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A B S T R A C T

This paper considers a co-rotational beam formulation for beams, which is used for the nite element analysis offi

fl flexible risers and pipelines made of functionally graded materials. The in uence of material gradation is ad-

dressed using an exponential variation of properties throughout the thickness of the pipe. Space discretization of

the equilibrium equations is derived based on the Euler Bernoulli assumptions considering two-node Hermitian–

beam elements which are referred to a co-rotation coordinate system attached to the element local frame of

coordinates. The geometric non-linear e ects of the beam are considered under large displacement and rota-ff

tions, but under small-strain conditions. The de ections of the riser result from forces caused by self-weight,fl

buoyancy, sea currents, waves, the action of oaters, seabed-structure interactions, and ship s motion. Wefl ’

provide numerical examples and compare our results with the ones available in the literature. In addition,

applications related to practical o shore engineering situations are considered to highlight the behavior offf

functionally graded materials (FGMs) as compared to homogeneous risers.

1. Introduction

Flexible marine risers ar e used to transport oil from a wellhead on the

seabed to platforms based on floating production systems, such as Spar,

Floating Production Storage and Offloading (FPSO), semi-submersibles

and Tension-Leg Platform (TLP). A mar ine riser is contin uously s ubjecte d

to severe environmental loading from currents, wave s, and winds. For this

reason, marine risers are considered one of the most critical parts of a

complex offshore production system. Their failure can se verely deter iorate

the marine environment and interrupt the oil production, causing costly

environmental recovery and lost production.

Owing to their low exural rigidity, as compared to their axial ri-fl

gidity, marine risers undergo large changes in curvature under oper-

ating loads. As a result, one needs to consider geometric nonlinearities

for their structural evaluation. In some special circumstances in which

marine piping undergoes (a) large deformations and (b) negligible

tensile loading, its bending sti ness may become insigni cant as com-ff fi

pared to other local e ects, such as cross-section ovalization ff [1]. I n

these special cases, the analysis of marine piping requires a more de-

tailed numerical model .[2,3]

Computational models based on the nite element method for staticfi

and dynamic analysis of risers involving geometric nonlinearity have

been the subject of extensive research . These models employ the[4 12]–

classical theory of beams under nite rotations and the governingfi

equilibrium equations are obtained from the following three basic de-

scriptions: total lagrangian, updated lagrangian and co-rotational. The

first two approaches use, respectively, the undeformed and deformed

con gurations, as a reference for both static and kinematic variables.fi

Both total and updated Lagrangian formulations have been extensively

used in the literature in various beam element formulations [13 17]–

and the only advantage of using one over the other lies in their nu-

merical e ciency. However, under signi cantly large rotations, theseffi fi

two formulations may cause spurious sti solutions because of the non-ff 

vectorial nature of rotation variables. To overcome such a di culty, co-ffi

rotational formulations have been proposed in the literature as[18 21] –

a framework for nonlinear analysis of one-dimensional nite elementfi

models such as beam elements. In this approach, the total motion of a

beam is decomposed into two parts: rigid body and pure deformational.

The deformation is measured from a rotating frame attached to the

element undeformed con guration, and standard linear formulationfi

solutions are employed in the numeric incremental procedure in such a

way that non-linearity is considered by the spatial rotation of the un-

deformed reference frame. This procedure is particularly well tted forfi

the nite element representation of slender pipe kinematics, such as infi
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marine riser structures undergoing large three-dimensional displace-

ments. This study considers axial, bending, and torsional deformations,

but neglects transverse cross-section deformations of the pipe.

Oil exploration has shifted into more remote locations and ultra-

deep water under severe operating conditions, demanding lightweight,

strong, durable riser structures to reduce production costs and increase

e ciency. In this regard, the use of composite materials for risersffi

[22,23] is quite promising because, as compared to traditional mate-

rials, they o er a high sti ness to weight ratio, high tensile and fatigueff ff

strength, improved structural damping, low thermal conductivity, and

good corrosion resistance. However, delamination is a critical damage

mechanism in traditional composite materials under extreme mechan-

ical and thermal loadings . As a solution to this problem, material[24]

scientists from Japan proposed in the mid 1980s the concept of func-

tionally graded materials (FGMs) to design a thermal barrier[25] 

capable of withstanding a temperature gradient of 1000 K across a 10-

mm cross-section. These materials provide continuous graded macro-

scopic properties with gradual change in microstructure and are de-

signed to take advantage of the desirable features of their constituents

phases. Due to the material gradation, FGMs have no material inter-

faces, thus eliminating the possibility of delamination, as it is the case

in traditional composite materials.

Over the last years, FGMs have been used in di erent industrialff

fields such as aerospace, nuclear science, defense, automotive and en-

ergy conversion. For instance, functionally graded (FG) plates as well as

FG cylindrical shells have been reported in the literature on bending,

vibration and buckling analysis .[26 34]–

An ideal material for marine risers would combine the best prop-

erties of metals at inner surfaces, such as toughness and machinability,

and of ceramics at outer surfaces, such as high strength and tempera-

ture resistance. This would be a very e ective engineering solution butff

requires material usage to an extent not feasible for production in our

days. However, FGMs could be employed as a transition material in

multi-layer riser cross-sections to prevent abrupt di erences in me-ff

chanical and thermal properties and avoid debonding at certain ex-

treme loading conditions. Because cracks are likely to initiate at in-

terfaces and propagate into the weaker material sections, FGMs can

reduce the e ects of thermal, residual, or stress concentration factorsff

[17]. Although still not available in full-scale industrial production,

FGMs are man-made materials in which the method of fabrication,

geometry, reinforcement location, and matrix alloy may be tailored to

achieve certain desired properties.

In this study, we present a concept for marine risers that considers

material gradation throughout the pipe thickness. The FGM model is

isotropic with constant Poisson s ratio and its non-homogeneity arises’

from the variation of the Young s modulus (E) and the density (’ ρ) in the

thickness direction according to a power law . A beam element[31,35]

model based on Euler-Bernoulli kinematics is adopted, which considers

both geometric nonlinearities and a mass matrix derived in closed form.

In the next two sections, details of a 3D co-rotational beam nite-ele-fi

ment formulation are given with constitutive relations associated to

FGM capabilities incorporated. The formulation was implemented, and

in Section the results of some sample analyses are presented that il-4 

lustrate the important features of graded material usage in marine risers

and the e ect of its non-homogeneity on the stress distribution.ff

2. Description of the 3D co-rotational beam model

This section presents details of the 3D co-rotational beam formula-

tion used in the present study.

2.1. Basic assumptions

The following hypotheses are adopted to derive the behavior of the

beam element:

• plane sections remain plane and perpendicular to the beam center-

line after deformation (Euler-Bernoulli hypothesis);

• large displacements are allowed but only under small strain conditions;

• the material behaves elastically, and thus, element model non-

linearities result from both the spatial con guration at each instantfi

of the analysis and the coupling of axial tension and bending de-

formation mechanisms; and

• under torsion loadings, the cross-section remains plane, i.e., it does

not warp.

2.2. Coordinate systems

A c o-rotational beam element undergoing large displacements and ro-

tations is shown in Fig. 1 . In this figure, we identify three configur ations:

initial configuration C( )0 , which is the element in its initial (undeformed)

position at time t = 0; co-rotated configuration C( )C , which is the element

after it has been subjected to rigid body movements from its init ial con-

fi figur ation; a nd deformed con guration C( )D , which is th e e lement in its

current configuration at t ime t under external loading . Coordinate systems

attached to the beam element at each configuration are also shown in Fig. 1

and are described as follows:

• the global frame (X , Y , Z )G G G is a coordinate system describing the

structure, and this system remains xed during the entire analysis;fi

• the element base frame (X , Y , Z )0 0 0 is the coordinate system of the

element at its initial con gurationfi C( )0 ; in this con guration, thefi

beam element is assumed to be straight and the X0-axis coincides

with the element longitudinal direction; the other axes (Y0 and Z0)

are set to the cross-section principal directions;

• the co-rotated frame (X , Y , Z )C C C is associated with the co-rotated

configu ration C( )C ; the XC-axis passes through two end nodes of the

element; on this system, the entire element formulation is written; and

• the convective frame (X , Y , Z )D D D is associated with the deformed

con gurationfi C( )D ; this system follows the element centerline in the

deformed con guration and is attached to its center; thefi XD-axis

de nes the cross-section orientation, and the other axes (fi YD and ZD)

are chosen along the cross-sectional principal directions.

2.3. Local beam kinematics

In this section, compatibility relations for a 3D beam model used to

represent the structural behavior of risers are derived. presentsFig. 2 

successive positions at two instants of analyses separated by a time

increment Δt. A general point P in the riser moves from points Pt to +Pt Δt

Fig. 1. Co-rotational frame of a deformed beam element.

J.C.R. Albino et al. Engineering Structures 173 (2018) 283–299

284



with a displacement increment vector = −+
P P

t t
P
tΔ obtained from

position vector di erences de ned in the global coordinate systemff fi

= +  +  =  +  ++ +x x  x  x,P
t

G
t

P
t t

G
t t

2 2  3 3
Δ Δ

2 2  3 3 (1)

where G
t and +

G
t tΔ are cross-section centerline position vectors in co-

rotated and deformed con gurations, respectively, and the two pairs offi

unit vectors 2 and 3 and, 2 and 3 are axes of principal directions of

inertia attached to the cross-section of the beam in both con gurations.fi

Considering the element cross-section, local coordinates x2 and x3
should satisfy the geometric condition ⩽ +  ⩽r x  x  r( )i o2

2
3
2 1/2 , where ri

and ro are, respectively, cross-sectional internal and external radii.

Orthogonal vector bases i and i (i = 1, 2, 3), are related by a trans-

formation (rotation) matrix

= =i(  1, 2, 3)i i (2)

In large displacement analyses, the cross-section rotations of risers

are no longer small enough to be treated as rotational vectors because

the obtained nite measures do not satisfy classical linear algebra rulesfi

such as the commutative vector property . Thus, a pseudovector[36]

rotation is conveniently de ned asfi

= + + =v v v ψ1 1  2 2  3 3 (3)

where =v i(  1, 2, 3)i are cross-section rotation increments at time in-

terval Δt referred to vector base i . This de nition stems from a geo-fi

metric property that any nite rotation can be properly represented byfi

a single rotation of an angle

= + +ψ v v v1
2

2
2

3
2

(4)

about the spatial axis parallel to the unit vector .

The orthogonal rotation matrix in Eq. , written in terms of(2) ,

has the following representation

⎜ ⎟= +  + ⎛
⎝

⎞
⎠

ψ

ψ

ψ

ψ

sin
( )

1

2

sin( /2)

/2
( ) ( )

2

(5)

where is the identity matrix (third order) and ( ) is a skewed

symmetric matrix de ned byfi

=
⎡

⎣
⎢
⎢

−
−

−

⎤

⎦
⎥
⎥

v v

v v

v v
( )

0
0

0

3 2

3 1

2 1 (6)

Applying Taylor series expansion to the trigonometric functions in

Eq. and retaining all terms up to the second order, an approximate(5) 

expression for the transformation matrix gives

= +  +( )
1

2
( ) ( )

(7)

By substituting Eq. into Eq. , we obtain(6) (7)

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

− − +  +

+ − − +

− +  +  −

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

+

+

v v

v v

v v

1

1

1

v v v v  v v

v v v v v v

v v  v v v v

2 3 2 2 2

3 2 2 1 2

2 2 1 2 2

2
2

3
2

1 2  1 3

1 2  1
2

3
2

2 3

1 3  2 3 1
2

2
2

(8)

which substituted into Eq. and the obtained expressions for(2) i into

Eq. , results in the following components of displacement increment(1)

vector components

(9)

where u1, u2 , and u3 are the cross-section centerline displacement in-
crements, components of vector = −+

G G
t t

G
tΔ , i n Fig. 2.

The Green-Lagrange deformation components contributing to the

deformation energy in the principle of virtual work (PVW), are ex-

pressed, with respect to the local reference axes i [13], in terms of the

displacement of a point P in the form

= +  +  +
= + +  +  +
= + +  +  +

ε u  u  u  u

γ u  u  u u  u u  u u

γ u  u  u u  u u  u u

( )  ( )  ( )P P  P  P

P P P P P P P P

P P P P P P P P

11
1

2
2 1

2
2 1

2
2

12

13

1,1 1,1 2,1 3,1

1,2 2,1 1,1 1,2 2,1 2,2 3,1 3,2

1,3 3,1 1,1 1,3 2,1 2,3 3,1 3,3 (10)

In Eqs. , a comma after an index means di erentiation of a(10) ff

displacement increment component with respect to the coordinate.

Displacement increment measures in Eqs. are expressed up to a(10) 

second-order approximation. The incremental numerical procedure al-

lows us to follow the exact solution if su ciently small load incrementsffi

are used.

Substituting Eq. into Eq. and eliminating the algebraic(9) (10) 

Fig. 2. Beam kinematics and coordinate systems.
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terms of order higher than two, deformation increments in terms of the

displacement increments of a cross-section results in the following

equations

which are geometrically compatible with deformation kinematics.

3. Incremental equilibrium equations for highly deformed FGM

risers

3.1. Co-rotational updated Lagrangian formulation

The element formulation is obtained considering the linear e( )ij and

nonlinear η( )ij strain contributions in the imposition of the PVW. Thus,

considering the equilibrium of the structure at time +t Δt , with respect

to the latest co-rotated con guration at time t, the PVW for the updatedfi

Lagrangian formulation gives

∫ =+ + +S δ  ε d V
V

ij
t t

t ij
t t

t
t t tΔ Δ Δ

t (12)

where +t tΔ is the external virtual work due to surface and body forces

∫ ∫= ++ + +f δu d S  f δu d Vt t

S i
St t

i
S

V i
Bt t

i
Δ Δ

0
0 Δ

0
0

0 0 (13)

In Eqs. ,(12) and (13) δuk is the virtual variation in the displacement

components + ut t
k

Δ , and + Sij
t t

t
Δ and + εij

t t
t
Δ are the components of the

second Piola-Kirchho stress and the Green-Lagrange strain tensors,ff 

respectively. These two tensors correspond to the con guration at timefi

+(t Δt) but measured in the reference frame at time t.

To develop a linearized incremental solution for the nonlinear[13] 

Eq. , the following decompositions are used(12)

= +  = ++ +S τ  τ  ε ε  εΔ ,  Δij
t t

t
t
ij ij ij

t t
t

t
ij ij

Δ Δ
(14)

where τt ij are the Cauchy stress tensor components at time t and τΔ ij and

εΔ ij are the stress and strain tensors increments. As shown in Eq. ,(11)
the strain increment components are decomposed in linear e(Δ )ij and

nonlinear η(Δ )ij as

= +e ηεΔ Δ Δij ij ij (15)

From the above discussions, Eq. can be written as(12) 

∫ + + + = +τ τ δ ε e η d V( Δ ) ( Δ Δ )
V

t
ij ij

t
ij ij ij

t t tΔ
t (16)

where =δ ε  0t
ij (because the element is subjected to rigid body motions

only in the reference con guration), and assuming a linear elastic ap-fi

proximation for the incremental stresses and strains = C eτΔ Δij t ijrs rs , one

obtains:

∫ ∫ ∫+ = −+C  e δ e d V  τ δ η d V  τ δ e d VΔ Δ  Δ  Δ
V

t ijrs  rs  ij
t

V

t
ij ij

t t t

V

t
ij ij

tΔ
t t  t

(17)

In this equation, the left-hand side leads to the linear and nonlinear

sti ness matrices, and the right-hand side leads to the external andff

internal force vectors. Eq. was employed in the static analysis.(17) 

In the formulation of dynamic problems, including the beam inertia,

the PVW was generalized by the D Alembert s principle . Then,’ ’ [37]

using Newton s second law and the term corresponding to the body’

forces in Eqs. , one obtains(12) and (13)

∫ ∫ ∫= + −+ +  +  + +S δ  ε d V  f  δu  d S  f  ρ  u  δu d V( ¨ )
V

ij
t t

t ij
t t

t
t

S i
St t

i
S

V i
Bt t t t

i i
Δ Δ  Δ

0
0 Δ

0
0 Δ  0

t 0 0

(18)

By adding the term corresponding to the viscous damping in Eq.

(18), we obtain the incremental equation of dynamic equilibrium

∫ ∫ ∫
∫ ∫  ∫

∫

+ +

+ =  +

−

+ +

+ +

ρ u δu d V k u δu d V C e δ e d V

τ δ  η d V  f  δu  d S  f  δu d V

τ δ  e d V

¨ ̇ Δ Δ

Δ

Δ

V

t t
i i

V

t t
i i

V
t ijrs  rs  ij

t

V

t
ij ij

t

S i
St t

i
S

V i
Bt t

i

V

t
ij ij

t

0 Δ  0  Δ  0

Δ
0

0 Δ
0

0

t

t

t

0 0

0 0

(19)

In the next section, equilibrium Eq. will be written in its matrix(19) 

form considering the structure displacements discretization by using

interpolation functions.

3.2. Derivation of interpolation matrix and global dynamic equilibrium

equation

For the nite element solution of Eq. , a two-node beam modelfi (19)

was considered under Euler-Bernoulli assumptions with active axial,

bending, and torsion displacements, all interpolated along its length L

using a one-dimensional Hermite polynomial - ξ coordinate along the

element as shown in . Thus, the incremental displacement eld ofFig. 3 fi

the cross-section center line within the element results in

= +
= + + −
= + − +
= +
= −  +  +  −
= − + −

u ξ  ϕ ξ u  ϕ ξ u

u  ξ  ϕ  ξ u  ϕ  ξ u  ϕ  ξ v  ϕ  ξ v

u  ξ  ϕ  ξ u  ϕ  ξ u  ϕ  ξ v  ϕ  ξ v

v ξ  ϕ ξ v  ϕ ξ v

v  ξ  ϕ  ξ u  ϕ  ξ u  ϕ  ξ v  ϕ  ξ v

v  ξ  ϕ  ξ u  ϕ  ξ u  ϕ  ξ v  ϕ  ξ v

( )  ( )  ( )

( )  ( )  ( )  ( )  ( )

( )  ( )  ( )  ( )  ( )

( )  ( )  ( )

( )  ( )  ( )  ( )  ( )

( )  ( )  ( )  ( )  ( )

1 1 1
1

2 1
2

2 3 2
1

4 2
2

5 3
1

6 3
2

3 3 3
1

4 3
2

5 2
1

6 2
2

1 1 1
1

2 1
2

2 7 3
1

7 3
2

8 2
1

9 2
2

3 7 2
1

7 2
2

8 3
1

9 3
2

(20)

where ϕi are the nite element shape functions for beams, as de ned infi fi

Appendix .B.1

The linear terms in Eq. relative to the displacements at any point(9) 

P in the pipe cross-section are expressed as

= −  +
= −
= +

u ξ x x  u x v  x v

u ξ x x  u x v

u ξ x x  u  x v

( ,  ,  )

( ,  ,  )

( ,  ,  )

P

P

P

2 3  1 2 3  3 2

2 3  2  3 1

2 3  3  2 1

1

2

3 (21)

The displacement elds in Eq. can be written in a matrix formfi (21) 

after replacing Eq. in , and one obtains(20) (21)

= =u u u ξ x  x[ ] ( , , )P P P
T

2 31 2 3 (22)

where ξ x  x( ,  , )2 3 is the element interpolation matrix de ned asfi

=
⎡

⎣

⎢
⎢

− −  −  −
− − −

−

⎤

⎦

⎥
⎥

ϕ  x ϕ  x ϕ  x ϕ  x ϕ  ϕ  x ϕ  x ϕ  x ϕ  x ϕ

ϕ x ϕ ϕ ϕ x ϕ ϕ

ϕ x ϕ ϕ  ϕ x ϕ ϕ

0 0

0 0  0 0 0  0

0 0  0 0 0  0

1 2 7 3 7 3 8 2 8 2 2 7 3 7 3 9 2 9

3 3 1 5 4 3 2 6

3 2 1 5  4 2 2 6

(23)

and is the incremental nodal displacement vector associated to the

beam element de ned asfi

= u u u v v v u u u  v v v[ ]T
1
1

2
1

3
1

1
1

2
1

3
1

1
2

2
2

3
2

1
2

2
2

3
2

(24)

Using the interpolation matrix to evaluate Eq. , the global dy-(19)

namic equilibrium equation in the matrix form is

+ + +  = −+ +  +¨ ̇ ( )t t  t t t
t

t
t

t t t
t

Δ Δ  Δ (25)

where is the global mass matrix, is the global damping matrix,
t
t

is the global linear incremental sti ness matrix,ff
t
t is the global

nonlinear geometric sti ness matrix,ff
+t tΔ is the updated global vector

of external nodal forces,
t
t is the global vector of internal nodal forces,

is the global vector of incremental nodal displacements, and + ̇t tΔ

and + ¨t tΔ are the updated global nodal velocity and acceleration vec-

tors, respectively. summarizes these calculations.Table 1 

Fig. 3. 3D beam element.
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A step-by-step time integration of the equilibrium equations was

implemented with the HHT algorithm , and the numerical solution[7]

was obtained using the Newton-Raphson iterative technique .[13]

3.3. Linear sti ness matrixff

The linear strain components in Eq. are de ned at any point of(11) fi

the riser cross-section by

= −  +
= − −
= − −

e u x v  x v

e u v x v

e u v x v

2

2

11 1,1 2 3,1 3 2,1

12 2,1 3 3 1,1

13 3,1 2 2 1,1 (26)

The rst strain componentfi e11 corresponds to the linear strain (ex-

tensional) in the direction ξ ( ), and componentsFig. 2 e12 and e13 refer to

the shear strains (angular). The relation between the linear strains and

the incremental nodal displacements is expressed in the matrix form

using Eqs. as(20) and (26) 

= =e e e[ 2 2 ]T11 12 13 (27)

where is the linear strain-displacement transformation matrix as

de ned in Appendix .fi B.2

The components of the Cauchy stress tensor ( ) are related to the

components of the linear strain tensor ( ) through the linear elastic

constitutive matrix ( ) a s

= =σ σ σ[ ]T11 12 13 (28)

where

= = +E G G  G  E  υdiag( , , ), /(2(1 ) ) (29)

In the constitutive matrix, is the Young s modulus andE ’ υ is the

Poisson s ratio.’

Because we assume that the risers are made of a FGM, we use a non-

homogeneous material model in which the elastic modulus, , variesE

according to the following power law:

= ⩽ ⩽E E r r  r  r  r( /  ) ,o o
β

i o (30)

where β is a non-homogeneity parameter of the Young s modulus and’

= +r x  x( )2
2

3
2 1/2 is used to refer to the radial coordinate through the

pipe thickness.

The linear sti ness matrixff results from the discretization of the

term ∫ C e δ e dVΔ Δ
V ijrs rs ij in Eq. , as follows(19)

∫ ∫ ∫= = ( )C e δ e dV δ dV δ dVΔ Δ  ( )  ( )
V

ijrs rs ij
V

T T

V

T

(31)

∫= dVwhere
V

T

(32)

After replacing Eq. and(29) in Eq. and by integrating the vo-(32) 

lume of the riser element ( ), we obtain the nal expression for theFig. 2 fi

linear sti ness matrix. To calculate the volume integral of Eq. ff (32), it is

convenient to convert the local co-rotated coordinate system of the riser

element x  xξ( , , )2 3 to the cylindrical coordinate system r θξ( , , ) by using

the following transformations: = =x r θ x r θcos , sin2 3 and
⩽ =  +  ⩽r r  x  x  r( )i o2

2
3
2 1/2 , which leads to

∫ ∫ ∫ ∫= =dV rdξdrdθ
V

T
π

r

r L
T

0

2

0i

o

(33)

where is presented in Appendix in a closed form and is expressedB.3 

as a function of the equivalent rigidity moduli (e.g., EA , EI , and GJ).

3.4. Geometric sti ness matrixff

The geometric sti ness matrix results from the discretization of theff

incremental (virtual) work done by the Cauchy stress tensor on the

virtual strain increment (nonlinear part) in the incremental equilibrium

equation (Eq. ),(19)

∫ ∫= τ δ  η dV  δ  dVΔ
V

ij ij V

T
(34)

where =δ δη δη δη[ ]T
11 12 13 is the rst variation of the nonlinearfi

strain tensor and = σ σ σ[ ]T
11 12 13 is the vector of the updated Cauchy

stress tensor components.

After some algebraic manipulations and making use of Eq. (20), w e

obtain the geometric sti ness matrixff as

∫ ∫= ( )δ dV  δ  dV( )
V

T T

V

T

(35)

∫ ∫ ∫= rdξdrdθwhere
π

r

r L
T

0

2

0i

o

(36)

and is the nonlinear strain-displacement transformation matrix and

is the matrix of the updated Cauchy stress tensor components. Ap-

pendices presentB.4 and B.5 and matrices explicitly.

3.5. Consistent mass matrix

The consistent mass matrix, , is obtained from the work done by

the inertial forces in Eq. , as follows:(19)

∫ ∫=+ +( )ρ u δu dV δ ρ dV¨ ( ) ¨
V

t t
i i

T

V

T t tΔ Δ

(37)

∫ ∫ ∫= ρ rdξdrdθ
π

r

r L
T

0

2

0i

o

(38)

where is the element interpolation matrix (Eq. ) and(23) ρ is the

material density, which varies along the radial coordinate of the pipe

cross-section according to the following power law

= ⩽ ⩽ρ ρ r r  r  r  r( /  )  ,o o
α

i o (39)

where α is a non-homogeneity parameter of the material density. The

consistent mass matrix is shown in Appendix in a closed form.B.6 

3.6. Vector of external forces

The vector of external forces results from the discretization of the

first and second terms on the right-hand side of Eq. (virtual work(19) 

done by loads acting on the riser). Thus

∫ ∫= ++ +
dS dV

S

S St t

V

T Bt tΔ
0

Δ
0

T

(40)

Table 1

Integral form and corresponding matrix form of terms of Eq. .(19)

Integral form Matrix form

∫ +ρ u δu d V¨
V

t t
i i0

0 Δ  0 ∫= ∑+ +ρ d V¨ [ ] ¨t t
m V m

m m T m  m t tΔ
0 ( )

0 (  )  (  )  (  )  0  (  )  Δ

∫ +k u δu d V̇
V

t t
i i0

Δ 0 ∫= ∑+ +k d V̇ [ ] ̇t t
m V m

m m T m  m t tΔ
0 ( )

0 (  )  (  )  (  )  0  (  )  Δ

∫ C e δ e d VΔ ΔtV t ijrs  rs  ij
t ∫= ∑  t d V[ ]

t
t m tV m

m Tt
t

m mt
t

t m
( )

( ) ( ) ( ) ( )

∫ τ δ  η d VΔtV
t
ij ij

t ∫= ∑  d V[ ]
t
t m tV m

m Tt
t

t m mt
t

t m
( )

( ) ( ) ( ) ( )

∫ ∫= ++ + +
f δu d S  f δu d Vt t

S i
St t

i
S

V i
Bt t

i
Δ

0
Δ
0

0
0

Δ
0

0 ∫ ∫= ∑  + ∑+ + +
d S  d Vt t

m S m
S m T S mt t m

m V m
m T B mt t mΔ

0 (  )
( ) ( )Δ

0
0 ( )

0 ( )
( ) ( )Δ

0
0 ( )

∫ τ δ  e d VΔtV
t
ij ij

t ∫= ∑  d V
t
t m tV m

m Tt
t

t m t  m
( )

( ) ( )  ( )
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The external forces considered in this study were self-weight, buoyancy,

hydrodynamic (owing to maritime waves, currents, and added mass

inertia), prescribed displacements at the oating platform, action offl

floaters, and seabed-structure interactions (for further information

about these external forces, see for example Ref. ).[7]

4. Numerical results

The co-rotational approach for nonlinear analysis of FGM risers was

implemented in a Fortran code and representative numerical (static and

dynamics) examples were carried out to validate the element perfor-

mance. The in uence of material gradation on the numerical responsefl

in comparison with homogeneous material risers is discussed.

4.1. Static analyses

4.1.1. Cantilever beam under buckling

In this example, a cantilever FGM beam subject to a compressive

centric force at the end of the tip is analyzed in a post-critical buckling

condition. A small lateral force Q (0.1% of the compressive force P) is

applied to move the column from its vertical position. The numerical

input data used, including beam dimensions and material property

parameters, are presented in . The Young s modulus varies alongFig. 4 ’

the radial direction of the pipe cross-section according to the power law

=E r r r GPa( ) 404( / )o 0.639 , having TiC and Ni Al3 at the external radius

and inner radius, respectively.

The FGM column is modeled using 10 straight beam elements, the

compression loading is applied in 400 equal increments, and the dis-

placement tolerance is set to 0.001. The critical load for the rstfi

buckling mode is calculated by the Euler Formula as[38] 

= =( )( )P 1.745 N
π EI

Lcrit 4

z2

2 . presents the deformed con gurationsFig. 5 fi

of the column for di erent levels of compressive loadff =λ(P P )crit . The

normalized tip displacements of the column for di erent values offf P/Pcrit
ratio are shown in . The results are in good agreement with theFig. 6

solution presented by Timoshenko for a homogeneous material.[38] 

Finally, shows the results of the normal stress distributions atFig. 7 

the clamped end of the beam for =λ 2.19 . These longitudinal stresses

are analytically evaluated using the expression

⎜ ⎟= = ⎛
⎝
− + ⎞

⎠
σ E r ε  E r

P

A

M x

EI
( )  ( )YY YY

z

z (41)

where =P 2.19Pcrit and = −M Puz B (neglecting the contribution of the

small force Q). a and b present normal stress distributions furn-Fig. 7

ished by the numerical analysis for the FGM beam and by Eq. along(41) 

the beam for two di erent cross-section cuts: at a vertical cross-sectionff

and at 45° apart from this position, respectively. A very good agreement

between these distributions is observed. Also, these results are com-

pared to the stresses in a homogeneous beam cross-section having the

same equivalent bending rigidity. For this particular loading, the plots

show stress redistributions for the FGM material with 15% increase in

the maximum longitudinal stress and a 43% decrease in its minimum

value, as compared to the linear distributions shown in the homo-

geneous material beam.

4.1.2. Cantilever arch beam under out-of-plane loading

This example proposed by Bathe and Bolourchi aimed to[13] 

evaluate the accuracy and robustness of the 3D beam element

Fig. 4. Beam geometric, physical, and loading characteristics.

Fig. 5. Beam con gurations for various tip loadings.fi
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implemented with axial forces, bending, and torsion. The analysis

considers a 45° cantilever arch beam with radius of 100 in measured

from the centerline of the pipe subjected to a vertical end load, as

shown in .Fig. 8

The model is idealized using eight equal straight-beam elements.

The structure is subjected to a maximum load factor of =λ 7.2 which is

applied in 60 equal increments. shows the normalized tip dis-Fig. 9 

placements uB, vB, and wB in the X, Y, and Z directions, respectively. A

good agreement is observed between obtained numerical results and

the solutions provided by Bathe and Bolourchi .[13]

Fig. 10 shows the deformed con gurations for three di erentfi ff

loading levels and the tip displacements, which are compared to Bathe

and Bolourchi .[13]

4.1.3. Lee s frame

This well-known problem was proposed and solved analytically by

Lee et al. and has been studied elsewhere [39] [14,40,41]. I t is a

benchmark problem to the validation of formulations for geometric

nonlinear analysis and exhibits complex equilibrium paths featuring

snap-through and snap-back phenomena. The FGM frame is composed

Fig. 6. Normalized numerical displacements as compared to Timoshenko s so-’

lution .[38]

Fig. 7. Normal stresses at clamped end of beam ( =λ 2.19, =E r r r( ) 404( / ) GPa0
0.639 ).

Fig. 8. Beam geometric, material (homogeneous), and loading characteristics.
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by the union of two beams under a vertical load P, with each structural

member having a length of 1.2 m and pipe cross-section; the geometry

and material parameters are shown in .Fig. 11

The frame is modeled using 20 equal-beam elements, and the nu-

merical solution is obtained using the Generalized Displacement

Control Method , which uses an incremental-iterative procedure[40]

with 590 steps, and the displacement tolerance is set to 0.001. The

displacements u and v at the load application point are shown in

Fig. 12.

Fig. 13 shows the deformed shape of the Lee frame for each of the

uppercase letters A-E in . These results show the snap-backFig. 12

phenomena that occurs between the deformed con guration C and D.fi

Figs. 14 and 15 show the deformed shapes B, C, D, and E.

Fig. 16 shows the normal Cauchy stress, σxx , at the deformed con-

fi figuration A (cf. ). As shown in the Fig. 13 gure, the Cauchy stress is

evaluated along two planes, 1 1 and 2 2 , on the cross section. Similar– ′ – ′

to results shown in the previous example, the stress distribution ob-

tained here varies smoothly along the radial direction of the pipe.

4.1.4. Submerged cantilever riser under hydrostatic load

This example, proposed by Yazdchi and Cris eld , considers afi [11]

flexible cantilever polyethylene riser of length 20 m under a vertical

load at the tip. The riser is capped at the ends and submerged at a depth

Fig. 9. Beam tip displacements for increasing transverse loading.

Fig. 10. Beam spatial con gurations in large displacement analysis.fi

Fig. 11. Lee s frame input data.’

Fig. 12. Equilibrium paths for Lee s frame.’

Fig. 13. Lee s frame deformed con gurations.’ fi
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of 100 m. The mechanical and geometrical properties of the riser are

shown in . The objective of this analysis is to verify the nalFig. 17 fi

equilibrium con guration of the riser subjected to the action of the self-fi

weight, buoyancy, and a vertical tip load. The riser is modeled using 20

equally spaced elements, and the loading is applied in 50 equal incre-

ments. A displacement tolerance of 0.001 is used for the convergence in

the Newton-Raphson iteration scheme. In every load step, the con-

verged solution is obtained within four iterations.

Fig. 18 illustrates the deformed con gurations for four loadingfi

conditions. In this gure, obtained numerical results show goodfi

agreement with .[11]

4.1.5. Vertical riser under constant current and top tension force

The example proposed by Yazdchi and Cris eld analyzed thefi [11] 

behavior of a pre-tensioned riser under a 510 kN axial force caused by a

floating system and a uniform current. The riser has a total length of

320 m but the water depth is 300 m. The material and geometrical

parameters of the riser are shown in . This example considers aFig. 19

typical rigid riser system in the Top Tensioned Riser (TTR) con gura-fi

tion commonly used in both production and drilling on TLP and Spar

platforms. The tension force at the top of the riser is necessary to avoid

buckling due to self-weight.

The structure is modeled using 30 equally submerged elements and

four equal elements above the water level. The loadings (self-weight,

buoyancy, tension force, and current pro le) are applied in 70 equalfi

increments. Initially, the riser is in the vertical position with the bottom

node being hinged and the top node allowed to move in the X-direction

only. A displacement tolerance of 0.001 is used for the convergence in

the Newton-Raphson iteration scheme. In every load step, the con-

verged solution is obtained within three iterations. shows twoFig. 20 

deformed riser con gurations considering the magnitudes for the uni-fi

form current pro le, speci cally, 1.0 and 2.0 m/s. It is observed that thefi fi

deformed con gurations are not symmetrical because of the e ect offi ff

current loading, and also because the tension force in the riser varies

along the length, being smaller near the bottom because of its apparent

weight. A good agreement is observed between the numerical solutions

obtained in this study and those obtained by Yazdchi and Cris eld .fi [11]

4.2. Dynamic analyses

4.2.1. Curved cantilever beam under a vertical load at tip

This example considers the dynamic analysis of the curved beam

analyzed in Section . The nite element model uses 16 equally4.1.2 fi

spaced straight elements, subjected to a sudden 300 lb vertical force for

a total time of 0.3 s with a step time of 0.002 s. The physical, geometric,

and loading parameters are shown in .Fig. 21

Fig. 14. Forces in equilibrium on deformed con gurations B and C.fi

Fig. 15. Forces in equilibrium on deformed con gurations D and E.fi
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The dynamic response of the tip displacements are plotted in

Fig. 22. An excellent agreement is observed between the numerical

results obtained with the proposed beam element and those obtained by

Chan .[42]

4.2.2. Large displacement static and dynamic analysis of a cantilever FGM

beam subjected to distributed loading

In this example, originally proposed by Bathe et al. for a[43] 

homogeneous material beam, the objective is to test the FGM beam

element undergoing large displacements under static and dynamic

loadings. The current analysis assumes that the tube is made of a FGM

with TiC at the inner surface of the pipe and Ni Al3 at its outer surface.

Fig. 23 shows the physical and geometrical properties of the pipe, as

well as the applied load intensities in the dynamic analysis (for a linear

and non-linear behavior of the beam). In this analysis, the performance

of the FGM beam is compared with TiC andNi Al3 homogeneous beams.

The beam is modeled using 10 equally spaced elements.

First, the static response of the beam is investigated. Then, a dis-

tributed load of maximum intensity equal to 30 kN/m is applied in time

increments of the form q = 0.5t (kN/m, 0 t 60), where t is the time

Fig. 16. Deformed con guration A and normal stresses on element 13 cross-section (along lines 1 1 and 2 2 ).fi – ′ – ′

Fig. 17. Submerged cantilever riser.

Fig. 18. Deformed con gurations of cantilever riser.fi
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Fig. 19. Vertical riser input data.

Fig. 20. Deformed con gurations of vertical riser for two di erent currentfi ff

velocities.

Fig. 21. Curved cantilever beam considered in analysis.

Fig. 22. Dynamic response of curved cantilever beam subjected to a tip load of

300 lb.

J.C.R. Albino et al. Engineering Structures 173 (2018) 283–299

293



step of the numerical analysis. The objective is to verify the correlation

of the vertical displacement of the tip of the beam with respect to the

distributed load applied during the entire loading interval for three

types of material, including FGM. The numerical results obtained are

shown in .Fig. 24

To consider the dynamic behavior of the beam in small displace-

ments (linear analysis) and large displacements (non-linear analysis),

the beam is loaded with distributed loads of magnitude 1.5 kN/m and

9 kN/m, respectively, which are applied using a Heaviside function, as

shown in . Using the time increment ofFig. 23 Δt = 5E 4 s, the solu-

tion of the problem is obtained until the instant 0.1 s. The convergence

criterion is set to 1E 4 for displacements and 1E 3 for forces. The

converged solution at each time step is obtained within three iterations.

The linear and non-linear dynamic response for the tip vertical dis-

placement for three types of materials: TiC, FGM, and Ni Al3 , are shown

in , respectively. From the results, a delay is observedFigs. 25 and 26

between the linear and non-linear dynamic responses due to the stif-

fening of the beam caused by the tension force in the beam with an

increasing curvature. Consequently, the periods related to the rstfi

natural frequency in the non-linear analysis for the beam materials (i.e.,

TiC, FGM, and Ni Al3 ) decreased with respect to the period obtained in

the linear analysis. For the last two materials (FGM and Ni Al3 ) this

di erence is more signi cant, corresponding to reductions in the orderff fi

of 1.9% and 2.4%, respectively (see ).Table 2

4.2.3. Flexible riser in catenary con gurationfi

This example studies the behavior of a exible riser in a catenaryfl

con guration of length 350 m at a water depth of 150 m. One end of thefi

riser is attached to a sub-sea tower at a depth of 150 m and the other

end is connected to a ship horizontally displaced by 150 m. It is as-

sumed that the riser is fully lled with seawater and hinged at bothfi

ends. The objective is to verify the accuracy of the beam element im-

plemented in the riser analysis subjected to hydrodynamic loading and

prescribed displacements of a ship s motion. The riser is modeled using’

70 equally spaced elements, and the numerical results are compared

with those obtained by Yadzdchi and Cris eld . The geometry andfi [12]

Fig. 23. Physical, geometric and load properties applied in analysis of canti-

lever beam.

Fig. 24. Non-linear static analysis of cantilever beam.

Fig. 25. Linear dynamic response of cantilever beam (dashed lines represent

the static solutions).

Fig. 26. Non-linear dynamic response of cantilever beam (dashed lines re-

present the static solutions).

Table 2

Time period (in milliseconds) of dynamic responses.

Material Linear analysis Non-linear analysis

TiC 27.9 27.7

FGM 42.3 41.5

Ni Al3 49.0 47.8
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physical properties of the riser, hydrodynamic coe cients, and otherffi

parameters used in the analysis are given in . It is assumed in thisFig. 27

analysis that the riser material is linear elastic. From the data in ,Fig. 27

it can be seen that the magnitude of the axial sti ness is ve orders offf fi

magnitude larger than the bending sti ness. Hence, the exible riserff fl

presented a structural behavior equivalent to a cable.

The analysis is divided in two parts: a static analysis, in which the

riser deforms from an initially horizontal position until it connects to

the ship on the surface, and a dynamic analysis, in which the tip of the

riser moves due to the ship motion caused by waves. In the static

analysis, the riser, initially in a horizontal position and located 150 m

below sea level, is subjected to loads due to self-weight and buoyancy.

The dashed line in illustrates this con guration. Next, the rightFig. 28 fi

endpoint of the riser is connected to a ship located 150 m to the right of

the sub-sea tower. This motion is applied incrementally, and the de-

formed con gurations for intermediate installations are shown infi

Fig. 28. The horizontal and vertical reactions obtained at the support

points are listed in . The reactions are compared with the valuesFig. 28

obtained by Yazdchi and Cris eld that used a beam model andfi [12] 

those obtained by McNamara et al. with cable theory, and a good[44] 

agreement is observed between the results.

The bending moment diagram along the riser in the nal con g-fi fi

uration (solid bold line in ) is shown in ; the results ob-Fig. 28 Fig. 29

tained agree with results reported in the literature .[12,44]

The dynamic analysis under the action of forces owing to a ship s’

motion and waves is developed for two di erent cases:ff

(a) In the rst case, only the surge movement of the ship is consideredfi

to investigate the nonlinear e ects of the riser response comparedff

to those obtained by Yazdchi and Cris eld . The top of the riserfi [12]

is excited with a surge amplitude of 2.01 m and period of 14.0 s.

The results of this analysis are represented in for theFigs. 30 and 31 

vertical reactions at nodes 1 and 71, respectively. The vertical re-

action obtained for node 1 occurs between 35.73 and 35.94 kN;

however, in the results obtained in , this reaction are in[12]

35.64 36.07 kN range. A very good agreement in the period and in–

the average value of the harmonic function is observed. However,

the obtained amplitudes are 51% of those obtained in . High-[12]

order harmonics are also observed at this node. In the case of the

vertical reaction at node 71, an excellent agreement is observed

between the numerical results (amplitude and period) obtained in

the study and those obtained in [12].

(b) In the second case, in addition to the surge movement of the ship, a

harmonic wave with period of 16 s and amplitude of 20.0 m is

applied. The results for this case are shown in Figs. 30 and 31. A

good agreement is observed with the results obtained in .[12]

Fig. 27. Flexible riser in catenary con guration.fi

Fig. 28. Installation process of riser and support reactions.

Fig. 29. Static bending moment distribution along riser.
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In the dynamic analysis, the equations of motion are integrated in the

interval of 400 s using a time increment o f Δt = 0.05 s. The convergence

criterion is set to 1E 3 for displacements and 1E 2 for forces. An

average of three and four iterations per time step are necessary to reach

the converge nce for the analyzes considering the ship motion only and

considering the effect of the ship and waves , respectively.

5. Concluding remarks

In this study, we present a co-rotational formulation for a general

two-node beam element in 3D, which we use for the non-linear dynamic

analysis of exible marine risers made of functionally-graded materials.fl

The material properties are assumed to vary in the radial direction

according to a power law, and the e ect of material gradation on theff

sti ness and mass matrices, as well as on the internal force vector, areff

all evaluated in closed form.

Several veri cation examples are presented, showing that bothfi

static and dynamic solutions are in good agreement with solutions

available in the literature. The numerical examples reveal signi cantfi

di erences in stress distributions, as compared to those obtained forff

risers made of homogeneous materials, which suggests that FGMs can

be used for the e cient design of exible marine risers.ffi fl 
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Appendix A. Nomenclature

t time;

XC , YC , ZC co-rotated coordinate system;

x1, y1, z1 nodal reference system; local coordinates on element cross

section;

pseudo vector of rotation;

v1, v2, v3 components of rotations about XC , YC and ZC axis;

displacement increment vector;

u1, u2 , u3 components of displacements in the XC , YC andZC directions,

respectively;

ξ element coordinate in the longitudinal ( XC) direction;

ϕi finite element shape functions for beams;

L element length;

interpolation matrix;

mass matrix;

damping matrix;

global displacement vector;
̇ global velocity vector;
¨ global acceleration vector;

e11, e12, e13 linear strain components;

η11, η12, η13 nonlinear strain components;

linear strain displacement transformation matrix;–

nonlinear strain displacement transformation matrix;–

linear sti ness matrix;ff

nonlinear sti ness matrix;ff

E Young s modulus;’

υ Poisson s ratio;’

ρ material density;

α non-homogeneity parameter of the material density;

β non-homogeneity parameter of the Young s modulus;’

EA equivalent axial rigidity;

EI equivalent exural rigidity;fl

GJ equivalent torsional rigidity

Fig. 30. Vertical reaction at subsea connection.

Fig. 31. Vertical reaction at ship connection.
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Appendix B. Shape functions and element matrices

B.1. Finite element shape functions for beams
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B.2. Linear strain-displacement transformation matrix
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B.3. Linear sti ness matrixff

(B.3)with:
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B.4. Nonlinear strain-displacement transformation matrix
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B.5. Matrix of the updated Cauchy stress-tensor components

(B.5)

B.6. Consistent mass matrix
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at .http://dx.doi.org/10.1016/j.engstruct.2018.05.092
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