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Abstract There are few methods capable of captur-
ing the full spectrum of pervasive fracture behavior in
three-dimensions. Throughout pervasive fracture sim-
ulations, many cracks initiate, propagate, branch and
coalesce simultaneously. Because of the cohesive ele-
ment method framework, this behavior can be cap-
tured in a regularizedmanner. However, since the cohe-
sive element method is only able to propagate cracks
along element facets, a poorly designed discretization
of the problem domain may introduce artifacts into the
simulated results. To reduce the influence of the dis-
cretization, geometrically and constitutively unstruc-
tured means can be used. In this paper, we present and
investigate the use of three-dimensional nodal pertur-
bation to introduce geometric randomness into a finite
element mesh. We also discuss the use of statistical
methods for introducing randomness in heterogeneous
constitutive relations. The geometrically unstructured
method of nodal perturbation is then combined with
a random heterogeneous constitutive relation in three
numerical examples. The examples are chosen in order
to represent some of the significant influencing factors
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on pervasive fracture and fragmentation; including sur-
face features, loading conditions, and material grada-
tion. Finally, some concluding remarks and potential
extensions are discussed.
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1 Introduction

The pervasive fracture and fragmentation of structures
occurs at various scales and in various contexts. When
a structure is struck with either a high-velocity direct
impact or a blast load, the damage incurred typically
pervades a region of the structure. Pervasive damage
involves the entire spectrum of fracture behavior; from
crack initiation, through crack propagation, branching
and coalescence, all the way to complete fragmenta-
tion. At any one time, there may be hundreds or thou-
sands of micro- to macro-cracks in the structure. Being
able to model and understand the factors which influ-
ence the fragmentation of structures can lead to bet-
ter design practices in many fields of engineering. For
example, understanding how a ceramic plate fragments
when struckwith a high velocity projectile can improve
the design of armor for personnel carriers. Alterna-
tively, understanding the process by which a kidney
stone fragmentsmay help in the design of surgical tools
and procedures. However, due to the inherent complex-
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ity ofmodeling pervasive damage, there are fewnumer-
ical methods capable of capturing the full spectrum of
behavior in three-dimensions.

Currently, there are many methods which have been
proposed for simulating fracture problems. Some of the
popular methods consist of the extended (or general-
ized) finite element method (FEM); meshless or parti-
cle based methods; peridynamics (Silling and Bobaru
2005; Bažant et al. 2016), and the cohesive element
method. The extended FEM uses discontinuous shape
functions to represent the profile of a crackwithin a con-
tinuum. The discontinuity in the element’s shape func-
tion effectively splits the element; which requires a lot
of heuristic manipulations, and can present numerical
integration and time-stepping issues in dynamic frac-
ture simulations (Park et al. 2012). In three dimensions,
the extended FEM has proven useful in modeling frac-
ture problems dominated by a single crack (Sukumar
et al. 2000; Areias and Belytschko 2005). However,
when faced with the full spectrum of fracture behavior,
the extended FEM can become prohibitively compli-
cated (Bishop 2009).

Rather than using elements to discretize the prob-
lem domain, meshless methods represent the unknown
fields with nodal information (Nguyen et al. 2008). By
increasing the number of nodes dispersed in a region,
a higher resolution of information in that region is
obtained. Thus, nodes are typically clustered around
the critical portions of the domain; which, in frac-
ture problems, is the crack-tip. Each node is contained
within a nodal-support region and a weight function is
defined over each nodal-support region. The spacing
of the nodes is such that each point in the domain is
covered by at least three distinct weight functions. The
resulting global fields are then interpolated from nodal
information using a Moving Least Squares fitting pro-
cedure (Lancaster and Salkauskas 1981). Examples of
meshlessmethods include theDiffuse ElementMethod
(Nayroles et al. 1992), the Element Free Galerkin
method (Belytschko et al. 1994a, b; Belytschko and
Fleming 1999), the Reproducing Kernel Method (Liu
et al. 1995), the Meshless Local Petrov–Galerkin
method (Atluri and Zhu 1998), the cracked parti-
cles method (Rabczuk and Belytschko 2004), and the
Material Point Method (Sulsky and Schreyer 2004).
Althoughmeshless methods have shown some promise
in modeling problems where fracture is dominated by
a single crack, many of them still suffer from vol-
ume deletion during pervasive fracture and fragmen-

tation problems. As the continuummaterial fragments,
it evolves into a collection of spheres; which have a the-
oreticalmaximumpacking limit of 74% (Bishop 2009),
leading to a nonphysical loss of volume in the model.

The cohesive element method, motivated by the
work of Dugdale (1960) and Barenblatt (1959), uses
cohesive zonemodels to explicitly represent the inelas-
tic zone of damage in front of the crack tip. In dynamic
fracture simulations, extrinsic cohesive elements are
adaptively inserted ahead of a propagating crack tip
and resist the separation of the adjacent bulk elements
through cohesive forces (Ortiz and Pandolfi 1999;
Zhang et al. 2007). The insertion of cohesive elements
is restricted to element facets. This restriction allows
the cohesive element method some unique capabilities.
The mesh topology regularizes the domain and natu-
rally handles the branching and coalescence of fracture
surfaces. The elements are not split, thus the minimum
facet size is fixed, and time-stepping issues related to
small facet sizes do not occur. Additionally, the restric-
tion of fracture surfaces to element facets results in a
continuous volume of bulk material as it fragments.
However, restricting fracture to occur along element
facets can result in mesh dependent behavior, and thus
the mesh discretization in dynamic cohesive fracture
simulations is important. If one were to choose a struc-
tured mesh, or to use mesh smoothing techniques on a
randomly generated mesh, the resulting discretization
could bias the fracture patterns. Thus, it isworth explor-
ingmeans of introducing randomness into the problem.

Randomness can be introduced to a finite element
problem through either topological, geometric, or con-
stitutive means. The primary topologically unstruc-
tured methods consist of: remeshing, element split-
ting and adaptive refinement. With remeshing or adap-
tive refinement, the internal state variables of the fine
mesh need to be interpolated from those of the coarse
mesh. For refinement around a propagating crack tip,
the repeated application ofmesh-to-mesh transfer oper-
ators may result in significant numerical diffusion
(Mosler and Ortiz 2009). Additionally, these meth-
ods are not particularly suitable to pervasive frac-
ture problems, as the entire domain often needs to be
refined, quickly losing the cost-saving advantages of
adaptive refinement. Alternatively, some researchers
apply element splitting techniques to increase the num-
ber of crack paths in three-dimensional tetrahedral
meshes. The advantage of element splitting is that
it may be combined with an edge-collapse operator
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(Kallinderis and Vijayant 1993; Molinari and Ortiz
2002), to coarsen regions far from the crack tip. The
downside of this technique is that edge-splitting only
provides a small amount of refinement, and the quality
of the elements can deteriorate once split.

In this paper, we present a combined geometric and
constitutive approach for introducing randomness into
otherwise structured numerical models, and apply it to
the investigation of pervasive fracture and fragmenta-
tion behavior. First, a nodal perturbation technique is
presented to alleviate the structure in meshes gener-
ated using automatic mesh generators. A study on the
effect of the nodal perturbation is presented, where the
metrics of Lo’s parameter andmaximum andminimum
interior angles are used to quantify the effect of vari-
ous nodal perturbation factors on mesh quality. As a
result of the study on mesh quality, a maximum value
for the nodal perturbation factor is recommended and is
used throughout the remainder of the paper. Addition-
ally, a Weibull distribution is motivated as a means of
generating a random heterogeneous constitutive rela-
tion. The combined effect of the geometrically random
(via nodal perturbation) and constitutively random (via
a random assignment of material strength) methods is
investigated in a series of examples. The remainder of
the paper is organized as follows. Section 2 outlines the
numerical framework for our study. The cohesive zone
model selected to represent the dynamic failure behav-
ior is the extrinsic Park–Paulino–Roesler (PPR)model.
An overview of the model is presented in Sect. 3, along
with a discussion on using random heterogeneous con-
stitutive relations for introducing randomness into a
model. Section 4 outlines the technique of nodal per-
turbation, to introduce geometric unstructuredness into
a finite element mesh. Additionally, in this section, we
outline the series of geometric studies used to inves-
tigate the influence of nodal perturbation on the qual-
ity of the mesh. In Sect. 5 we present three numerical
examples which highlight many of the significant fac-
tors influencing the pervasive fracture and fragmenta-
tion of structures. Finally, we provide some concluding
remarks in Sect. 6.

2 Numerical framework

In this work we use cohesive elements, within the finite
element framework, to model fracture. There are two
classes of cohesive elements. Intrinsic cohesive ele-

ments are inserted to the model prior to the simulation
(Zhang and Paulino 2005) and are convenient when
fracture is restricted to occur along a specified line or
in a specified region. However, this approach is known
to alter the effective properties of the bulk material
in the zone of fracture (Falk et al. 2001; Klein et al.
2000). Alternatively, extrinsic cohesive elements can
be inserted to the mesh on the fly, where and when
needed. Extrinsic elements are convenient for simu-
lating problems where the location of fracture is not
known a priori. The dynamic mesh connectivity, nec-
essary for the adaptive insertion of extrinsic cohesive
elements between bulk elements, is handled through a
topological data structure (Celes et al. 2005; Paulino
et al. 2008). The constitutive relation of the cohesive
elements corresponds to the chosen cohesive model, as
will be discussed in the next Section.

In fracture simulations it is important to take into
consideration the effect of finite deformations. When
cohesive elements are first activated, they display zero
thickness, but as fracture progresses the adjacent bulk
elements separate and rotate. By not taking into con-
sideration these finite rotations the mechanics of the
problem may not be accurately captured. In this work
finite deformations are taken into account by means of
the total Lagrangian formulation. In this formulation,
the deformation is described with respect to the unde-
formed configuration. The expression of the principal
of virtual work with respect to the undeformed config-
uration relates the sum of the virtual strain energy and
virtual kinetic energy to the sum of the virtual work
done by external and cohesive tractions:∫

�

(S : δE + ρü · δu) d� =
∫

�coh

Tcoh · δ�ud�coh

+
∫

�ext

Text · δud�ext , (1)

where � is the domain in the reference configuration,
S = JF−1σF−T is the second Piola-Kirchoff stress
tensor, E is the Green-Lagrange strain tensor, ρ is the
material density, u is the displacement vector, ü is the
acceleration vector, Text is the traction applied along
the external surface, �ext , in the reference configura-
tion, F is the deformation gradient, J = detF is the
Jacobian, and the internal displacement jump,�u, pro-
duces a cohesive traction, Tcoh , over the internal cohe-
sive surface �coh in the reference configuration. For
implementation, Eq. (1) is expressed in matrix nota-
tion as:
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Ku + Mü − Rcoh − Rext = 0. (2)

where K is the stiffness matrix, M is the mass matrix,
Rcoh is the cohesive force vector, andRext is the exter-
nal force vector.

Numerically, to progress the dynamic simulation,
time is discretized using the explicit central difference
method (Newmark 1959). The computation of nodal
displacements, velocities and accelerations at timen+1
are computed from those at time n through the follow-
ing scheme:

un+1 = un + �t u̇n + 1

2
(�t)2 ün (3)

ün+1 = M−1 (
Rext − Rintn+1 + Rcohn+1

)
(4)

u̇n+1 = u̇n + �t

2
(ün + ün+1) (5)

where�t denotes the time step.Note thatRint andRcoh

are the internal and cohesive force vectors obtained
from the separate contribution of the bulk and cohesive
elements, respectively. To compute themassmatrix,M,
we apply a standard mass lumping technique in which
the diagonal terms of the consistent mass matrix are
scaled, preserving the totalmass and resulting in a diag-
onal mass matrix (Hinton et al. 1976; Hughes 2000).

3 Random heterogeneous constitutive
relation by means of statistical distribution

This section outlines the constitutive relation selected
for the cohesive elements and discusses the use of ran-
dom methods for capturing microscale heterogeneity.

3.1 Park–Paulino–Roesler cohesive model

In the dynamic simulations performed in this work,
cracks are represented through the use of cohesive zone
elements. As mentioned previously, we use the extrin-
sic cohesive element approach. In this approach, the
criterion to insert the cohesive element is external to
the formulation. A cohesive element is inserted once
the averaged normal or tangential stress along a facet
exceeds the normal or tangential cohesive strength of
the material, respectively. Once the element is inserted,
its behavior is governed by the traction-separation rela-
tion of the extrinsic Park–Paulino–Roesler (PPR) cohe-
sivemodel (Park et al. 2009). The extended formulation

of the model can be found in the principal publication;
below, we just include a brief summary for complete-
ness.

The PPR cohesive model is potential-based, mean-
ing that the traction-separation relation is derived from
a potential and the unloading/reloading relation and
contact formulation are independent of the model. The
potential is given as:

� (�n,�t ) = min (φn, φt )

+
[
�n

(
1 − �n

δn

)α

+ 〈φn − φt 〉
]

[
�t

(
1 − |�t |

δt

)β

+ 〈φt − φn〉
]

, (6)

where the Macaulay bracket 〈·〉 is defined such that
〈x〉 = (|x | + x) /2.

The normal, Tn , and tangential, Tt , tractions are
determined by taking the derivative of the potential
with respect to the normal opening, �n , and tangen-
tial opening, �t , respectively. Hence,

Tn (�n,�t ) = −α
�n

δn

(
1 − �n

δn

)α−1

[
�t

(
1 − |�t |

δt

)β

+ 〈φt − φn〉
]

(7)

Tt (�n,�t ) = −β
�t

δt

(
1 − |�t |

δt

)β−1

[
�n

(
1 − �n

δn

)α

+ 〈φn − φt 〉
]

�t

|�t | (8)

where φn and φt are the mode I and mode II fracture
energies, and α and β are the mode I and mode II shape
parameters. The energy constants�n and�t are defined
as:

�n = (−φn)
〈φn−φt 〉/(φn−φt ) ,

�t = (−φt )
〈φt−φn〉/(φt−φn) (9)

for different fracture energies (φn �= φt ), and as:

�n = −φn, �t = 1 (10)

if the fracture energies are the same for both mode I
and mode II separation, (φn = φt ). In total, there are
six user inputs to the extrinsic PPR cohesivemodel: φn ,
φt , α, β, and the mode I and mode II cohesive strengths
σmax and τmax , respectively. A set of sample traction-
separations relations are illustrated in Fig. 1.

For this study, the unloading/reloading relation is
coupled, meaning that the unloading in the normal
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Fig. 1 Traction separation
relations for a normal
opening (φn = 100N/m,
σmax = 40 MPa, α = 3.0),
and b tangential opening
(φt = 200 N/m,
τmax = 30 MPa, β = 5.0)
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Fig. 2 Depiction of the coupled unloading schemes for a normal and b tangential interactions (Park 2009), with linear unload-
ing/reloading to the origin

direction is coupled to that in the tangential direction.
In addition, we assume that the unloading occurs lin-
early back to the origin, as seen in Fig. 2. Contact is
assumed to occur when the normal separation within a
cohesive element becomes negative.We use the penalty
stiffness approach, inwhich a high stiffness counteracts
the interpenetration of elements. This approach is pop-
ularly implemented in conjunction with cohesive ele-
ments, however, others are available (Simo et al. 1986;
Espinosa et al. 2000; Falk et al. 2001; Spring et al.
2016).

3.2 Statistical methods for capturing material
heterogeneity

While the focus of this work is on the investigation of
homogeneous or homogenizedmaterials, we recognize
that all materials contain heterogeneity (or defects) at
the microscale. Defects naturally arise in materials due
to grain boundaries, voids, or inclusions (Becher et al.

1998; Sun et al. 1998). As well, defects can be intro-
duced through the act of processing or machining the
material (Levy 2010). These microscale defects con-
stitute regions where stresses can concentrate and lead
to damage or failure. In this work, the representation
of this heterogeneity is achieved by means of a statis-
tical distribution of material properties, specifically a
distribution of the strength of the material.

Over the years, there have beenmanyproposedmod-
els for capturing the distribution of defects in amaterial.
One of the simplest models for incorporating defects
in the material is to distribute the material parame-
ters based on a constant probability density function
(PDF); which is equivalent to a random perturbation to
the material’s properties (Ostoja-Starzewski and Wang
2006; Wang et al. 2008; Song and Belytschko 2009).
While this model is simple, it has no physically moti-
vated basis. Alternatively, one could take a statistical
approach, distributing the material strength based on
a probabilistic model (Bažant and Chen 1996). Peirce
(1926) developed a probabilistic failuremodel based on
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Fig. 3 Effect of input
parameters on the Weibull
distribution: a λ, and b m.
Here we assume
σmin = 264 MPa and
V0 = 1
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theweakest link theory and extremevalue statistics.His
model was later refined by Fréchet (1927), among oth-
ers (Fischer and Tippett (1928) and vonMises (1936)).
However, the most popular probabilistic model for the
study of material failure is that of Weibull (1939).

Weibull’s probabilistic failure model was motivated
by randomness he observed in the ultimate failure
strength of material specimens tested in an identical
manner. He explained his motivation through a simple
thought experiment. Consider a series of rods of length
L , with cross-sectional area A, loaded to failure by an
external load P . If one were to repeat this experiment
the ultimate failure load would not be a constant, but
would differ each time. The failure loads could then be
grouped around a mean and a statistical analysis could
be completed.Based on a set of experiments, conducted
on a variety of materials with multiple loading condi-
tions, he proposed the well knownWeibull distribution
with probability of failure Pf given by:

Pf = 1 − e−N (σ,V ) (11)

where V is the volume of the material, σ is the measure
of stress, and N (σ, V ) is a material function, indepen-
dent of the position. The specific form of N (σ, V ) is
often the topic of debate; however,Weibull noted that it
must be a monotonically increasing function of σ and
determined that an effective relation for most homoge-
neous materials is:

N (σ, V ) = 1

V0

(
σ − σmin

λ

)m

(12)

where m is the Weibull modulus, V0 is a normalizing
volume (often taken as V0 = 1, Danzer 1992), λ is a
scale parameter, and σmin is the lower bound of mate-
rial strength. To illustrate the influence of the Weibull
modulus and scale parameter on the probability den-

sity function, some sample functions are illustrated in
Fig. 3. The mean, median and variance of the Weibull
distribution are calculated as

σmean = σmin + λ�

(
1 + 1

m

)
, (13)

σmedian = σmin + λ ln (2)
1
m , (14)

Var(σ ) = λ2

[
�

(
1 + 2

m

)
−

(
�

(
1 + 1

m

))2
]

.

(15)

In the years since Weibull presented his distribu-
tion, many researchers have proposed alternate forms
of N (σ, V ). Freudenthal (1968) proposed a general dis-
tribution for homogeneous and brittle materials. He
assumed that the flaws do not interact, and that the
probability of failure only depends on the number of
critical flaws, Nc,S , present in a specimen of size S:

N (σ, V ) = Nc,S(σ ). (16)

Later, Danzer (1992) extended this distribution for
inhomogeneousmaterials.Alternatively, Jayatilaka and
Trustrum (1977) proposed a model based on flaw size
distribution and material strength:

N (σ, V ) = N
cn−1

n!

(
πσ 2

K 2
IC

)n−1

(17)

where N is the number of cracks, KIC is the critical
stress intensity factor of the material, and n and c are
characteristic constants. The above mentioned models
assume that there is no interaction between defects.
However, Afferrante et al. (2006) demonstrate that the
Weibull distribution of material strength applies in a
general sense, even if there is interaction between the
defects. They also note that the Weibull modulus does
not necessary correspond to a material constant, and
that it may be influenced by the interaction among
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cracks, or the interaction of cracks and the stress field.
Thus, in the examples we investigate in Sect. 5, we
will use the Weibull distribution (12) and will vary the
Weibull modulus to illustrate its influence on the global
fracture behavior. Although it is recognized that a spa-
tial correlation may exist in the strength of a material,
no presumption of such a correlation is made in the
examples presented in Sect. 5.

4 Unstructured geometry by means of nodal
perturbation

The most popular technique for discretizing a volume
into tetrahedral elements may be the Delaunay trian-
gulation (Lo 1991; Delaunay 1934; Cavendish et al.
1985; Schroeder and Shephard 1988). Delaunay tri-
angulation is the technique of choice for most auto-
matic mesh generators (Schröberl 1997; Geuzaine and
Remacle 2009). However, automatic mesh generators
often conduct additional post-processing of the mesh;
to remove elements with degenerate edges and sliver
elements. In some cases this additional post-processing
leads these (initially random) meshes to contain an
underlying structure. To remove this structure, we pro-
pose using the technique of nodal perturbation (NP).

To implement the NP algorithm, we apply the fol-
lowing steps. First, all the nodes in the mesh are tra-
versed and restrictions are placed on boundary nodes.
Corner nodes are fixed, edge nodes are restricted to the
original line of the edge and face nodes are restricted to
the boundary face. At each node, theminimumdistance
between the node and the opposite faces of the adjacent
tetrahedrons is computed. The node is then perturbed in
a random direction; where the magnitude of the pertur-
bation corresponds to the computed distancemultiplied
by a constant perturbation factor, NP ≤ 1. After per-
turbing the nodes, a Laplacian smoothing technique is
used to improve the mesh quality (Field 1988; Paulino
et al. 2010). In this step, each element in the mesh is
visited and the quality of the element is assessed. The
element quality is quantified by Lo’s parameter (Lo
1991), γ :

γ = 72
√
3 Vtetrahedron(∑

square of edges
)3/2 (18)

where Vtetrahedron is the volume of the tetrahedron.
Equivalently:

γ (A, B,C, D)

= 12
√
3 (AB × AC) · AD(‖AB‖2 + ‖BC‖2 + ‖CA‖2 +‖AD‖2 + ‖CD‖2 + ‖BD‖2)3/2 .

(19)

where A, B, C , and D correspond to the nodal posi-
tions of the tetrahedron, and × and · correspond to
the cross and dot products, respectively. The higher
the Lo’s parameter, the higher the quality of the ele-
ment. For example, equilateral tetrahedra have a Lo’s
parameter of 1.0. If an element fails tomeet aminimum
specified Lo’s parameter, the position of each node in
the element is displaced by the average of the distance
vectors to the neighboring nodes on the edges incident
to the node (Paulino et al. 2010). This procedure is iter-
ated until all elements in the mesh meet the minimum
quality requirements.

Here, we conduct a series of geometric studies on a
mesh before and after NP. The studies are conducted
on a cubic domain randomly discretized with 47,924
tetrahedral elements, as illustrated in Fig. 4. An illus-
tration of the effect of NP on a typical Delaunay mesh
is shown in Fig. 4b–d. The NP factors used in this study
range from0.1 to 0.6 in increments of 0.1. Three unique
meshes are generated for each random NP factor, and
the results of the studies are averaged. To quantify the
effect of NP, we track three metrics: element quality
(Lo’s parameter), minimum interior angle and maxi-
mum interior angle.

The desired average mesh quality parameter is
selected as 0.7; which is generally acceptable for finite
element simulations (Paulino et al. 2010). The mini-
mum Lo’s parameter for an unperturbed mesh is 0.434,
and decreases with increasing NP factor. A histogram
of the mesh quality for increasing NP factors is illus-
trated in Fig. 5. As the NP factor increases, the range
of Lo’s parameters broadens and skews to lower val-
ues. Regardless of the NP factor, the maximum Lo’s
parameter is approximately 1.0.

To gain additional insight into the influence of NP
on the mesh, we investigate the minimum and maxi-
mum interior angles in the elements. The interior angles
can give insight into the initial distortion of the ele-
ments. For example, the commercial software Abaqus
qualifies elements with interior angles less than 10◦
or greater than 160◦ as distorted (ABAQUS 2011).
A histogram of the minimum interior angle is pre-
sented in Fig. 6a, while one for the maximum interior
angle is presented in Fig. 6b. For the unperturbed case,
the smallest minimum interior angle is approximately
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Fig. 4 Influence of nodal
perturbation on meshes
generated using a Delaunay
triangulation (Schröberl
1997). a Unperturbed, b
nodal perturbation factor of
0.2, c nodal perturbation
factor of 0.4, and d nodal
perturbation factor of 0.6

(a) (b)

(c) (d)

25.3◦, and decreases with increasing NP factor. Simi-
larly, the largest maximum interior angle for the unper-
turbed case is approximately 120.7◦ and increases with
increasing NP factor. These results are in line with
expectations, as perturbing the nodes distorts the ele-
ments and the higher the perturbation factor the higher
the level of distortion.

A summary of the results of the geometric study
is presented in Table 1. Based on the results of the
study, the NP factor of 0.4 is determined to be the
maximum factor which still maintains a high quality
mesh and conforms to the recommended interior angles
(ABAQUS 2011). Thus, this is the NP factor we use in
the remainder of the paper.

The above-mentioned geometric studies discuss the
influence of the nodal perturbation factor on the qual-
ity of the mesh, but some comments can be made
on the influence of the nodal perturbation factor on
the stable time step. When conducting a dynamic

fracture simulation, the time step is controlled by
the Courant-Friedrichs-Lewy (CFL) stability condition
(Bathe 1996):

�t ≤ le
Cd

(20)

where le is the shortest distance between any two nodes
in themesh, andCd is the dilatational wave speed of the
material. Typically, the time step is recommended to be
further reduced to 10%of that required by theCFL con-
dition, when conducting a dynamic fracture simulation
(Zhang 2003). The nodal perturbation technique does
increase the coefficient of variation for element facets
and thus increases the likelihood for a small, time-step-
controlling facet to be introduced to themesh.However,
since the meshing algorithms considered here are ran-
dom Delaunay triangulations, there is always a chance
that there could be a small edge introduced, regard-
less of whether or not nodal perturbation is used. Thus,
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Fig. 5 Histograph of mesh
quality for various nodal
perturbation factors
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Fig. 6 Results of the study
on the interior angles in the
mesh: a histograph of
minimum angles, and b
histograph of maximum
angles
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the assessment of the time step must be conducted on a
case-by-case basis. For themesh investigated here, con-
taining 47,924 linear tetrahedral elements, the small-
est facet was calculated to be approximately twice as
small when a nodal perturbation factor of 0.4 was
used, compared to when no nodal perturbation was
used.

5 Examples

In this section, three example problems are investi-
gated. The first example considers the centrifugal load-
ing of a spinning disk. The second example investigates
the impulse loading of a hollow sphere, with a focus on
the influence of surface features on the fragmentation
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Table 1 Summary of the results for the mesh quality study

Lo’s parameter (γ ) Minimum angle (◦) Maximum angle (◦)
NP factor Min Mean Max Min Mean Max Min Mean Max

0.0 0.434 0.858 0.999 25.3 43.7 58.1 61.5 81.8 120.7

0.1 0.419 0.848 0.998 24.3 43.0 58.4 61.9 82.6 123.1

0.2 0.292 0.820 0.998 19.9 41.1 58.1 62.0 84.8 132.5

0.3 0.225 0.782 0.997 15.2 38.8 57.9 62.5 87.8 142.0

0.4 0.132 0.738 0.996 11.5 36.5 57.3 62.5 90.9 152.4

0.5 0.064 0.695 0.996 7.2 34.4 57.6 63.3 94.2 162.7

0.6 0.027 0.656 0.998 3.7 32.6 58.0 61.6 97.1 171.0

The quantities for each metric are averaged over three random instances

behavior of the sphere. The third example considers the
fragmentation of a kidney stone under direct impact.
Since kidney stones often display a radial gradation
of material properties, we consider both homogeneous
and functionally graded materials. Unless noted oth-
erwise, we consider a fragment to be a mass of bulk
elements (and cohesive elements which have not fully
separated) completely surrounded by boundary facets
and/or fully separated cohesive elements. A pseudo
code of the procedure we use to determine the frag-
ments is provided in Appendix A. For each example,
a mesh refinement study was conducted such that the
number of fragments whose volume exceeded 1% of
the volume of the model converged, for the case of
a homogeneous material. For a more rigorous and in-
depth discussion on the challenges and issues related
to the mesh convergence of models for fragmentation
simulation, the interested reader is referred to Bishop
and Strack (2011) and Bishop et al. (2016). Compar-
isons to experiments are made where possible. In all of
the examples, we consider the influence of a randomly
assigned cohesive strength on the fragmentation behav-
ior. The Weibull function (12) is selected to describe
the distribution of cohesive strength, with the volume
parameter assumed to be equal to 1.0 (Danzer 1992).
The impact of the volume parameter on fracture pat-
terns has been discussed elsewhere by Brannon et al.
(2007).

5.1 Centrifugal loading of a spinning disk

This example considers the fragmentation of a spin-
ning disk; which is motivated by the use of structural

ceramics in the high stress environment of a spinning
turbine. We consider two different geometries for the
disk, as illustrated in Fig. 7. The two disks, from this
point forward, will be referred to as the small disk and
the large disk, respectively. Each disk is ceramic, con-
stituted of silicon nitride (Si3N4); the elastic modulus
of which is 300 GPa, the Poisson’s ratio is 0.3, and
the density is 3250 kg/m3. The mode I fracture energy
(φn) and shape parameter (α) are set as 180 N/m and
2, respectively. The minimum cohesive strength, σmin ,
is set as 425 MPa. Two Weibull moduli, m = 2, 5 and
two scale parameters λ = 40 MPa, 80 MPa are consid-
ered. The mode II fracture properties are assumed to be
the same as the mode I fracture properties. The mean,
median and variance of the cohesive strength for each
case is listed in Table 2.

Experimentally, the small disk specimen was inves-
tigated by Swank and Williams (1981); however, to
the best of the author’s knowledge, there have been no
numerical investigations using this geometry and load-
ing condition. To simulate this problem, we use a ran-
domly generated mesh containing 124,882 linear tetra-
hedral elements (30,421 nodes), and a NP factor of 0.4.
The spinning of the disk is represented as a centrifugal
force (applied as a body force), with an angular velocity
of 4π × 103 rad/s. The angular velocity is ramped up
linearly over 100 µs and held constant thereafter. For
each Weibull modulus (m) and scale parameter (λ) we
run three simulations (a total of 12 simulations). For
this example, we illustrate each of the results in Fig. 8.
Each result displays the final fragmented shape of the
specimen.
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Fig. 7 Geometries
investigated in the spinning
disk example: a small disk,
and b large disk

41.3 mm
6.4 mm

3.8 mm

(a)

80.0 mm

50.0 mm

3.0 mm

(b)

Table 2 Summary of the
cohesive strengths used in
the analysis of the spinning
disks

Scale parame-
ter (λ) (MPa)

Weibull modu-
lus (m)

Mean strength
(MPa)

Median
strength (MPa)

Variance
(MPa)

40 2 460.5 458.3 343.4

40 5 461.7 462.2 70.8

80 2 495.9 491.6 1373.5

80 5 498.5 499.3 283.1

Based on the results, it is clear that the random dis-
tribution of material properties, and the random pertur-
bation of nodes, produces a random result in each sim-
ulation. However, qualitatively there are many similar-
ities among the fracture patterns. For the most part, the
small disk specimen fractures into approximately four
large fragments and 1–3 medium fragments. The large
fragments are defined as the bulk of material between
two cracks which span the entire thickness of the disk.
A medium fragment is defined as the bulk of material
that results after the branchof a through-thickness crack
reaches the outer boundary of the specimen. For exam-
ple, the result illustrated in Fig. 8f displays four large
fragments and two medium fragments. In addition to
the qualitative fracture patterns, we also calculate the
crack speed through the specimen. The crack speed is
determined by simply documenting the time it takes
for a crack to propagate through the entire width of the
disk. A summary of the results is presented in Table 3.

The crackvelocity varies between2769and3181m/s,
depending on the distribution of material strength. For
the wider distribution of strength, m = 5, the crack
velocity is higher than that observed for a more homo-
geneous, or narrow, distribution of strength, m = 2.
The Rayleigh wave speed, CR , for Si3N4 is 5600m/s,
thus the computed values fall in the range of 0.49CR

to 0.57CR ; which is consistent with the experimentally
expected crack velocity.

The large disk specimen was investigated experi-
mentally by Hashimoto et al. (1996). Numerically, this
problem has been simulated by Zhou and Molinari
(2004). They simulate fracture using a linear cohe-
sive traction-separation relation, and also consider the
influence of material heterogeneity. Their investigation
determined that the greater the heterogeneity in the
material (i.e. the wider the range of cohesive strength),
the fewer fragments produced. In addition, they com-
pute an average crack velocity of 5500m/s, or 98%
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Fig. 8 Results for the small
disk geometry with Weibull
parameters: a-c λ = 40
MPa, and m = 2; d-f λ = 40
MPa, and m = 5; g-i λ = 80
MPa, and m = 2; and j-l
λ = 80 MPa, and m = 5. All
the results are illustrated in
their final fragmented form,
which occurred in the range
of 118–127µs. For visual
clarity, the small fragments
(those comprised of fewer
than 10 bulk elements) have
been removed from the
displayed results

of the Rayleigh wave speed; a result which they note
is inconsistent with experiments (Zhou and Molinari
2004).

To simulate this problem, we use a model contain-
ing 140, 339 elements (40,768 nodes). Similarly to
the small disk, we represent the spinning of the large
disk as a centrifugal force, with an angular velocity of
2.8π × 103 rad/sec. The angular velocity is ramped

up linearly over 100µs and held constant thereafter.
For each Weibull modulus (m) and scale parameter
(λ) we run three simulations (a total of 12 simula-
tions). For this example, we only illustrate a typical
result for each combination of Weibull modulus and
scale parameter in Fig. 9. Each result displays the final
fragmented shape of the specimen. The resulting num-
ber of large and medium fragments is summarized in
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Table 3 Summary of the small disk results

Scale parameter
(λ) (MPa)

Weibull modu-
lus (m)

Large fragments Medium fragments Crack velocity (m/s)

40 2 4.33 2.67 2888

40 5 4.00 2.67 3181

80 2 4.00 2.33 2769

80 5 3.67 3.33 3179

Each result is the average of three simulations
A large fragment is defined as the bulk of material between two cracks which span the entire thickness of the
cylinder. A medium fragment is defined as the bulk of material that results after the branch of a through-thickness
crack reaches the outer boundary of the specimen

Table 4. For the smaller scale parameter,λ = 40MPa, a
greater number of large and medium fragments is pro-
duced than in the case with a larger scale parameter,
λ = 80 MPa. Overall, the fracture patterns correspond
well to those observed experimentally (see Fig. 4 in
Hashimoto et al. 1996), and the distribution of frag-
ments corresponds well to those in alternate numerical
investigations (Zhou and Molinari 2004).

The velocity of the through-thickness cracks is
also tracked, and the results are included in Table 4.
The crack velocity varies between 3165 and 3390m/s,
depending on the distribution ofmaterial strength. Sim-
ilar to the small disk geometry, for a wider distribution
of strength, m = 5, the crack velocity is higher than
that observed for a more homogeneous distribution of
strength, m = 2. For comparison, the computed values
fall in the range of 0.56CR to 0.61CR .

5.2 Impulse Loading of a Hollow Sphere

This example investigates the fragmentation of a hol-
low sphere loaded with a radial impulse. We consider
both a smooth sphere (Fig. 10) and a sphere contain-
ing surface features (Fig. 11). Numerically, the smooth
sphere geometry was investigated by Levy (2010) and
Vocialta et al. (2016). Levy investigated the effect of the
thickness of the sphere on the shape and distribution of
fragments while Vocialta et al. extended Levy’s work
for parallel implementation. In this study, we set the
inner radius of the sphere to be 9.25mm, and the outer
radius to be 10mm, as illustrated in Fig. 10a. The geom-
etry is discretized with approximately 100,000 linear
tetrahedral elements (approximately 25,000 nodes), as

illustrated in Fig. 10b. The sphere is constituted of alu-
minum oxide (Al2O3); the elastic modulus of which is
370 GPa, the Poisson’s ratio is 0.22, and the density
is 3900 kg/m3. The mode I fracture energy and shape
parameter are set as 50 N/m and 2, respectively. The
minimum cohesive strength, σmin , is set as 264 MPa.
Two Weibull moduli, m = 2, 5, and two scale parame-
ters λ = 50 MPa, 100 MPa are considered. The mean,
median and variance of the cohesive strength for each
case is listed in Table 5.

The sphere is loaded with a radial impulse. Since
we assume the sphere to be centered on the origin, the
initial nodal velocities are prescribed as:

vx (x, y, z) = ε̇x, vy (x, y, z) = ε̇y,

and vz (x, y, z) = ε̇z, (21)

where x , y, and z, are the nodal coordinates, and ε̇ is the
applied rate of strain. In this study wewill consider two
different strain rates, ε̇ = 2500 s−1 and ε̇ = 5000 s−1.
Once again, for each geometry, loading rate, Weibull
modulus and scale parameter, we run three simulations
(a total of 72 simulations). For visual clarity, the frag-
ments will be individually colored in each of the results
we illustrate.

For a strain rate of ε̇ = 2500 s−1, we illustrate
some typical results in Fig. 12 for a Weibull mod-
ulus of m = 2 and scale parameter λ = 50 MPa.
As shown in Fig. 12a, the smooth sphere fragments
into large pieces with no discernible pattern. Alter-
natively, each case with surface features displays a
distinct pattern by which it fragments. For the case
with surface dimples, fracture was observed to initi-
ate at the centroid of the dimples and to radiate out-
wards, as illustrated in Fig. 13. This is not surprising,
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Fig. 9 Typical results for
the large disk geometry with
Weibull parameters: a
λ = 40 MPa, and m = 2; b
λ = 40 MPa, and m = 5; c
λ = 80 MPa, and m = 2;
and d λ = 80 MPa, and
m = 5. All the results are
illustrated in their final
fragmented form, which
occurred at approximately
87µs. For visual clarity, the
small fragments (those
comprised of fewer than 10
bulk elements) have been
removed from the displayed
results

Table 4 Summary of the large disk results

Scale parameter (λ) (MPa) Weibull modulus (m) Large fragments Medium fragments Crack velocity (m/s)

40 2 12.33 6.67 3165

40 5 13.67 7.00 3390

80 2 11.33 4.33 3203

80 5 10.67 5.67 3346

Each result is the average of three simulations
A large fragment is defined as the bulk of material between two cracks which span the entire thickness of the
cylinder. A medium fragment is defined as the bulk of material that results after the branch of a through-thickness
crack reaches the outer boundary of the specimen

as the geometry is thinnest at this location, causing
stresses to concentrate here. Additionally, the place-
ment of the dimples appears to control the geometry
of the fragments. In Fig. 12b, one can see that the
edges of the fragments align with neighboring dim-

ples. When we consider the case with bumps (Fig. 12c)
there is clear evidence that the edges of the fragments
are deflected away from the bumps. Thus, the bumps
remain intact during fragmentation.While we only dis-
play selected results here, this behavior was shown
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Fig. 10 Model of a smooth,
hollow sphere; a geometry,
and b mesh
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Fig. 11 Geometry of a
hollow sphere with different
surface features, a dimples,
and b bumps. The dimples
are generated by removing
material that intersects with
spheres of radius,
r = 1.1 mm, placed at a
radial distance of 10.5 mm
from the origin. The bumps
are generated through the
union of the smooth sphere
and spheres of radius,
r = 1.1 mm, placed at a
radial distance of 9.5 mm
from the origin

X
Y

Z
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Table 5 Summary of the
cohesive strengths used in
the analysis of the hollow
sphere

Scale parame-
ter (λ) (MPa)

Weibull modu-
lus (m)

Mean strength
(MPa)

Median
strength (MPa)

Variance (MPa)

50 2 308.3 305.6 536.5

50 5 309.9 310.5 110.6

100 2 352.6 347.3 2146.0

100 5 355.8 356.9 442.3

across all the Weibull moduli and scale parameters we
considered.

If we increase the applied strain to ε̇ = 5000 s−1,
fragmentation becomes more pervasive, as illustrated
in Fig. 14. Similar to the previous case, the fragmen-
tation of the smooth sphere does not display any dis-
cernible pattern. However, fracture continues to initiate

at, and to radiate outwards from, the dimples; and each
bump is wholly contained in a single fragment. Once
again, this behavior was shown across all the Weibull
moduli and scale parameters we considered.

To further examine the fragmentation behavior, we
plot the evolution of fragmentation through time in
Fig. 15. Results are shown for a variation in scale

123



128 D. W. Spring, G. H. Paulino

Fig. 12 Final fragmented geometries, after impacted with an
impulse load at a rate of ε̇ = 2500 s−1, for: a a smooth sphere, b a
spherewith dimples, and c a spherewith bumps. The results show
typical fracture patterns, but are for the case with λ = 50 MPa

and m = 2. The fragments are colored for visual clarity, and
the small fragments (those comprised of fewer than 10 bulk ele-
ments) have been removed from the displayed results

Fig. 13 Initial stages of
fracture in a sphere with
dimples. a Contour of
principal stress, illustrating
the concentration of stress at
the centroids of the dimples,
immediately prior to
fracture; and b fracture
initiating at the dimples

2.7E 08+
2.5E 08+
2.3E 08+
2.1E 08+
1.9E 08+
1.7E 08+
1.5E 08+
1.3E 08+

X
Y

Z

(a) (b)

parameter, λ, with a constant Weibull modulus of m =
2. In each scenario, fragmentation initiates quickly
(after approximately 0.5 to 2µs), and takes approxi-
mately 20µs to complete. In all the cases with a higher
applied rate of strain, ε̇ = 5000 s−1, the majority of the
fragmentation occurs in the first 10µs, and fragmen-
tation evolves slower in cases with λ = 100 MPa than
they do in cases with λ = 50 MPa. When we examine
the cases with a lower rate of strain, ε̇ = 2500 s−1, little
difference is observed in the cases with λ = 50 MPa
and λ = 100 MPa. However, for the case with dimples
(Fig. 14b) fragmentation evolves at a faster rate than
when we consider a smooth sphere, or a sphere with
bumps. From this investigation, we see that the distri-

bution of material parameters does have an impact on
the manner in which fragmentation occurs; however,
the fragmentation patterns are also significantly influ-
enced by surface features. This investigation provides
support to the idea of being able to control fragmenta-
tion behavior through simple design features.

An investigation of energy evolution is conducted
for the case of the smooth sphere, as illustrated
in Fig. 16. The energy is comprised of the strain
(Eint ), kinetic (Ekin) and fracture (E f ra) energies. The
impulse load on the structure results in a large initial
kinetic energy, which is converted into strain energy in
the system. The fracture energy remains equal to zero
up until the point of crack initiation, and monotoni-
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Fig. 14 Final fragmented geometries, after impacted with an
impulse load at a rate of ε̇ = 5000 s−1, for: a a smooth sphere, b a
spherewith dimples, and c a spherewith bumps. The results show
typical fracture patterns, but are for the case with λ = 50 MPa

and m = 2. The fragments are colored for visual clarity, and
the small fragments (those comprised of fewer than 10 bulk ele-
ments) have been removed from the displayed results
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Fig. 15 Evolution of fragmentation for: a a smooth sphere, b a sphere with dimples, and c a sphere with bumps. The results shown
consider a Weibull modulus of m = 2

cally increases over time. The summation of energy
in the system remains constant over time, indicating a
conservation of energy. For a higher rate of strain, the
initial kinetic energy in the system is larger, as illus-
trated in Fig. 16b. This higher rate of strain also leads to
an earlier onset of fracture, however, the relative mag-
nitudes of potential and fracture energy in each system
remains unchanged.

While not pursued here, this example motivates a
deeper investigation into the effects of surface features
on fragmentation patterns and distributions. The frag-
mentation patterns illustrated here indicate a strong
dependence on the kind of surface feature, but it is also
likely that the fragmentation patterns would be a func-
tion of the spacing and sizing of each surface feature.
Statistically quantifying such a functional dependence
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Fig. 16 Evolution of energy for a hollow sphere under an impulse load with an applied rate of strain of: a 2500 s−1, and b 5000 s−1

of the distribution of fragments on surface featuresmay
be pursued as a future work.

5.3 Direct impact of a kidney stone

This example considers the direct impact of a kidney
stone through the use of a Lithoclast. The Lithoclast is
a surgical tool which propels a metallic probe against
the stone. The kinetic energy of the probe is dissi-
pated throughout the stone, forming cracks and frag-
ments, allowing for easier removal or passage. The
structure of the kidney stone has long been known to
be nonhomogeneous (Zhong et al. 1992, 1993; Pit-
tomvils et al. 1994), however, most attempts at sim-
ulating such problems have assumed continuous mate-
rial properties (Mota et al. 2006; Caballero and Moli-
nari 2010, 2011). Mota et al. (2006) studied the frag-
mentation of manufactured, cylindrical kidney stones
made from gypsum. They load the stone using the tech-
nique of Lithotripsy, wherein a pulse of pressure is
applied to the exterior of the stone. They also con-
ducted experiments and displayed the cohesive ele-
ment method’s ability to capture fragmentation pat-
terns which agreed with those observed experimen-
tally. Caballero andMolinari (2010) and Caballero and
Molinari (2011) simulate the direct impact of the kid-
ney stone through the Lithoclast, but only considered
the simplified case of a homogeneous stone structure.
In this example, we investigate the influence of a radi-
ally heterogeneousmicrostructurewithin the stone, and
include the influence of randomly distributed material
strength.

The model we use to simulate this problem has a
radius of 10mmand contains, contains 51,746 elements
(10,424 nodes), as illustrated in Fig. 17. The elements
at the site of impact have a maximum element size of
0.1 mm, and those in the bulk of the stone have a max-
imum size of 0.65 mm. In this investigation we will
consider the three distinct sets of material properties
listed in Table 6. We will first investigate the fragmen-
tation behavior for a homogeneous stone; then consider
the behavior when the core of the stone is comprised
of a different material than the outer layer of the stone.
The numerical framework described in Sect. 2 applies
to both homogeneous and functionally graded materi-
als. To numerically capture the linear gradation of the
material between distinct zones, we use graded finite
elements; which incorporate the material gradation at
the size-scale of the element. There have been multiple
methods designed to allow for graded material proper-
ties at the element scale (Santare and Lambros 2000;
Kim and Paulino 2002), however, in this work, we use
the generalized isoparametricmethod proposed byKim
and Paulino (2002). In the generalized isoparametric
method the element shape functions are used to inter-
polate the material parameters from the Gauss points
to the nodes. Between distinct zones we grade all bulk
and cohesive material parameters, as well, we continue
to assume a random distribution of cohesive strength.

The impact of the probe is described by displacing
the nodes in the impact site by a prescribed velocity.
The velocity of the probe is not known precisely, but
we assume that it decreases monotonically. Caballero
andMolinari (2010) andCaballero andMolinari (2011)
suggest that the impact velocity follows the relation:
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Fig. 17 Geometry and
mesh of the kidney stone
model

Table 6 Summary of material properties in common kidney stones

Stone composition (%) φ (N/m) σ (MPa) ρ (kg/m3) E (MPa)

COM 0.735 1.500 2038 25.162

CA 0.382 0.500 1732 8.504

CA(50)/COM(50) 0.553 1.000 1885 16.833

COM calcium oxalate monohydrate; CA carbonate apatite (Zhong et al. 1993)

u̇C (t) = u̇C0

[
1 − e−η t

tmax

1 + (
e−η − 1

) t
tmax

]
, (22)

where η ∈ (−∞,+∞), u̇C0 is the initial velocity of the
probe, and tmax is the total time of contact. The total
time of contact is determined through the following
relation:

tmax = ut=tmax

u̇C0

(
e−η − 1

)2
1 − e−η (1 + α)

, (23)

where ut=tmax is the maximum displacement achieved
by the probe after impact. The velocity relation used in
this investigation is illustrated in Fig. 18.

First, we examine the fragmentation behavior of the
homogeneous kidney stone.Weconsider all threemate-
rials listed in Table 6 and plot the evolution of frag-

Fig. 18 Impact velocity of metal probe on kidney stone

mentation through time in Fig. 19. Results are shown
for a variation in both scale parameter, λ, and Weibull
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Fig. 19 Evolution of fragmentation for a homogeneous kidney stone constituted of: a CA, b CA(50)/COM(50), and c COM

modulus, m, for each material. In general, the frag-
mentation evolves slower for the most compliant mate-
rial (CA), than it does for the least compliant mate-
rial (COM). When considering the random distribu-
tion of material strength, the scale parameter is shown
to have a much greater influence on the evolution of
fragmentation that the Weibull modulus. For a smaller
scale parameter, λ = 0.2 MPa, fragmentation occurs
sooner and is more pervasive than in the case of a
large scale parameter, λ = 0.4 MPa. Additionally,
the final volume of fragments indicates that the stone
does not fully fragment when the range of material
strength increases. The results shown are for a sin-
gle instance of the simulated results, however, each
scenario was simulated three times, and the present
results and conclusions are typical across each sim-
ulation.

When we assume that the stone contains a differ-
ent constitutive make-up in the inner core than it does
in the outer layer, the fragmentation behavior changes
significantly. In this investigation, we consider sce-
narios with both a more compliant and less compli-
ant material in the inner core. Based on experimen-
tal observations of the microstructure of kidney stones
(Zhong et al. 1992, 1993; Pittomvils et al. 1994), the
outer core was assumed to be 15% the thickness of the
radius, and the zone transitioning between the inner
core and outer layer was assumed to be 20% the thick-

ness of the radius. Multiple values were investigated
for the thickness of both the outer layer and zone of
transition, but these values did not significantly influ-
ence the global response. Typical results are illustrated
in Fig. 20. When we have a more compliant inner
core, as in Fig. 20a, b, complete fragmentation evolves
rapidly (in approximately 40–45µs) regardless of the
material in the core. Additionally, the distribution of
material strength has a much smaller effect than in
the homogeneous stones. Alternatively, when a less
compliant material is present in the inner core, as in
Fig. 20c, fragmentation is significantly restricted. The
maximum volume of fragments produced was approx-
imately 125mm3, significantly less than the volume of
the stone (4189mm3). This small volume of fragments
demonstrates the limited ability of the softer outer layer
to transmit enough energy to the inner core, from the
impacting probe, to cause fragmentation to occur. Sim-
ilar behavior was observed across all scenarios we con-
sidered, including scenarios with different materials
and thicker and thinner outer layers.

Similarly to the the previous example, we investi-
gate the evolution of energy throughout the simulation.
In this case, we examine the evolution of energy for two
homogeneousmaterials, as illustrated in Fig. 21. In this
example, the external energy from the impacting probe
is converted into strain, kinetic and fracture energy. In
the initial stages of impact, the external energy is pri-
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marily converted into strain energy. The strain energy
increases rapidly, but decreases as the damaged region
in the stone expands. As the stone begins to fracture,
the kinetic energy and fracture energy increase. Over
time, the problem reaches equilibrium, and the fracture
of the stone stops. At equilibrium, the external energy
is converted into kinetic and fracture energy, each of
which remain constant with time.

6 Concluding remarks

The cohesive element method’s ability to capture the
full range of fracture behavior: from crack initiation,
through crack propagation, branching and coalescence,
all the way to complete fragmentation, has allowed us
to study the pervasive fracture problemsherein. In order
to reduce mesh induced artifacts on fracture behav-

ior, often caused by the use of smoothing operators
in automatic mesh generators, we propose the nodal
perturbation operator to introduce geometric random-
ness. We perform a geometric analysis on Lo’s mesh
quality parameter and minimum and maximum inte-
rior angles in the mesh before and after nodal pertur-
bation. Through the investigation, we demonstrate that
the use of a nodal perturbation factor around 0.4 is
able to produce a highly randomized mesh while still
maintaining high quality elements satisfying require-
ments on Lo’s parameter and interior angles. Thus, this
is the value of the nodal perturbation factor we rec-
ommend, and is the value used throughout the exam-
ples.

To further alleviate the influence of the mesh on the
fracture patterns, we discuss the use of random hetero-
geneous constitutive relations. Random heterogeneous
constitutive relations are motivated by the idea that no
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material is truly homogeneous, but contains hetero-
geneities at the microscale. We provide a summary of
many of the prominent methods, for representing these
microscale heterogeneities, including the well-known
Weibull distribution. We use these statistical means
to distribute the strength of the material in the prob-
lems we investigate. To capture the failure response
of the material, we implement the extrinsic PPR cohe-
sive model, and adaptively insert cohesive elements in
front of each crack tip to capture the nonlinear fracture
behavior. This paper serves as an instance of the use of
the extrinsic PPR model in three-dimensional fracture
simulations.

Three numerical examples are presented, which are
specifically selected to highlight many of the promi-
nent features effecting the fragmentation of struc-
tures. The first example considers high-speed spin-
ning of a ceramic disk. The combination of geo-
metric and constitutive randomness results in random
fracture behavior; which corresponds well to experi-
mentally observed fragmentation patterns and crack
speeds. The second example demonstrates the abil-
ity to use surface features on structures undergoing
blast or impact loads to control fragmentation pat-
terns. The third example demonstrates the significance
of accounting for material gradation in the investiga-
tion of structures under direct impact. By using the
case of a graded kidney stone, we demonstrate that
the gradation of the material can significantly influ-
ence the fragmentation behavior, and in some cases
can even inhibit fragmentation from occurring alto-
gether.
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Appendix A. Pseudo code for fragment definition

The following pseudo code outlines the method used to
delineate the fragments in the pervasive fragmentation
results presented in the paper. The objective of the code
is to create a list of fragments and all bulk elements
belonging to that fragment.
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