i e
1 [m] -
H o
i ]
a
¥ T Az7

Fig. 7. Normal stresses at clamped end of beam (1 = 2.19, E (r) = 404(r/1)*%* GPa).

Fixed end

D, =1.142 in
@, =0.173 in
R =100.0 in
E=10" psi
v=0

Fig. 8. Beam geometric, material (homogeneous), and loading characteristics.
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Fig. 13 shows the deformed shape of the Lee frame for each of the
uppercase letters A-E in Fig. 12. These results show the snap-back
phenomena that occurs between the deformed configuration C and D. Fig. 13. Lee’s frame deformed configurations.
Figs. 14 and 15 show the deformed shapes B, C, D, and E.

Fig. 16 shows the normal Cauchy stress, a,,, at the deformed con-
figuration A (cf. Fig. 13). As shown in the figure, the Cauchy stress is 4.1.4. Submerged cantilever riser under hydrostatic load

evaluated along two planes, 1-1” and 2-2’, on the cross section. Similar This example, proposed by Yazdchi and Crisfield [11], considers a
to results shown in the previous example, the stress distribution ob- flexible cantilever polyethylene riser of length 20 m under a vertical
tained here varies smoothly along the radial direction of the pipe. load at the tip. The riser is capped at the ends and submerged at a depth
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Fig. 14. Forces in equilibrium on deformed configurations B and C.
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Fig. 15. Forces in equilibrium on deformed configurations D and E.

of 100 m. The mechanical and geometrical properties of the riser are
shown in Fig. 17. The objective of this analysis is to verify the final
equilibrium configuration of the riser subjected to the action of the self-
weight, buoyancy, and a vertical tip load. The riser is modeled using 20
equally spaced elements, and the loading is applied in 50 equal incre-
ments. A displacement tolerance of 0.001 is used for the convergence in
the Newton-Raphson iteration scheme. In every load step, the con-
verged solution is obtained within four iterations.

Fig. 18 illustrates the deformed configurations for four loading
conditions. In this figure, obtained numerical results show good
agreement with [11].

4.1.5. Vertical riser under constant current and top tension force

The example proposed by Yazdchi and Crisfield [11] analyzed the
behavior of a pre-tensioned riser under a 510 kN axial force caused by a
floating system and a uniform current. The riser has a total length of
320m but the water depth is 300 m. The material and geometrical
parameters of the riser are shown in Fig. 19. This example considers a
typical rigid riser system in the Top Tensioned Riser (TTR) configura-
tion commonly used in both production and drilling on TLP and Spar
platforms. The tension force at the top of the riser is necessary to avoid
buckling due to self-weight.

The structure is modeled using 30 equally submerged elements and
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four equal elements above the water level. The loadings (self-weight,
buoyancy, tension force, and current profile) are applied in 70 equal
increments. Initially, the riser is in the vertical position with the bottom
node being hinged and the top node allowed to move in the X-direction
only. A displacement tolerance of 0.001 is used for the convergence in
the Newton-Raphson iteration scheme. In every load step, the con-
verged solution is obtained within three iterations. Fig. 20 shows two
deformed riser configurations considering the magnitudes for the uni-
form current profile, specifically, 1.0 and 2.0 m/s. It is observed that the
deformed configurations are not symmetrical because of the effect of
current loading, and also because the tension force in the riser varies
along the length, being smaller near the bottom because of its apparent
weight. A good agreement is observed between the numerical solutions
obtained in this study and those obtained by Yazdchi and Crisfield [11].

4.2. Dynamic analyses

4.2.1. Curved cantilever beam under a vertical load at tip

This example considers the dynamic analysis of the curved beam
analyzed in Section 4.1.2. The finite element model uses 16 equally
spaced straight elements, subjected to a sudden 300 b vertical force for
a total time of 0.3 s with a step time of 0.002 s. The physical, geometric,
and loading parameters are shown in Fig. 21.
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Fig. 16. Deformed configuration A and normal stresses on element 13 cross-section (along lines 1-1” and 2-2").

Fig. 17. Submerged cantilever riser.
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12 ] The dynamic response of the tip displacements are plotted in
10 4 Fig. 22. An excellent agreement is observed between the numerical
i 4 30 kN (wet) results obtained with the proposed beam element and those obtained by
8 1 Chan [42].
6 430 kN (dry) —
44 4.2.2. Large displacement static and dynamic analysis of a cantilever FGM
= 2] [ § 30N (wet) beam subjected to distributed loading

In this example, originally proposed by Bathe et al. [43] for a
homogeneous material beam, the objective is to test the FGM beam
element undergoing large displacements under static and dynamic
loadings. The current analysis assumes that the tube is made of a FGM

b initial Canfiguration

Yazdchi & Crisfield
seee Prasent Study

i § 30 kN (dry) with TiC at the inner surface of the pipe and Ni;Al at its outer surface.
Fig. 23 shows the physical and geometrical properties of the pipe, as

well as the applied load intensities in the dynamic analysis (for a linear

N J J ! and non-linear behavior of the beam). In this analysis, the performance
2 4 6 B 10 12 14 18 18 20 . P .
X of the FGM beam is compared with TiC and Ni;Al homogeneous beams.
(m) The beam is modeled using 10 equally spaced elements.
Fig. 18. Deformed configurations of cantilever riser. First, the static response of the beam is investigated. Then, a dis-
tributed load of maximum intensity equal to 30 kN/m is applied in time
increments of the form q = 0.5t (kN/m, 0 t 60), where t is the time
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Fig. 21. Curved cantilever beam considered in analysis.
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lever beam.

step of the numerical analysis. The objective is to verify the correlation
of the vertical displacement of the tip of the beam with respect to the
distributed load applied during the entire loading interval for three
types of material, including FGM. The numerical results obtained are
shown in Fig. 24.

To consider the dynamic behavior of the beam in small displace-
ments (linear analysis) and large displacements (non-linear analysis),
the beam is loaded with distributed loads of magnitude 1.5 kN/m and
9 kN/m, respectively, which are applied using a Heaviside function, as
shown in Fig. 23. Using the time increment of At = 5E 4s, the solu-
tion of the problem is obtained until the instant 0.1 s. The convergence
criterion is set to 1E 4 for displacements and 1E 3 for forces. The
converged solution at each time step is obtained within three iterations.
The linear and non-linear dynamic response for the tip vertical dis-
placement for three types of materials: TiC, FGM, and Ni;Al, are shown
in Figs. 25 and 26, respectively. From the results, a delay is observed
between the linear and non-linear dynamic responses due to the stif-
fening of the beam caused by the tension force in the beam with an
increasing curvature. Consequently, the periods related to the first
natural frequency in the non-linear analysis for the beam materials (i.e.,
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Fig. 24. Non-linear static analysis of cantilever beam.
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Fig. 25. Linear dynamic response of cantilever beam (dashed lines represent
the static solutions).

0,00+
-0.06
-0.124--
=0.18
= -0.24-
2
-0.30
-0.36
i ——TiC
0421 —— FGM
i —— Ni,Al
-0.48 — 7T T T T T T " T T T T
o 25 50 75 100 125 150 175 200
/At

Fig. 26. Non-linear dynamic response of cantilever beam (dashed lines re-
present the static solutions).

TiC, FGM, and Ni;Al) decreased with respect to the period obtained in
the linear analysis. For the last two materials (FGM and NizAl) this
difference is more significant, corresponding to reductions in the order
of 1.9% and 2.4%, respectively (see Table 2).

4.2.3. Flexible riser in catenary configuration

This example studies the behavior of a flexible riser in a catenary
configuration of length 350 m at a water depth of 150 m. One end of the
riser is attached to a sub-sea tower at a depth of 150 m and the other
end is connected to a ship horizontally displaced by 150 m. It is as-
sumed that the riser is fully filled with seawater and hinged at both
ends. The objective is to verify the accuracy of the beam element im-
plemented in the riser analysis subjected to hydrodynamic loading and
prescribed displacements of a ship’s motion. The riser is modeled using
70 equally spaced elements, and the numerical results are compared
with those obtained by Yadzdchi and Crisfield [12]. The geometry and

Table 2
Time period (in milliseconds) of dynamic responses.

Material Linear analysis Non-linear analysis
TiC 27.9 27.7
FGM 42.3 41.5
NisAl 49.0 47.8
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External diameter of the riser
Internal diameter of the nser
Bending stiffness of the riser, £T
Axial stiffness of the riser, EA
Mass density of seawater, p.
Mass per unit length of the riser
Transverse drag coefficient, Cpy
Tangential drag coefficient, Cpy
Inertia coefficient, Cy,
Time step, At
Wave heigth, A
Wave period, T
Surge motion of ship
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Fig. 27. Flexible riser in catenary configuration.

physical properties of the riser, hydrodynamic coefficients, and other
parameters used in the analysis are given in Fig. 27. It is assumed in this
analysis that the riser material is linear elastic. From the data in Fig. 27,
it can be seen that the magnitude of the axial stiffness is five orders of
magnitude larger than the bending stiffness. Hence, the flexible riser
presented a structural behavior equivalent to a cable.

The analysis is divided in two parts: a static analysis, in which the
riser deforms from an initially horizontal position until it connects to
the ship on the surface, and a dynamic analysis, in which the tip of the
riser moves due to the ship motion caused by waves. In the static
analysis, the riser, initially in a horizontal position and located 150 m
below sea level, is subjected to loads due to self-weight and buoyancy.
The dashed line in Fig. 28 illustrates this configuration. Next, the right
endpoint of the riser is connected to a ship located 150 m to the right of
the sub-sea tower. This motion is applied incrementally, and the de-
formed configurations for intermediate installations are shown in
Fig. 28. The horizontal and vertical reactions obtained at the support
points are listed in Fig. 28. The reactions are compared with the values
obtained by Yazdchi and Crisfield [12] that used a beam model and
those obtained by McNamara et al. [44] with cable theory, and a good
agreement is observed between the results.

The bending moment diagram along the riser in the final config-
uration (solid bold line in Fig. 28) is shown in Fig. 29; the results ob-
tained agree with results reported in the literature [12,44].

The dynamic analysis under the action of forces owing to a ship’s
motion and waves is developed for two different cases:

(a) In the first case, only the surge movement of the ship is considered
to investigate the nonlinear effects of the riser response compared
to those obtained by Yazdchi and Crisfield [12]. The top of the riser
is excited with a surge amplitude of 2.01 m and period of 14.0s.
The results of this analysis are represented in Figs. 30 and 31 for the
vertical reactions at nodes 1 and 71, respectively. The vertical re-
action obtained for node 1 occurs between 35.73 and 35.94 kN;
however, in the results obtained in [12], this reaction are in
35.64-36.07 kN range. A very good agreement in the period and in
the average value of the harmonic function is observed. However,
the obtained amplitudes are 51% of those obtained in [12]. High-
order harmonics are also observed at this node. In the case of the
vertical reaction at node 71, an excellent agreement is observed
between the numerical results (amplitude and period) obtained in
the study and those obtained in [12].

In the second case, in addition to the surge movement of the ship, a
harmonic wave with period of 16 s and amplitude of 20.0m is
applied. The results for this case are shown in Figs. 30 and 31. A
good agreement is observed with the results obtained in [12].

(b

-
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In the dynamic analysis, the equations of motion are integrated in the
interval of 400 s using a time increment of At = 0.05s. The convergence
criterion is set to 1E 3 for displacements and 1E 2 for forces. An
average of three and four iterations per time step are necessary to reach
the convergence for the analyzes considering the ship motion only and
considering the effect of the ship and waves, respectively.

5. Concluding remarks

In this study, we present a co-rotational formulation for a general
two-node beam element in 3D, which we use for the non-linear dynamic
analysis of flexible marine risers made of functionally-graded materials.
The material properties are assumed to vary in the radial direction
according to a power law, and the effect of material gradation on the
stiffness and mass matrices, as well as on the internal force vector, are
all evaluated in closed form.

Several verification examples are presented, showing that both
static and dynamic solutions are in good agreement with solutions
available in the literature. The numerical examples reveal significant
differences in stress distributions, as compared to those obtained for
risers made of homogeneous materials, which suggests that FGMs can
be used for the efficient design of flexible marine risers.
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Appendix A. Nomenclature

t time;
Xc, Yo, Z& co-rotated coordinate system;
X1, ¥, 22 nodal reference system; local coordinates on element cross
section;
pseudo vector of rotation;
components of rotations about X¢, ¥ and Z axis;
displacement increment vector;
components of displacements in the X, Yo and Z directions,
respectively;
element coordinate in the longitudinal (X¢) direction;
finite element shape functions for beams;
element length;
interpolation matrix;
mass matrix;
damping matrix;
global displacement vector;
global velocity vector;
global acceleration vector;
ey, ez, €13 linear strain components;
1> M Th; Donlinear strain components;
L linear strain-displacement transformation matrix;
L nonlinear strain-displacement transformation matrix;
linear stiffness matrix;
L nonlinear stiffness matrix;
Young’s modulus;
Poisson’s ratio;
material density;
non-homogeneity parameter of the material density;
non-homogeneity parameter of the Young’s modulus;
equivalent axial rigidity;
equivalent flexural rigidity;
equivalent torsional rigidity

W
Vi, V2, V3
u
Uy, U, Us

cccuoz
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Appendix B. Shape functions and element matrices

B.1. Finite element shape functions for beams

Il
—_
|
w
—
o
~
+
[}
~—
o
~—,

$O=1-5, ¢,EO =% 6,©

¢
T
4 © =14+ 3(5. 4,0 = 25-3(F) ®.1)

B.2. Linear strain-displacement transformation matrix

dgy _ _ dg; _ _ dgy dpg _  ddg dg dg7 dg7 _ . dgy  dgg
? XZW x3f 0 X3W ZE d—;xzw )Cg,w 0 X3? de—g
d d
=10 0 0 —)@% 0 0 0 0 0 _dei;rz 0 0
4 )
0 0 0 xzd—§ 0 0 0 0 0 ngl—E 0 0 s B.2)
B.3. Linear stiffness matrix
B2 90 0o 0o o o -E 9 0 0o 0 0
BH o o o & o -EH o o o =
B0 - o o 0 -SE o -E
(J’;_—f 0 0 0 0 0 —% 0 0
4ET 6ET 2E]
T o0 o o0 G 0 F 0
4ET —6ET 2E]
K; - T o0 7= o 0o 0 T
% 0 0 0 0 0
12E7 6ET
- 0 0o 0 T
2o H o
symmetric % 0 0
4ET
T 9
4EL
L haxiz
with: (8.3

=

_ Eurﬁ _ ”Eora4 ri Bra
@=/, 200 +v) = a+ u)(ﬁ+4)[1{ﬁ) ]
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B.4. Nonlinear strain-displacement transformation matrix

00 0 ¢ 0O 00 0O 0 ¢ O 0
00 —-¢, O g 0 0 0 ¢, 0 —¢, 0
0 ¢, 0 0 0 ¢ 0 —¢, 0 0 0 —g¢
d¢s dgs dgy _ 9%
0 3 0 0 0 ra 0 i 0 0 0 &
—_ d¢3 — diﬁ d¢4 d¢6
=[0 O ra 0 E 0 0 0 i 0 X3 0
dgy dg,
0 0 0 z 0 0 0 0 0 ra 0 0
_ 4 dgs d¢; _ 4%
0 0 dg 0 z 0 0 0 3 0 G 0
d¢7 d¢s _ % _ %
_0 ¥ 0 0 0 ra 0 G 0 0 0 x | -
B.5. Matrix of the updated Cauchy stress-tensor components
0 P F —os oo 0 R e
0 [:l 0 U o |‘-Z.\"_\ U 13Xy ;7' 3xz
0 0 0 er1:-;..g —|r|3,\3;cr-.-_..x: 0
B o 0 —rp X3 0 0
= aon Xz 0 ]
11 (13 + .x%) 0 0
symmetric o110 —(r 1 X2 X5
o $xt
B.6. Consistent mass matrix
My, 0 0 0 0 0 M 0 0 0 0 0
Mz_g 0 0 0 ‘Mz 6 0 JIMZ_S 0 0 0 szl 12
f‘/!]_; 0 1'!&’3.5 0 0 0 M3I_L} 0 1'!&’3.11 0
M4 0 0 0 0 0 Ma 1o 0 0
Ms s 0 0 0 Msy 0 Ms 1 0
M = iuﬁlﬁ 0 aMgg’g 0 0 0 Mﬁlj‘)_
o M7 0 0 0 0 0
Myg 0O 0 0 Ms 12
Myy 0 Mg 11 0
symmetric Mg 1o 0 0
My 0
Mzl
with
m m 13 6k? 11L k? 9 6k?
M ,=—, M,= —, My, =|—+ —4m, Mi={—+ — {7, = ———— M
LT R > (35 SLZ) > (210 IOL) Mes (70 SLZ)
13L k)
My =|—= +—{m, Ms3=My Mss=—Mys, Mszo=Mzs, Msn=—Mazn,
20 10
m m L? 2k? L2 k?
M,, = —k?2 =—k, Ms=|—+ —V|m, Msg=M,},, M5 =h—-——{m
4,4 3 r 1\44,10 6 r 5,5 (105 15 5,9 2,12 511 140 30

Mss =Mss, Mgg=—My1, M1 =Ms1, M;=M,, Mgg=DM, M=—Myg,

Moo =Mp, Mo =Ms, Moio =Masa, M =Mss, Ma2iz=Mss,
_ 2mprp A , 1+ 2)\[(r&ttrstt 2 5
m= 1+ — s K=o e p k =2k

a+ 2 I 2\a+4 )\ —r,

Appendix C. Supplementary material
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(B.4)

(B.5)

(B.6)

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.engstruct.2018.05.092.
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