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Summary

Multimaterial topology optimization often leads to members containing com-
posite materials. However, in some instances, designers might be interested in
using only one material for each member. Therefore, we propose an algorithm
that selects a single preferred material from multiple materials per overlap-
ping set. We develop the algorithm, based on the evaluation of both the strain
energy and the cross-sectional area of each member, to control the material
profile (ie, the number of materials) in each subdomain of the final design.
This algorithm actively and iteratively selects materials to ensure that a single
material is used for each member. In this work, we adopt a multimaterial for-
mulation that handles an arbitrary number of volume constraints and candidate
materials. To efficiently handle such volume constraints, we employ the ZPR
(Zhang-Paulino-Ramos) design variable update scheme for multimaterial opti-
mization, which is based upon the separability of the dual objective function
of the convex subproblem with respect to Lagrange multipliers. We provide an
alternative derivation of this update scheme based on the Karush-Kuhn-Tucker
conditions. Through numerical examples, we demonstrate that the proposed
material selection algorithm, which can be readily implemented in multimate-
rial optimization, along with the ZPR update scheme, is robust and effective for
selecting a single preferred material among multiple materials.

KEYWORDS

ground structure method, material nonlinearity, material selection algorithm, multimaterial
topology optimization, multiple volume constraints, ZPR update algorithm

1 INTRODUCTION

Multimaterial topology optimization may lead to members containing more than one material. Thus, in this paper, we
propose a material selection algorithm that ensures the selection of a single material for each member. This algorithm,
based on the evaluation of both the strain energy and the cross-sectional area of each member, performs iteratively and
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(A) (B) (C)

FIGURE 1 Ground structure combinations for material layers. (A) Scenario #1, in which 4 materials share the entire domain;
(B) Scenario #2, in which 4 materials split the domain; (C) Scenario #3, in which 4 materials share and split the domain, enabling a general
setting [Colour figure can be viewed at wileyonlinelibrary.com]

actively throughout the optimization process. In the context of truss layout optimization using the ground structure
method (GSM), we consider 3 scenarios of the initial assignment of material layers. As shown in Figure 1, the multiple
material layers can either share (Scenario #1) or split (Scenario #2) the design domain, or combine both (Scenario #3).

Through an illustrative example in Figure 2, we demonstrate the difference between optimization processes without
controlling the number of materials in each subdomain (typical approach) and with controlling the selection of at most
one material from each subdomain by using the proposed algorithm. The design domain and boundary conditions are
provided in Figure 2A, whereas Figure 2B displays the material models in which Material 1 has a larger Young's modulus
than Material 2 in both tension and compression regions. The initial ground structures (GS) of the 2 bilinear materials
share the entire domain, and each material is assigned to an individual volume constraint. As demonstrated by Figure 2C,
overlapping of 2 materials occurs in the optimized design when we allow the selection of more than one material. On the
other hand, the final result of employing the material selection algorithm (Figure 2D), which ensures the selection of a
single material, shows that each truss member in the optimized design contains at most one material.

Based on the aforementioned description, the remainder of this paper is organized as follows. Section 2 provides the
motivation and a review of related work on multimaterial topology optimization. Section 3 describes the proposed multi-
material topology optimization formulation, followed by the sensitivity analysis and the incorporation of a discrete filter.
Section 4 introduces an alternative derivation of the Zhang-Paulino-Ramos (ZPR) design variable update scheme, which is
based on the Karush-Kuhn-Tucker (KKT) conditions. Section 5 proposes an algorithm that selects a single preferred mate-
rial among multiple materials. Section 6 presents numerical examples in 2 and 3 dimensions, highlighting the properties
of the proposed material selection algorithm, and Section 7 provides the concluding remarks.

2 MOTIVATION AND RELATED WORK

Topology optimization with multiple materials is a powerful design tool because it not only finds the optimal topology
but also selects the proper type and amount of materials. One common feature of practical engineering designs is that
they typically consist of multiple material types such as high-rise buildings and composite materials in the macroscale
and microscale, respectively. The literature on multimaterial topology optimization mainly deals with the continuum
setting such as the density-based approach. Various generalizations and extensions of the solid isotropic material with
penalization1 and other material interpolation schemes in the single-material topology optimization are made to accom-
modate multiple materials (see for example other studies2-6). In addition to density-based formulations, phase-field7-9 and
level set10-13 approaches are also used for multimaterial topology optimization formulations.

In addition to the continuum setting, some studies perform multimaterial topology optimization using discrete ele-
ments, eg, truss and lattice networks. Among these studies, most focus on integrating truss elements into continuum
topology optimization for the purpose of designing reinforced concrete structures and strut-and-tie models (see for
example these studies14-18). However, few multimaterial topology optimization studies focus on truss networks using
the GSM.

http://wileyonlinelibrary.com
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(A) (B)

(C) (D)

FIGURE 2 Demonstration of the algorithm that selects a single material among multiple materials at each subdomain. (A) Design
domain; (B) 2 bilinear material models, ie, Material 1 has a larger Young's modulus than Material 2 in both tension and compression regions;
(C) multimaterial topology optimization that allows the selection of more than one material from each subdomain; (D) multimaterial
topology optimization with the algorithm that selects at most one material from each subdomain. Dotted lines represent removed members

Another limitation in multimaterial topology optimization literature is that it mostly assumes material linearity, yet
real materials generally display nonlinear constitutive relations. In addition, most studies on multimaterial topology
optimization use a limited setting for volume constraints. These studies either assign a total volume constraint for all
candidate materials (for example, see studies4,6,14-17), which may cause issues if linear materials are used, or assign an
individual volume constraint to each material (for example, see studies2,3,7-10,12), which may impose higher computational
demand on formulation and update scheme implementations. A general setting, ie, the combination of both types of con-
straints for various design purposes, and a tailored update scheme that handles arbitrary volume constraints are needed
in multimaterial optimization.

To address the aforementioned limitations, we adopt our multimaterial topology optimization framework19 utilizing
the ZPR update scheme, which can handle an arbitrary number of candidate materials with flexible material properties
and a general setting of volume constraints. The ZPR design variable update scheme separates the updates of the design
variables associated with each volume constraint and performs updates independently in series or in parallel. The update
scheme is derived based on the separable feature of the dual objective function of the convex subproblem with respect to
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the Lagrange multipliers. The update of design variables thus depends only on the Lagrange multiplier of its associated
volume constraint.Thus, the ZPR update scheme is capable of handling an arbitrary number of volume constraints while
preserving efficiency. In addition to volume constraints, the ZPR update scheme can be used to handle other types of linear
constraints.

The adopted multimaterial formulation may lead to members containing more than 1 material (ie, members with com-
posite materials). In general, this phenomenon occurs under 3 conditions, which need to be satisfied simultaneously. First,
2 or more materials are assigned to share a domain in the initial material assignment (eg, the initial GS in Figure 1A,C).
Second, among the materials that share a domain, one material is stronger at least within a certain range of stretch values
(eg, in Figure 2B, Material 1 is stronger than Material 2 in the entire range of stretch values). Third, these materials are
associated with individual volume constraints.

In the literature, several attempts have been made in continuum multimaterial topology optimization to overcome the
issues of selecting more than one material. One common strategy is to consider the product interpolation in the discrete
material optimization technique,5 which is based on a penalization scheme. However, this approach does not completely
eliminate selecting of multiple materials at subdomains, especially at material interfaces. In order to enforce the selection
of at most or exactly one material at each design subdomain, material selection constraints are introduced by employing
discrete variables, which converts the optimization to a mixed integer problem (see for example the work of Hvejsel and
Lund4). In the context of truss topology optimization with multiple materials, the above-reviewed approaches cannot be
directly nor efficiently adopted, and currently, no work allows for control of the material profile (ie, number of materials)
in each truss member of the final design.

The goal of this paper is to propose an effective algorithm that enforces a single material selection in each subdomain
in the multimaterial topology optimization of trusses. We highlight that the proposed algorithm is active and iterative
in nature and performed throughout the optimization process. This is conceptually different from the following 2 post-
processing approaches. Postprocessing of the final designs with composite materials, ie, removing truss members with
less contribution at the end of the optimization step, causes a decrease in volume and an increase in displacement and,
most importantly, may remove all the truss members with less favorable materials leading to designs only containing the
most favorable material. Additionally, treating all composite members at the same time may, again, lead to designs only
containing the most favorable material.

3 MULTIMATERIAL TOPOLOGY OPTIMIZATION

This section introduces the adopted multimaterial topology optimization formulation and its sensitivity analysis, followed
by the incorporation of a discrete filter. Within the context of the GSM and assuming a total of m candidate materials,
the framework consists of m layers of initial GS. We assume that the ith GS layer with material i (where i = 1, … ,m is
the material index) contains Mi truss members and denotes xi as the associated vector of design variables. The eth design
variable component, ie, x(e)i , is the cross-sectional area of the eth truss member of material i. Additionally, the formulation
contains nc independent volume constraints, where 1 ≤ nc ≤ m. For the jth volume constraint, we denote  𝑗 as the set
of material indices associated with that volume constraint.

The formulation for such multimaterial truss topology optimization is given as follows:

min
x1,… ,xm

J (x1, … , xm) = min
x1,… ,xm

−Π (x1, … , xm,u (x1, … , xm))

s.t. g 𝑗 (x1, … , xm) =
∑
i∈𝑗

LT
i xi − V 𝑗

max ≤ 0, 𝑗 = 1, … ,nc,

xmin ≤ x(e)i ≤ xmax, i = 1, … ,m, and e = 1, … ,Mi, (1)
with u (x1, … , xm) = argmin

u
Π (x1, … , xm,u) ,

where J is the objective function; u(x1, … , xm) is the equilibrating displacement field (state variable); Π is the total poten-
tial energy; V 𝑗

max is the prescribed upper bound on the total volume associated with the jth volume constraint, g j; xmin,
and xmax are the prescribed lower and upper bounds of the design variables; and Li is the length vector of the ith mate-
rial. As a demonstration of the notation in multimaterial optimization formulation (1), Figure 3 and Table 1 summarize
the parameters for a case with 3 materials (m = 3, M1 = 5,M2 = 5, and M3 = 9) and 2 volume constraints (nc = 2,
1 = {1},2 = {2, 3}).
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FIGURE 3 Parameters in the multimaterial optimization formulation. Three materials share and split the design domain (m = 3,
M1 = 5,M2 = 5, and M3 = 9) with 2 volume constraints (Material 1 has an individual volume constraint, whereas Material 2 and Material 3
share 1 volume constraint, nc = 2, 1 = {1},2 = {2, 3}) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Parameters in multimaterial optimization formulation (Figure 3)

Materials, m = 3 Mi xi =
{

x(e)
i

}T
, i=𝟏 , … ,m , e=𝟏 , … ,Mi

1 M1 = 5 x1 =
{

x(1)1 , x(2)1 , x(3)1 , x(4)1 , x(5)1

}T

2 M2 = 5 x2 =
{

x(1)2 , x(2)2 , x(3)2 , x(4)2 , x(5)2

}T

3 M3 = 9 x3 =
{

x(1)3 , x(2)3 , x(3)3 , x(4)3 , x(5)3 , x(6)3 , x(7)3 , x(8)3 , x(9)3

}T

Volume constraints, nc = 2 
j g j =∑

i∈ j LT
i xi −V j

max ≤ 𝟎 , j=𝟏 , … ,nc

1 1 = {1} g1 = LT
1 x1 − V 1

max ≤ 0
2 2 = {2, 3} g2 = LT

2 x2 + LT
3 x3 − V 2

max ≤ 0

In the above topology optimization formulation, we aim to maximize the total potential energy of the multimaterial
truss system in its equilibrium state. The total potential energy Π of the truss system is defined as the difference of the
total internal strain energy and the external work done by the applied force f. More explicitly, the total potential energy
Π is defined as

Π (x1, … , xm,u) =
m∑

i=1

Mi∑
e=1

x(e)i L(e)
i Ψ(e)

i (u) − f Tu, (2)

where Ψ(e)
i (u) is the strain energy density function of truss member e in material i, L(e)

i is the length of that truss member,
and f is the external force vector. In this work, we assume small deformation and nonlinear constitutive relations pro-
vided that the strain energy density function, ie, Ψ(e)

i (u), is convex and differentiable for any given u. We account for the
nonlinear constitutive relationship through the Ogden-based model20 and the bilinear model. The strain energy density
function for the Ogden-based model is given by

ΨOG (λ) =
M∑
𝑗=1

γ𝑗
β𝑗

(
λβ𝑗 − 1

)
, (3)

where λ denote the axial stretch and M, γj, and βj are material parameters. By varying the material parameters, the
Ogden-based model allows control of the constitutive relationships and has the capability to reproduce a variety of
hyperelastic materials. The strain energy density function for the bilinear model is defined as

ΨBi(λ) =
⎧⎪⎨⎪⎩

1
2

Et(λ − 1)2, if λ > 1,
1
2

Ec(λ − 1)2, otherwise,
(4)

where Et and Ec are Young's moduli for tension and compression, respectively. For more details of these material models,
readers are referred to the studies of Ramos et al21 and Zhang et al.22

http://wileyonlinelibrary.com
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Next, we provide the sensitivity information of the objective function and volume constraints. Because u(x1, … , xm)
is the equilibrating displacement, the sensitivity of the objective function with respect to each design variable is
obtained as19

𝜕J
𝜕x(e)i

(x1, … , xm) = −L(e)
i Ψ(e)

i (u (x1, … , xm)) , (5)

which does not involve any adjoint vector. Additionally, the sensitivity of the jth volume constraint is expressed as

𝜕g 𝑗 (x1, … , xm)
𝜕x(e)i

=

{
L(e)

i , if i ∈  𝑗 ,

0, otherwise.
(6)

The multimaterial topology optimization formulation (1) has several features. It is capable of handling an arbitrary
number of materials with flexible initial material assignment (ie, the materials can either share or split the design domain
or combine both) and independent constitutive relations (eg, each candidate material can be either linear, bilinear, or
nonlinear). The assignment of volume constraints is general; we can assign a total/global volume constraint to all the
materials, an individual volume constraint to each material, or a combination of both.

The discrete filtering technique in the GSM is proposed in the work of Ramos Jr and Paulino23 and is extended in
the work of Zhang et al22 to problems considering nonlinear materials. The discrete filtering allows users to control the
resolution of the design and ensure the global equilibrium of the final topology. For optimization with nonlinear structural
analysis, the discrete filtering is further shown to significantly improve computational efficiency.22 Therefore, in this work,
the discrete filtering technique is incorporated in the multimaterial optimization formulation.

We define a user-defined parameter αf that represents the minimal allowed resolution in the final topology, the filter
operation is defined as follows:

Filter
(

x, α𝑓 , e
)
=

{
0, if x(e)

max(x)
< α𝑓 < 1,

x(e), otherwise.
(7)

The above filter operation is used with a reduced-order modeling scheme, which removes the information associated
with the set of truss members displaying normalized areas below αf in both the nonlinear structural system analysis (the
state problem) and the optimization analysis. In this manuscript, we consider small filter values, eg, 10−3 or 10−4, which
has been shown in the work of Zhang et al22 to yield almost identical results to the ones obtained without the discrete filter.

Incorporating the discrete filtering technique, the multimaterial topology optimization formulation in (1) is modified as

min
x1,… ,xm

J (x1, … , xm) = min
x1,… ,xm

−Π
(

x1(x1), … , xm(xm),u (x1, … , xm)
)

s.t. g 𝑗 (x1, … , xm) =
∑
i∈ 𝑗

𝐿T
i xi(xi) − V 𝑗

max ≤ 0, 𝑗 = 1, … ,nc,

0 ≤ x(e)i ≤ xmax, i = 1, … ,m, ande = 1, … ,Mi, (8)

with u (x1, … , xm) = argmin
u

{
Π
(

x1(x1), … , xm(xm),u
)
+ Γ

2
uTu

}
,

x(e)i = Filter
(

xi, α𝑓 , e
)
, i = 1, … ,m, and e = 1, … ,Mi,

where the filter operation is applied to the design variables associated with each material set and xi denotes the filtered
design variable associated with the ith material. We note that the modified formulation (8) relaxes the lower bound of
design variables to xmin = 0 to account for the removal of members. Thus, a Tikhonov regularization term (Γ∕2)uTu is
needed in the total potential energy to prevent singular tangent stiffness matrices23-26 in the structural equations.

4 ALT-ZPR: ALTERNATIVE DERIVATION OF THE ZPR UPDATE SCHEME

The Zhang-Paulino-Ramos or ZPR (zipper, phonetically) design variable update scheme19 is adopted here for multi-
material topology optimization. This design variable update scheme is capable of updating an arbitrary number of
volume constraints while preserving efficiency and robustness. In particular, the ZPR update scheme separately and
independently updates the design variables associated with each volume constraint.
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The derivation of the ZPR update scheme that utilizes primal-dual relationship is presented in the work of Zhang et al.19

Here, we show an alternative derivation of this update scheme using the KKT conditions. At each optimization step k, we
introduce a convex approximation of the objective function over the intervening variable yi(xi) such that 𝑦(e)i (x(e)i ) = (x(e)i )−α,
i = 1, … ,m and e = 1, … ,Mi, as follows:

J (x1, … , xm) ≈ Jk (x1, … , xm) = J
(

x k
1 , … , x k

m
)
+

m∑
i=1

[
𝜕J
𝜕yi

(x k
1 , … , x k

m)
]T [

yi(xi) − yi(x k
i )
]

= J
(

x k
1 , … , x k

m
)
+

m∑
i=1

[
bi(x k

1 , … , x k
m)
]T [

yi(xi) − yi(x k
i )
]
, (9)

where α is a strictly positive arbitrary number, x k
i and yi(x k

i ) are the design and intervening variables at the kth optimiza-
tion step for material i, and 𝑏i(x k

1 , … , x k
m) is a constant vector, whose component is given as the following function of the

corresponding eth component of the sensitivity vector:

b(e)
i

(
x k

1 , … , x k
m
)
= 𝜕J

𝜕𝑦
(e)
i

(
x k

1 , … , x k
m
)
= −

(
x(e),ki

)1+α

α
𝜕J
𝜕x(e)i

(
x k

1 , … , x k
m
)
. (10)

Using the approximated objective function J k, we obtain a subproblem at step k formulated as follows:

min
x1,… ,xm

Jk (x1, … , xm) = min
x1,… ,xm

J
(

x k
1 , … , x k

m
)
+

m∑
i=1

[
𝜕J
𝜕yi

(
x k

1 , … , x k
m
)]T [

yi(xi) − yi
(

x k
i
)]

s.t.
∑
i∈ 𝑗

𝐿T
i xi − V 𝑗

max ≤ 0, 𝑗 = 1, … ,nc,

x(e),ki,L ≤ x(e)i ≤ x(e),ki,U , i = 1, … ,m, and e = 1, … ,Mi,

with 𝑦
(e)
i

(
x(e)i

)
= (x(e)i )−α, i = 1, … ,m, and e = 1, … ,Mi, (11)

where 𝑗 is the set of material indices associated with jth volume constraint, and x(e),ki,L = max(x min, x(e),ki − move) and
x(e),ki,U = min(x max, x(e),ki + move) are the lower and upper bounds of the design variables that are determined through the
prescribed allowable move limit, ie, move.

By introducing a set of Lagrange multipliers ϕ𝑗

V , 𝑗 = 1, … ,nc, the Lagrangian of the subproblem in Equation (11) takes
the following form:


(

x1, … , xm,ϕ1
V , … ,ϕnc

V
)
=

m∑
i=1

[
bi
(

x k
1 , … , x k

m
)]Tyi(xi) +

nc∑
𝑗=1

ϕ 𝑗

V

(∑
i∈𝑗

𝐿T
i xi − V 𝑗

max

)
. (12)

Notice that the above Lagrangian is a separable function for each volume constraint, ie,


(

x1, … , xm,ϕ1
V , … ,ϕnc

V
)
=

nc∑
𝑗=1

𝑗
(

xi, … , xm,ϕ 𝑗

V
)

=
nc∑
𝑗=1

{∑
i∈ 𝑗

[[
bi
(

x k
1 , … , x k

m
)]Tyi(xi) + ϕ 𝑗

V LT
i xi

]
− ϕ 𝑗

V V 𝑗
max

}
. (13)

The KKT conditions of the subproblem (11) require that

𝜕

𝜕x(e)i

= 𝜕𝑗

𝜕x(e)i

= −αb(e)
i

(
x k

1 , … , x k
m
) (

x(e)i

)(−α−1)
+ ϕ 𝑗

V L(e)
i = 0, ∀i ∈  𝑗 , (14)

and
𝜕

𝜕ϕ𝑗

V

=
∑
i∈ 𝑗

𝐿T
i xi − V 𝑗

max = 0, 𝑗 = 1, … ,nc. (15)
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We denote x(e) ∗i as the solution of the aforementioned KKT conditions. From (14), we can write the solution x(e) ∗i as

x(e) ∗i = Q(e),k
i

(
ϕ 𝑗

V
)
=

[
αb(e)

i

(
x k

1 , … , x k
m
)

ϕ𝑗

V L(e)
i

] 1
1+α

, ∀i ∈  𝑗 . (16)

By further incorporating the lower and upper bounds, ie, xk
i,L, and xk

i,U, of the design variables, the expression for x(e) ∗i
is modified as

x(e) ∗i = Q(e),k
i

(
ϕ𝑗

V
)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(e),ki,L , if
[
αb(e)i (xk

1 ,… ,xk
m)

ϕ 𝑗

V L(e)
i

] 1
1+α

< x(e),ki,L[
αb(e)i (xk

1 ,… ,xk
m)

ϕ 𝑗

V L(e)
i

] 1
1+α

, if x(e),ki,L ≤

[
αb(e)i (xk

1 ,… ,xk
m)

ϕ𝑗

V L(e)
i

] 1
1+α

≤ x(e),ki,U

x(e),ki,U , if
[
αb(e)i (xk

1 ,… ,xk
m)

ϕ 𝑗

V L(e)
i

] 1
1+α

> x(e),ki,U

, ∀i ∈  𝑗 . (17)

By plugging (17) back into Equation (15), we obtain

𝜕

𝜕ϕ 𝑗

V

=
∑
i∈ 𝑗

Mi∑
e=1

L(e)
i x(e) ∗i

(
ϕ 𝑗

V
)
− V 𝑗

max = 0, 𝑗 = 1, … ,nc. (18)

Notice that the jth equation of the aforementioned system is an algebraic equation as a function ϕ𝑗

V ; therefore, each
optimal Lagrange multiplier ϕ𝑗 ∗

V can be solved independently by its corresponding equation. We then have a decoupled
system with respect to the volume constraints.

Finally, the update of the eth component of design variables xk+1
i is taken as the optimal solution in subproblem (11) as

follows:
x(e),k+1

i = Q(e),k
i

(
ϕ 𝑗 ∗

V
)
, ∀i ∈  𝑗 . (19)

When applied to the multimaterial optimization problem in Section 3, the ZPR design variable update scheme in
Equation (19) takes the following specific form:

x(e),k+1
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(e),ki,L if
[
Ψ(e)

i (𝑢(xk
1 ,… ,x k

m))
ϕ𝑗 ∗

V

]η
x(e),ki < x(e),ki,L[

Ψ(e)
i (𝑢(xk

1 ,… ,xk
m))

ϕ𝑗 ∗
V

]η
x(e),ki if x(e),ki,L ≤

[
Ψ(e)

i (𝑢(xk
1 ,… ,x k

m))
ϕ𝑗 ∗

V

]η
x(e),ki ≤ x(e),ki,U

x(e),ki,U if
[
Ψ(e)

i (𝑢(xk
1 ,… ,x k

m))
ϕ𝑗 ∗

V

]η
x(e),ki > x(e),ki,U

, ∀i ∈  𝑗 , (20)

where η = 1∕(1+α), which is commonly known as the damping factor. This factor can be either constant27 or adaptive.28

We note that, from Equations (19) and (20), the updates of design variables are also decoupled in the sense that the
update corresponding to the jth volume constraint only depends on its associated optimal Lagrange multiplier, ie,ϕ𝑗 ∗

V . This
feature, along with the decoupled solution of ϕ𝑗 ∗

V in (18), allows the associated design variables of each volume constraint
to be updated independently, highlighting one of the main advantages of the ZPR design variable update scheme.

5 ALGORITHM TO SELECT A SINGLE PREFERRED MATERIAL PER
OVERLAPPING SET

As discussed in Section 2, under the conditions that (i) multiple materials share the design domain, (ii) one of the materials
(at least partially) dominates the others, and (iii) each of those materials is assigned with an individual volume constraint,
optimization formulations (1) and (8) may lead to final topologies with overlapping sets/connectivities. This is shown
in the optimized structure in Figure 2C. An overlapping set/connectivity is defined as the truss members with different
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material properties and with nonzero cross-sectional areas that share the same end nodes. The presence of overlapping
connectivities may lead to difficulties in defining a unique material property of each truss member in the final topology.
In this section, we propose a simple and effective material selection algorithm to ensure that each connectivity (truss
member) of the final topology contains at most one material. The basic concept and procedure of the proposed algorithm
are illustrated by the example in Figure 2.

Assume that, at a given optimization step, we have identified all sets of overlapping members. Each of these sets contains
all the nonzero area members that share the same end nodes. The basic idea of the material selection algorithm is to select
the best member within each set according to a predefined criterion and remove other members. The removal is performed
by assigning member cross-sectional areas to zero and applying Tikhonov regularization in the structural analysis to
regularize the tangent stiffness matrices (regardless of whether the discrete filter is used). Notice that, when a member is
removed, the total volume of the associated material decreases, and thus, the optimizer assigns the removed materials to
other locations in the following optimization steps. By doing this, the optimization effectively redistributes the overlapped
materials to other locations. If all the overlapped members at one material layer are removed at the same time, there
might be no available members from that material layer to redistribute to the design (because each candidate material can
only be redistributed within its associated material layer). To prevent this, a threshold (parameter), ie, αselect ∈ [0, 1], is
defined such that this removing-and-redistributing procedure is performed gradually. In the material selection algorithm,
the threshold is applied as follows. The normalized area of each member (the ratio of the cross-sectional area to the
maximum cross-sectional area in its associated material layer) is first computed, and the removal is then performed to
the overlapping sets whose ratios are larger than (or equal to) the aforementioned prescribed threshold αselect.

We adopt uniform area distribution as the initial guess for design variables, ie, the initial ratio of the member area to
the maximum area of the corresponding material layer is one. As a result, if the selection algorithm is applied at the
initial optimization step, all overlapping connectivities will be immediately removed according to the previously defined
threshold. Additionally, no redistribution of the removed material can be done in the subsequent optimization steps. To
avoid this, we allow the optimizer to freely develop topologies with nonuniform member areas and initiate the material
selection algorithm after Nselect optimization steps.

In addition to the parameters αselect and Nselect, a criterion needs to be defined to determine the best member among
the multiple materials in each overlapping set. In this work, we define the criterion to be the strain energy of the member
per unit length, ie, xΨ (because the overlapping connectivities have the same lengths, the member length L is excluded
in the criterion). For a set of overlapping members, we select the member with the largest strain energy (per unit length).
The choice of this criterion is consistent with the objective function in (2) because members with larger strain energy (per
unit length) contribute to larger total potential energy of the entire structure. Thus, members with larger strain energy are
preferred because they are more efficient. More specifically, the proposed material selection algorithm follows the steps
listed as follows.

1. Detect all sets of overlapping members (connectivities with more than one material selection).
2. Within each overlapping set, detect the member with the largest strain energy per unit length.
3. For this detected member in the current set, if its normalized cross-sectional area (with respect to the maximum

cross-sectional area in its associated material layer) exceeds or equals to the prescribed threshold αselect, go to Step 4;
otherwise, go to Step 5.

4. Select the member that has the largest strain energy per unit length and keep its cross-sectional area. Remove other
members in the current set by assigning their cross-sectional areas to be zero.

5. Proceed to the next overlapping set.

To formalize the proposed algorithm, we introduce the following notation. Assuming that there are in total of p over-
lapping sets, we denote x̃𝑗 as the vector containing all the design variables in the jth set, where x̃(i)

𝑗
is the ith component

of x̃𝑗 . Accordingly, the vector of corresponding material indices of the jth set is defined as m̃𝑗 with its ith compo-
nent denoted as m̃(i)

𝑗
. The associated energy density function is denoted as Ψm̃(i)

𝑗
. As an illustration, Figure 4 shows

the overlapping of 3 materials at a connectivity (subdomain) and the corresponding notation. A design consisting of
overlapping materials is shown in Figure 4A. The first overlapping set/connectivity consists of the fourth member of
Material 1, the 2nd member of Material 2, and the fifth member of Material 3, as shown in Figure 4B; therefore, we write
x̃1 = {x̃(1)1 , x̃(2)1 , x̃(3)1 }T = {x(4)1 , x(2)2 , x(5)3 }T and m̃1 = {m̃(1)

1 , m̃(2)
1 , m̃(3)

1 }T = {1, 2, 3}T (Figure 4C). Based on the introduced
notation, the procedure described in Steps 1 to 5 is formally given in Algorithm 1.



1062 ZHANG ET AL.

(A) (B) (C)

FIGURE 4 Demonstration of the overlapping of 3 materials and the corresponding notation. (A) A design consisting of overlapping
connectivities; (B) overlapping connectivity set #1 containing the fourth member of Material 1, the second member of Material 2, and the
fifth member of Material 3; (C) corresponding notation [Colour figure can be viewed at wileyonlinelibrary.com]

Algorithm 1 describes the procedure of selecting a single material from each overlapping connectivity at each optimiza-
tion step. Incorporating Algorithm 1 in the optimization process, the entire implementation is described in Algorithm 2.
In Section 6.1, we include studies that demonstrate influences of the main algorithmic parameters (Nselect and αselect) on
the final topologies and objective values.

We remark that the above-presented material selection algorithm can also be applied with the discrete filter scheme22,23

to control the resolution of the final topology and improve the computational efficiency. Typically, the discrete filter starts
at the initial step of the optimization process. However, in this case, the discrete filter may remove the potential members
to redistribute the removed overlapping materials. Zhang et al22 indicated that the discrete filter can remove up to 99%
of the members in the first few optimization steps after the filter is applied, which may significantly reduce the space of
potential members to redistribute the removed overlapping materials (when we start to apply Algorithm 1 after Nselect
steps). Thus, in the optimization algorithm, we propose to apply the discrete filter after Nfilter optimization steps, where
Nfilter > Nselect is a prescribed parameter.

http://wileyonlinelibrary.com
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6 EXAMPLES

In this section, we provide several numerical examples to demonstrate the proposed material selection algorithm in
the multimaterial topology optimization using the GSM. Example 1 investigates the main parameters of the selecting
algorithm, ie, Nselect and αselect. Example 2 demonstrates the selecting algorithm using 4 Ogden-based materials and
compares the optimized results to the multimaterial case without the selecting algorithm. Using 1 linear material
model and 2 bilinear material models, Example 3 illustrates the selecting algorithm in a simplified bridge design. The
last example shows the application of the proposed multimaterial formulation to a 3-dimensional cantilever beam
design.

We generate nonoverlapped (within the same material layer) initial GS using the collision zone technique by Zegard
and Paulino29,30 and plot final topologies in 3D using the program GRAND3.30 For all results in the GSM, we remove
aligned nodes and floating members and check the final topologies to ensure that they are at global equilibrium. A
detailed explanation can be found in the work of Zhang et al.31 It is worth noting that we do not verify the instability
of the members because the issue of stability is beyond the scope of this work. The nonlinear solution scheme is based
on a Newton-Raphson approach with line search (see the work of Zhang et al22 for a detailed explanation). For all the
examples, the discrete filter is used during the optimization process to obtain valid structures and improve computational
efficiency.

For the constitutive models of the numerical example, we employ a linear model, a bilinear model, and a (hyperelastic)
Ogden-based20 model, which allows a varied control of constitutive relationships and has the capability to reproduce a
variety of hyperelastic models. For details of the constitutive models and strain energy density functions that form the
basis of the structural analysis, readers are referred to the studies of Ramos Jr and Paulino21 and Zhang et al.22

Consistent units are implied throughout, and examples have the initial tangent modulus, ie, E0 = 7 × 107, unless
otherwise stated; stopping criterion, ie, tolopt = 10−9; move value, ie, move = 104x0, where x0 is the initial guess of the
design variables; and initial damping factor for the ZPR update scheme, ie, η = 0.5. Subsequent damping factors are
updated according to the scheme provided by the study of Groenwold and Etman.28 The upper bound for the design
variable is defined by xmax = 104x0. All examples are solved using the ZPR design variable update scheme described in
Section 4, and all cases that enforce the selection of a single material employ the material selection algorithm described in
Algorithm 1.



1064 ZHANG ET AL.

6.1 Example 1: parametric study using a cantilever beam
In this example, we demonstrate the effectiveness of the proposed material selection algorithm and investigate the main
parameters, ie, Nselect and αselect. The design domain (L = 2,P = 1000) and material models are shown in Figures 5A
and 5B. Three materials share the entire domain, as shown in Figure 5C. Three layers (one for each material) of identical
full-level initial GS (based on a 8 × 6 discretization) with a total of 3,702 members and 63 nodes are used. The total
prescribed maximum volume takes the following value: Vmax = 0.024. Each material is associated with an individual
volume constraint (nc = 3), as shown in Table 2.

To investigate the impact of the step number to initiate the selection algorithm (Algorithm 1), ie, Nselect, we choose
Nselect = 1, 2, 20, 40, 60, 100, 200, 300, 360. In all the cases, αselect = 0.05, αf = 0.005, and we initiate the discrete filter at
optimization step 365, ie, Nfilter = 365. Figure 6 shows the optimized objective function value for each Nselect and the
final topologies from representative Nselect. For comparison purposes, the optimized objective value and the final topology
obtained from the multimaterial formulation without the selection algorithm are also plotted in Figure 6. The data are
summarized in Table 2.

Several observations can be made based on Figure 6 and Table 2. When the selection algorithm is not used, the final
topology has the smallest objective function value and every member contains more than one material (18 overlapping
connectivities). The cases applying the selection algorithm with αselect = 0.05 lead to final topologies with single-material

(A) (B)

(C)

FIGURE 5 Example 1: Cantilever beam with 3 Ogden-based materials. (A) Design domain (L = 2,P = 1000); (B) material models, ie, 3
Ogden-based materials; (C) initial material distribution, ie, the 3 materials share the entire domain [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Numerical information for Example 1 (see Figures 5, 6, and 7)
Study of Nselect Study of αselect

Nselect 𝛂select J
(

x∗
i

)
No. of Overlapping Nselect 𝛂select J(x∗

i ) No. of Overlapping
Connectivities Connectivities

1 27.954 0.00 27.604 0
2 27.501 0.01 27.487 0
20 27.498 0.05 27.475 0
40 27.487 0.10 27.452 0
60 0.05 27.475 0 60 0.30 27.432 4
100 27.452 0.50 27.432 12
200 27.452 0.75 27.432 12
300 27.452 1.00 27.432 18
360 27.452

http://wileyonlinelibrary.com
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FIGURE 6 Example 1: study of the step number to initiate the selecting algorithm, ie, Nselect, (Nselect = 1, 2, 20, 40, 60, 100, 200, 300, 360)
versus the resulting optimized objective value. The final topologies (from representative cases) are included. Other parameters: αselect = 0.05,
αf = 0.005, and Nfilter = 365 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Example 1: influence of αselect on the optimization results, ie, αselect, (αselect = 0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 1) versus the
resulting optimized objective value. The final topologies (from representative cases) are included. Other parameters: Nselect = 60, αf = 0.005,
and Nfilter = 365 [Colour figure can be viewed at wileyonlinelibrary.com]

members and no overlapping connectivity for all Nselect values. The later we initiate the selection algorithm, the lower
final objective function value obtained; in addition, initiating later tends to result in more complex structures and a higher
computational time. Moreover, for the cases with Nselect ≥ 100, ie, Nselect = 100, 200, 300, 360, we obtain identical J(x∗

i ) val-
ues and optimized structures. These observations suggest that initiating the selection algorithm early in the optimization
process provides access to various solutions, whereas initiating it later in the optimization results in a similar solution.
By varying Nselect to initiate the selection algorithm, various optimized structures with similar J(x∗

i ) can be obtained, all
without overlapping connectivity (ie, each member contains a single material).

The next study demonstrates the effect of αselect on the optimization results. The threshold αselect determines if the
material selection algorithm is performed on each connectivity. The value of αselect varies between 0 ≤ αselect ≤ 1, where
αselect = 0 corresponds to applying the selection algorithm to all the overlapping connectivities, and αselect = 1 corresponds
to never applying the selection algorithm. We choose αselect = 0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 1. In this study, Nselect = 60,
αf = 0.005, and Nfilter = 365. Figure 7 shows the optimized objective function value for each αselect and the final topologies
from representative αselect. The data are summarized in Table 2.

We observe that a larger αselect (more conservative, closer to 1) leads to a lower optimized objective function value. How-
ever, if αselect ≥ 0.3, the resulting structures contain members with more than one material. On the other hand, smaller
threshold values (more drastic), eg, αselect ≤ 0.1, lead to structures with a single preferred material at every subdomain.
The threshold αselect, allows the designer to choose the complexity of the design and whether the material profile contains

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1066 ZHANG ET AL.

either single materials or composite materials. For the examples in the remainder of this paper, we choose αselect = 0.05
for the selection algorithm unless otherwise stated to effectively and efficiently select a single material among multiple
materials.

6.2 Example 2: opposite loads in a simply supported rectangular domain
This example demonstrates the selection algorithm using 4 Ogden-based materials in 2D and compares the optimized
results with the multimaterial case without the material selection algorithm (ie, no control on the number of the materials
selected for each connectivity). The design domain with load and boundary conditions (L = 10,P = 1000) and material
models are shown in Figures 8A and 8B. Four materials share the entire domain (Figure 8C). Four layers (1 for each
material) of identical level-10 initial GS (based on a 30 × 10 grid) with a total of 78 528 members and 341 nodes are used.
The total prescribed maximum volume takes the following value, ie, Vmax = 0.15. Each material is associated with an
individual volume constraint (nc = 4), as shown in Table 3. For the case employing the selection algorithm, we start to
select the preferred material at Nselect = 30 with the ratio αselect = 0.05. For both cases (with and without the selecting
algorithm), the filter parameters are αf = 0.001 and Nfilter = 100.

(A) (B)

(C)

FIGURE 8 Example 2: opposite loads in a simply supported rectangular domain. (A) Design domain (L = 10,P = 1000); (B) material
models, ie, 4 Ogden-based materials; (C) initial material distribution, ie, 4 materials share the entire domain [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Numerical information for Example 1 (see Figures 8, 9, and 10)

2D Cases J
(

x∗
i

)
Material Volume No. of No. of Overlapping

β1 β2 Constraint, V j
max Elements connectivities

4 materials 2200.3 −5.1 0.4Vmax 33
27.510 7.2 −2194.0 0.4Vmax 33 66

(standard) 1043.3 −1843.1 0.1Vmax 33
1848.8 −1039.2 0.1Vmax 33

4 materials 2200.3 −5.1 0.4Vmax 24
27.562 7.2 −2194.0 0.4Vmax 24 0

(Algorithm 1) 1043.3 −1843.1 0.1Vmax 16
1848.8 −1039.2 0.1Vmax 16

Abbreviations: 2D, 2-dimensional.

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 9 Example 2: opposite loads in a simply supported rectangular domain. (A) Optimized structure and convergence plot without
the proposed selection algorithm (αf = 0.001, Nfilter = 100) that contains 66 overlapped connectivities (before removing aligned nodes); (B)
optimized structure and convergence plot with the proposed selection algorithm (αselect = 0.05, Nselect = 30, αf = 0.001, and Nfilter = 100) that
selects a single material among multiple materials—no overlapping connectivity is observed in the final design [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 10 Example 2: Zoom-in regions of the optimized structure obtained from the proposed selection algorithm. No overlapping
connectivity is observed in the final design [Colour figure can be viewed at wileyonlinelibrary.com]

Both the optimized structures and convergence plots for the cases with and without enforcement of the selection of
one material are shown in Figure 9A,B. The associated numerical information is summarized in Table 3. An optimized
structure with every member containing more than one material (66 overlapping connectivities in total before removing
aligned nodes) is obtained in the case without the selection algorithm. Material 1 and Material 4 are selected for the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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members in tension; Material 2 and Material 3 are selected for the members in compression. As shown in Figure 10, the
multimaterial framework with the selection algorithm leads to a structure in which members contain at most one material
(no overlapping connectivity) and a slightly larger objective value. In addition, we observe an increase in the objective
function at the step where the selection algorithm is initiated, ie, Nselect = 30. This corresponds to the removal of certain
overlapping members, as shown in Figure 9B. The convergence of the objective function at other steps is smooth.

6.3 Example 3: long-span bridge design using linear and bilinear materials
This multimaterial bridge example illustrates the material selection algorithm using 1 linear material model and 2 bilinear
material models. The design domain (with load and boundary conditions) is shown in Figure 11A. Two bilinear materials
and 1 linear material are used and share the entire domain, as shown in Figure 11B,C, leading to 3 identical layers of
full-level initial GS (based on an 18×7 grid) with 21 249 nonoverlapping members and 152 nodes. Each material is assigned
to an individual volume constraint (see Table 4). Here, we optimize the bridge problem with and without the proposed
algorithm that removes overlapped members from multiple materials. In the case employing the selection algorithm, we
choose Nselect = 30 and αselect = 0.05. For both cases (with and without the selection algorithm), the filter parameters are
αf = 0.001 and Nfilter = 100.

The optimized structures for the case with and without the enforcement of the selection of one material are shown in
Figure 12A,B. The associated numerical information is summarized in Table 4. The results verify the proposed algorithm
that selects a single preferred material. In the optimized structure, we observe that the selection of more than one mate-
rial for some truss members (ie, overlapping of truss members from different materials) occurs in the case without the
proposed selection algorithm. This leads to an optimized bridge design that contains 25 overlapped composite members
and a smaller objective value. This optimized structure contains members with composite materials, ie, Material 2 and
Material 3 are selected for the members in compression. On the other hand, the case with the proposed algorithm leads
to the result containing no overlapped members and a larger objective value.

(C)

(B)

(A)

FIGURE 11 Example 3: Multimaterial bridge design. (A) Design domain; (B) material models, ie, 2 bilinear materials and 1 linear
material; (C) initial material distribution for each material [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 4 Numerical information for Example 3 (see Figures 11 and 12), ie, Eo = 107

2D Cases J(x∗
i ) Material Volume No. of No. of Overlapping

Et Ec Constraint, V j
max Elements Connectivities

3 materials 17Eo 0.001Eo 0.4Vmax 35
(standard) 20.920 7Eo 7Eo 0.1Vmax 25 25

0.002Eo 2Eo 0.5Vmax 25
3 materials 17Eo 0.001Eo 0.4Vmax 42
(Algorithm 1) 21.417 7Eo 7Eo 0.1Vmax 11 0

0.002Eo 2Eo 0.5Vmax 16

Abbreviations: 2D, 2-dimensional.

(A)

(B)

FIGURE 12 Example 3: Multimaterial bridge design. (A) Optimized bridge design without the selection algorithm that contains
25 overlapped connectivities (αf = 0.001, Nfilter = 100); (B) optimized bridge design with the proposed selection algorithm that selects a single
material among multiple materials at each subdomain (αselect = 0.05, Nselect = 30, αf = 0.001, Nfilter = 100) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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6.4 Example 4: 3D cantilever beam
Using a combination of different materials, we apply the proposed material selection algorithm to a 3D cantilever beam.
The geometry, load, and boundary conditions (L = 1,P = 60) are shown in Figure 13A. To obtain constructible structures,
we use a 6 × 2 × 2 discretization (with a level-3 GS) for the domain containing 5 000 members and 63 nodes. We perform
optimization with 4 Ogden-based materials, as shown in Figure 13B, and these 4 materials share the entire domain. Four
volume constraints are used (nc = 4). The total prescribed maximum volume takes the following value: Vmax = 0.024. For
the selection algorithm, we choose Nselect = 30 and αselect = 0.05 and initiate the filter at Nfilter = 60. In addition to a small

(A) (B)

FIGURE 13 Three-dimensional multimaterial cantilever beam design. (A) Design domain discretized using a 6 × 2 × 2 grid; (B) material
models, ie, 4 Ogden-based materials [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 The optimized structure for the 3-dimensional (3D) cantilever design with the selection algorithm (enforcing the selection of
one material) with αselect = 0.05, Nselect = 30, αf = 0.0001 (optimization), αf = 0.01 (end), and Nfilter = 30. No overlapping connectivity is
observed in the final design

http://wileyonlinelibrary.com
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TABLE 5 Numerical information for Example 4 (see Figures 13 and 14)

3D Case J
(

x∗
i

)
Material Volume No. of No. of Overlapping

𝛃1 𝛃2 constraint, V j
max Elements connectivities

4 materials 2200.3 −5.1 0.4Vmax 14
51.01 7.2 −2194.0 0.4Vmax 14 0

(Algorithm 1) 1043.3 −1843.1 0.1Vmax 9
1848.8 −1039.2 0.1Vmax 9

Abbreviations: 3D, 3-dimensional.

filter (αf = 10−4) used throughout the optimization, we use a larger filter (αf = 10−2) in the final step of the optimization
to control the resolution of the final topology.

The optimized structure for the case with enforcing the selection of one material is shown in Figure 14. The associ-
ated numerical information is summarized in Table 5. The result indicates that the multimaterial framework with the
material selection algorithm can also effectively produce a structure with single-material members (ie, no overlapping
connectivity) in 3 dimensions.

7 CONCLUDING REMARKS

In this paper, we have investigated the issue of selecting more than one material that occurs in multimaterial topology
optimization in the context of truss layout optimization. We examine the conditions (that need to be satisfied simultane-
ously) in which the selection of multiple materials on a certain connectivity occurs, ie, more than one material sharing the
domain, each of them associated with an individual volume constraint, and one material being stronger at least within a
certain range of stretch values. To ensure the selection of a single material at each subdomain, we propose an algorithm
(Algorithm 1) that selects a preferred material among multiple materials based on the evaluation of both the strain energy
and the cross-sectional area of each member. This algorithm actively and iteratively selects materials to ensure the selec-
tion of a single material for each member. The ZPR design variable update scheme for multimaterial optimization is
employed, and we provide an alternative derivation of this update scheme using the KKT conditions.

Using combinations of Ogden-based, bilinear, and linear materials, we verify the proposed selection algorithm and
compare the results to the ones obtained without using the selection algorithm. We also demonstrate that the algorithmic
parameters, ie, the step number to initiate and the threshold of the selection algorithm, allow the designers to control both
the complexity of the final design, as well as the final material profile to use either single materials or composite materials.
We conclude that the material selection algorithm for multimaterial topology optimization is efficient and effective for
selecting a single preferred material per overlapping set.
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APPENDIX: NOMENCLATURE

α Exponent coefficient used in the ZPR model to define yi
αf Filter value
αselect Threshold of the selecting algorithm (Algorithm 1)
𝜂 Damping factor in the ZPR model
Γ Tikhonov regularization parameter
γi, βi Ogden material parameters
λ Linearized stretch
λi Principal stretches
𝑗 The set of material indices associated with the jth volume constraint in the ZPR model
�̃�𝑗 Vector of material indices for the jth overlapping set
𝑥𝑗 Vector containing all the design variables in the jth overlapping set
x̄i Vector of filtered design variables (cross-sectional areas) with material i
x̄(e)i Filtered cross-sectional area of member e with material i
ϕ𝑗

V Lagrange multiplier introduced for the jth volume constraint in the ZPR model
ϕ𝑗 ∗

V The optimal Lagrange multiplier introduced for the jth volume constraint of the ZPR model
Π Total potential energy
Ψ(e)

i Strain energy density function of member e with material i
ΨBi Bilinear strain energy density function
ΨOG Ogden strain energy density function
𝑏i(xk

1, … , xk
m) Sensitivity vector of the objective function J with respect to yi evaluated at the kth step in the ZPR

model
f External force vector
Li Vector of member length for material i
N Unit directional vector of a given truss member
u Displacement vector
up, uq Displacements of nodes p and q for a given truss member
xi Vector of design variables (cross-sectional areas) with material i
yi Vector of intervening variables with material i
E0 Initial tangent modulus (Young's modulus)
g j The jth volume constraint in the ZPR model
J Objective function
Jk Approximated objective function in the subproblem at optimization step k
L(e)

i Length of truss member e with material i
M Ogden material parameter
m Total number of materials
Mi Number of truss members in material i
move Prescribed move limit in the ZPR model
Nselect Step number to initiate the selecting algorithm (Algorithm 1)
nc Total number of volume constraints in the ZPR model
tolopt Tolerance value for optimization process
V 𝑗

max Prescribed maximum volume in the jth volume constraint of the ZPR model
xmax Upper bound for design variables
xmin Lower bound for design variables
x(e)i Cross-sectional area of member e with material i
x(e),ki,L The lower bound of the eth design variable with material i in the subproblem at optimization step k

in the ZPR model
x(e),ki,U The upper bound of the eth design variable with material i in the subproblem at optimization stepk in

the ZPR model
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