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a b s t r a c t 

We present a generalized Bloch wave framework for the dynamic analysis of structures 

with nonlocal interactions and apply it to the design of origami acoustic metamaterials. 

Specifically, we first discretize the origami structures using a customized structural bar- 

and-hinge model that minimizes the degrees of freedom in the associated unit cell, while 

being sufficiently accurate to capture the behavior of interest. Next, observing that this 

discretization results in nonlocal structural interactions—the stiffness matrix has nonzeros 

between nodes that are not nearest neighbors due to the coupled deformations arising 

during folding or bending—we generalize the standard Bloch wave approach used in struc- 

tural analysis to enable the study of such systems. Utilizing this framework, choosing the 

geometry of the unit cell as well as the folded state of the structure as design variables, 

we design tunable and programmable Miura-ori and eggbox strips, sheets , and composites 

that are large band, low frequency acoustic switches. In doing so, we find that the num- 

ber of bandgaps in the sheets is significantly smaller than their strip counterparts and also 

occur at relatively higher frequencies, a limitation which is overcome by considering com- 

posite structures that have individual panels made of different materials. Overall, we have 

found origami structures to be ideal candidates as acoustic metamaterials for noise control, 

vibration isolation, impact absorption, and wave guides. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Acoustic metamaterials are artificially created systems that are designed to have controlled propagation of elastic or

phonon waves ( Cummer et al., 2016; Hussein et al., 2014; Maldovan, 2013 ). Such materials have a number of applications

including vibration isolation, impact absorption, noise control, and wave guides. An important characteristic of acoustic

metamaterials is the presence—in particular, the size and location—of bandgaps, which represent frequency ranges within

which waves cannot propagate in the system. Essentially, bandgaps are associated with the existence of localized resonant

modes that cause exponential attenuation and prevent wave propagation at the corresponding frequencies ( Baravelli and

Ruzzene, 2013; Liu et al., 20 0 0 ). For practical applications, it is highly desirable to be able to design acoustic metamaterials

that are both tunable —properties of interest (e.g., bandgap) can be changed in real-time through the application of an active
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stimulus (e.g., force); and programmable —properties of interest (e.g., bandgap) can be changed based on variations in the

design (e.g., geometry) without the need to maintain an active stimulus. 

Origami-based systems have found a number of scientific and engineering applications. Specifically, spurred by new de-

velopments in mathematics ( Demaine and O’Rourke, 2007; Lang, 2011 ), origami has found applications in a wide variety

of fields and scales including, for example, graphene folding in nanotechnology ( Mu et al., 2015 ), stent grafts in medicine

( Kuribayashi et al., 2006 ), folding of polymers with light in photonics ( Ryu et al., 2012 ), solar cells ( Tang et al., 2014 ), lithium-

ion batteries ( Song et al., 2014 ), self-folding machines ( Felton et al., 2014 ), adaptive building skin structures ( Del Grosso and

Basso, 2010 ), active structures ( Peraza-Hernandez et al., 2014 ), and deployment of large membranes in space ( Miura, 1985 ).

Notably, origami assemblages also have the potential ability to behave as mechanical metamaterials ( Christensen et al., 2015;

Silverberg et al., 2014 ), including topological acoustic metamaterials ( Huber, 2016 ), and thus the realization of such proper-

ties is an active area of interest. Indeed, some of these remarkable properties exhibited by origami/kirigami-inspired patterns

( Eidini and Paulino, 2015; Schenk and Guest, 2013 ) are programmable based on their geometry and tunable based on the

folded configurational state ( Wei et al., 2013 ). In spite of these substantial advancements, the dynamic behavior of periodic

origami systems 1 has not been well studied in the literature, and thus this is the focus of our present investigation. 2 

The study of wave propagation in periodic structures is typically performed using the Bloch wave analysis ( Bertoldi and

Boyce, 2008; Phani et al., 2006; Ruzzene et al., 2003 ). In this approach, the translational symmetry of the system is utilized

to reduce the problem to the first Brillouin zone in reciprocal or wavevector space ( Brillouin, 1953; Kittel, 1966 ), thereby

providing tremendous simplification in the dynamic analysis of such systems. In fact, the topology of the bands during the

Bloch wave analysis can also be used to predict the presence of topologically protected waves in finite structures ( Pal and

Ruzzene, 2017 ). However, since the Bloch wave analysis involves the solution of an eigenvalue problem at every wavevector

of interest, it can be associated with significant computational cost. This is a consequence of the large number of degrees

of freedom (e.g., arising within the finite-element method) that are typically required for the discretization of structures

displaying novel/exotic properties and the cubic scaling with system size associated with the diagonalization procedure

( Suryanarayana, 2013; Suryanarayana et al., 2017 ). This limitation becomes even more acute in the design of structures with

tailored properties since a single design may require hundreds of thousands of Bloch wave analyses. Thus, there is a need

for a reduced order model approach, which is addressed here. 

In this work, we design origami structures that are tunable and programmable, large band, low frequency acoustic

switches. To do so, we first employ a bar-and-hinge model ( Filipov et al., 2017; 2015b; Schenk and Guest, 2011 ) that en-

ables the accurate discretization of origami structures with minimal degrees of freedom. Next, observing that the bar and

hinge model results in nonlocal structural interactions—the stiffness matrix has nonzeros between nodes that are not nearest

neighbors, a situation arising in origami structures due to the coupled deformations arising during folding or bending—we

generalize the standard Bloch wave approach used in structural analysis to enable the study of such systems. We also show

how additional symmetries in the system can be used to reduce the analysis to the irreducible Brillouin zone. Utilizing this

framework and choosing the geometry of the unit cell as well as the folded state of the structure as design variables, we

design tunable and programmable Miura-ori and eggbox strips, sheets , and composites that are large band, low frequency

acoustic switches. In doing so, we demonstrate that the number of bandgaps in Miura-ori and eggbox sheets is signifi-

cantly smaller than their strip counterparts and also occur at relatively higher frequencies, a limitation which is overcome

by considering composite structures that has panels made of different materials. 

The remainder of this paper is organized as follows. First, we describe the geometry of origami structures, their dis-

cretization using the bar-and-hinge model and the resulting nonlocal nature of the system in Section 2 . Next, we develop

the generalized Bloch wave theory that is suitable for systems with nonlocal interactions in Section 3 . Subsequently, we uti-

lize the developed framework to design origami acoustic metamaterials in Section 4 . Finally, we present concluding remarks

in Section 5 . 

2. Structural analysis of origami 

In this section, we describe the framework adopted for the structural analysis of origami, which forms the basis for the

subsequent Bloch wave formulation. First, we discuss the geometry of origami structures. Next, we describe the discretiza-

tion of origami using the bar-and-hinge model. Finally, we discuss the nonlocal nature of the bar-and-hinge discretization

and its implications. 

2.1. Geometry of origami 

The geometry of origami structures is characterized by crease lines that are either mountain or valley folds. The crease

lines include open edges at the boundaries of the structure and within the structure at the locations of any holes or cuts,
1 It is common to assume that the structure is periodic when it consists of a large number of repeating unit cells and the boundary effects are negligible. 
2 Preliminary studies on composite Miura-ori origami patterns that possess high frequency bandgaps have recently been performed by the authors 

( Pratapa et al., 2017 ). In addition, Yasuda et al. (2016) have recently studied wave dynamics of a one-dimensional rigid origami where the origami panels 

are not allowed to deform. However, the rigid panel assumption is too restrictive because it does not allow wave propagation in periodic lattices. Indeed, 

panel bending and stretching are expected to play a critical role in the dynamic behavior of origami structures. 
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(a) (b)

(c) (d)

Fig. 1. Examples of origami patterns. (a) and (c) Paper model and corresponding schematic of 3 × 3 Miura-ori pattern. (b) and (d) Paper model and 

corresponding schematic of 3 × 3 eggbox pattern. The mountain and valley folds around the vertices O 1 and O 2 are shown in solid red and dashed blue 

lines, respectively. The O 1 and O 2 vertices have equivalent connectivity in Miura-ori (3 mountains and 1 valley; or vice-versa), which is not the case in 

eggbox (4 mountains or 2 mountains and 2 valleys). (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

(a) (b)

Fig. 2. Parametrization of origami unit cell geometries. (a) Miura-ori. (b) Eggbox. 

 

 

 

 

 

 

 

 

e.g., kirigami. The polygons resulting from the crease/fold lines (or edges) are called panels and the points at which the

fold lines meet are called vertices. Origami structures possess many desirable properties for practical applications, including

developability and flat-foldability ( ORourke, 2011 ). The former enables folding of a structure from a single sheet of material

and the latter enables compressing the structure into a highly compact volume. The origami structures of interest in this

work (see Fig. 1 for Miura-ori and eggbox examples) will be investigated with special attention to such type of properties. 

The Miura-ori pattern is developable and is flat-foldable in one of the tessellation directions. It is formed from quadri-

lateral panels and has a four-vertex geometry ( Waitukaitis and van Hecke, 2016 ), wherein each vertex is formed by the

intersection of four crease lines. Notably, every vertex is equivalent and is formed by the intersection of three mountain

(or valley) folds and one valley (or mountain) fold. The geometry of the Miura-ori unit cell is shown in Fig. 2 a, whose
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Fig. 3. Examples of the bar-and-hinge representation of the origami unit cells. The bars along the fold lines are represented in a darker color and the bars 

along the bending creases are in a lighter shade. The nodes (pin joints) are depicted using solid spheres. Nodes in darker color belong to the unit cell that 

is shown, and those in lighter color belong to the neighboring unit cells. For visual clarity, the rotational springs associated with the bending creases (in 

red) and fold lines (in blue) are shown only for some bars. (a) Miura-ori pattern. (b) Eggbox pattern. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensions H, L x , and L y can be expressed as ( Schenk and Guest, 2013 ): 

H = a sin θ sin α , L y = 2 a 
√ 

1 − sin 

2 θ sin 

2 α , 

L x = 2 b 
cos θ tan α√ 

1 + cos 2 θ tan 

2 α
, V = b 

1 √ 

1 + cos 2 θ tan 

2 α
, (1) 

where a and b are the edge lengths, α is the panel angle, and θ is the folding/control angle. Note that as θ varies from 0 °
to 90 °, the Miura-ori structure goes from flat to a fully folded state. 

The eggbox structure is not developable, but is flat-foldable in both the tessellation directions. Similar to the Miura-ori, it

is also formed from quadrilateral panels and has a four-vertex geometry. However, the eggbox has two types of vertices: (i)

intersection of either four mountain folds or four valley folds, and (ii) intersection of two mountain and two valley folds. The

geometry of the eggbox unit cell is shown in Fig. 2 b, whose dimensions H, L x , and L y can be expressed as ( Schenk, 2011 ): 

H = a cos θ + b 
cos α

cos θ
, L x = 2 b 

√ 

1 − cos 2 α

cos 2 θ
, L y = 2 a 

√ 

1 − cos 2 θ , (2) 

where a and b are the edge lengths, α is the panel angle, and θ is the folding/control angle. Note that θ can only vary from

0 ° to α, as the patterns goes from one flat folded state to the other. 

2.2. Structural discretization: bar-and-hinge model 

A structural model involving bars and hinges has recently been proposed for studying the mechanical behavior of origami

( Schenk and Guest, 2011 ). In this formulation, the entire origami structure is modeled as a set of bars (similar to truss

members) connected through pin joints, with the folding motion modeled as a compliant mechanism using rotational hinges

about the bars. In relation to the continuous structure, bars represent the fold lines formed by the edges of the panels and

pin joints (or nodes) denote the vertices. Further, in order to provide in-plane stability and enable bending of panels, the

polygonal panels are triangulated with bars. The compliant rotation about the fold lines and the bending of the panels is

modeled through rotational hinges/springs with different stiffnesses. Overall, the deformation characteristics of the structure 

depend on the extensions of the bars as well as the relative rotations of the triangular panels about the fold lines or bending

creases. The bar-and-hinge representations of the Miura-ori and eggbox unit cells are shown in Fig. 3 . 

In the bar-and-hinge model, we have ( Filipov et al., 2017; 2015b; Schenk and Guest, 2011 ) [ 

C 

J b 
J f 

] 

u = 

[ 

e 
�b 

� f 

] 

, (3) 

where u represents the nodal displacements; e denotes the bar extensions; C denotes the compatibility matrix that relates

e to u; �b and �f are the rotations associated with the bending creases and fold lines, respectively; and J b and J f are the

rotation compatibility matrices that relate �b and �f to u , respectively. Assuming linear elasticity, the constitutive relation

for the system can be expressed as [ 

K e 0 0 

0 K b 0 

0 0 K f 

] [ 

e 
�b 

� f 

] 

= 

[ 

t 
m b 

m f 

] 

, (4) 
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Fig. 4. Schematic representation of the nonlocal structural interactions in the bar-and-hinge model for panel (shaded) bending about the bending crease 

BD . Notice that AB, BC, CD , and DA are bars corresponding to fold lines along the panel (shaded) perimeter. The panel bending is represented by the 

presence of a rotational spring about BD , connecting vertices A and C . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where K e , K b , and K f represent the axial stiffness of the bars, rotational stiffness along the bending creases, and rotational

stiffness along the fold lines, respectively; and t, m b , and m f are the bar tensions, resisting moment in bending, and resisting

moment in folding hinges, respectively. Using the principle of virtual work, the total external forces on the nodes can be

written as 

f ext = Ku = 

[
C 

T J T 
b 

J T 
f 

][ 

t 
m b 

m f 

] 

, (5)

where K is the stiffness matrix of the system. It follows from Eqs. (3) –(5) that the stiffness matrix for the origami structure

can be written as 

K = 

[
C 

T J T 
b 

J T 
f 

][ 

K e 0 0 

0 K b 0 

0 0 K f 

] [ 

C 

J b 
J f 

] 

= C 

T K e C + J T b K b J b + J T f K f J f . (6)

In this framework, the mass matrix M is constructed through the lumped mass approximation, wherein the mass of the

triangular panels is distributed uniformly to its three vertices. 3 

In this work, we have chosen the above described bar-and-hinge model since it provides an excellent compromise be-

tween accuracy and efficiency. On the one hand, numerical methods like those using shell finite-elements ( Ota et al., 2016 )

are expected to be more accurate and provide more detailed information than the bar-and-hinge model. However, such ap-

proaches involve extensive meshing that results in a large number of degrees of freedom. Consequently, such discretizations

are associated with large computational expense ( Ota et al., 2016 ), particularly in the Bloch wave based design of origami

structures, which involves the repeated solution of eigenvalue problems—a process that scales cubically with the size of

the matrix ( Pratapa and Suryanarayana, 2016; Suryanarayana, 2013 )—during the design process. On the other hand, the as-

sumption of rigid origami can be employed to further reduce the degrees of freedom compared to the bar-and-hinge model,

e.g., α, a, b , and θ are sufficient to characterize the deformation in the case of Miura-ori and eggbox structures. However,

given the finite stiffness of the origami structure and the associated bending of the panels in practical applications, such an

approximation is too restrictive. This is particularly the case for Bloch wave analysis, wherein the rigid origami assumption

may be incompatible with the need to admit inhomogeneous deformations, e.g., Miura-ori ( Evans et al., 2015 ). 

2.3. Nonlocal structural interactions within the bar-and-hinge model 

The stiffness matrix for origami in the bar-and-hinge model consists of three terms, as shown in Eq. (6) . This differs

from the conventional truss model, wherein the stiffness matrix is comprised of only the first term ( C 

T K e C ). Specifically,

incorporation of the rotational stiffness along the bending creases and fold lines in the bar-and-hinge model results in the

second ( J T 
b 

K b J b ) and third ( J T 
f 
K f J f ) terms, respectively. Consequently, the resulting stiffness matrix is inherently nonlocal,

i.e., the structural interactions extend beyond the nearest neighbor nodes. This can be understood through the schematic

in Fig. 4 , which depicts the single panel bending about a bending crease in the bar-and-hinge model. Specifically, BD is a

bar corresponding to the bending crease, with a rotational spring connecting nodes A and C . A small displacement of the

node from A to A 

′ will induce non-zero forces at all the nodes of the panel. This includes a force on the non-nearest node

C , arising due to the change in angle φ of the rotational hinge. As a consequence of the inherent nonlocality of structural

interactions in the bar-and-hinge model, the Bloch wave analysis needs to be suitably generalized, as discussed in the next
section. 

3 In general, within the specific scope of the bar-and-hinge model, we have found that the results we present in this paper are qualitatively insensitive 

to the mass lumping scheme. 
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3. Bloch wave framework for systems with nonlocal structural interactions 

The free wave propagation of a discretized structural system is governed by the generalized eigenvalue problem 

Ku = ω 

2 Mu , (7) 

where K is the stiffness matrix, u is a vector of nodal displacements, ω is the frequency of harmonic wave propagation,

and M is the mass matrix. In structures which possess a unit cell that repeats, it is common to neglect the effect of the

boundaries (i.e., assume infinite extent) and perform a Bloch wave reduction of the eigenvalue problem in Eq. (7) to the

unit cell/fundamental domain. Since solution of an eigenvalue problem scales cubically with the size of the system, the

Bloch wave approach not only significantly reduces the computational expense, but also provides a simplified framework

for the interpretation of results. However, the commonly employed structural Bloch wave analysis ( Gonella and Ruzzene,

2008; Mousanezhad et al., 2015; Phani et al., 2006; Ruzzene et al., 2003 ) is restricted to systems with local interactions,

i.e., only the nearest node components of the stiffness matrix are non-zero. In view of this, we now generalize the Bloch

wave analysis such that it is applicable to systems with nonlocal interactions, e.g., origami structures discretized using the

bar-and-hinge model. Though such a framework has previously been proposed for atomistic systems ( Aghaei et al., 2013 ), to

the best of our knowledge its adaptation for structural systems has not been performed heretofore. 

3.1. Bloch wave reduction: Brillouin zone 

Consider a periodic system consisting of N unit cells in each of the three coordinate system directions, 4 with M degrees

of freedom (DOF) per unit cell. Choosing the origin of the coordinate system to be located at the corner of the central unit

cell, the position of the n 

th unit cell can be written as 5 

x n = x (n 1 ,n 2 ,n 3 ) = n 1 a 1 + n 2 a 2 + n 3 a 3 , (8) 

where n 1 , n 2 , and n 3 ∈ { −(N − 1) / 2 , −(N − 3) / 2 , . . . , (N − 3) / 2 , (N − 1) / 2 } . In addition, a 1 , a 2 , a 3 ∈ R 

3 denote the lattice

vectors of the structure. The corresponding reciprocal lattice vectors satisfy the relation a i . b j = 2 πδi j , i, j = { 1 , 2 , 3 } , from

which we can arrive at the following representation in terms of the lattice vectors 6 : 

b 1 = 2 π
a 2 × a 3 

a 1 · (a 2 × a 3 ) 
, b 2 = 2 π

a 3 × a 1 
a 1 · (a 2 × a 3 ) 

, b 3 = 2 π
a 1 × a 2 

a 1 · (a 2 × a 3 ) 
. (9) 

In Fig. 5 , we illustrate this framework for a bar-and-hinge discretized Miura-ori and eggbox patterns, which form 2D lattices.

Let u ( n , � ) denote the displacement along the � th DOF in the n th unit cell. If we assume the displacement to be periodic

across the system, i.e., u ( n + N ,� ) = u (n ,� ) , where N = (N, N, N) defines the periodicity of the structure, we can define the

Discrete Fourier Transform of u (.,� ) ∈ R 

N 3 (for each DOF � ) and corresponding inverse Discrete Fourier Transform as 

˜ u (m ,� ) = 

1 √ 

N 

3 

(N −1 ) / 2 ∑ 

n = −(N −1 ) / 2 

e i k m . x n u (n ,� ) , u (n ,� ) = 

1 √ 

N 

3 

(N −1 ) / 2 ∑ 

m = −(N −1 ) / 2 

e −i k m . x n ˜ u (m ,� ) . (10) 

Above, k m 

denotes the wavevector, which can be expressed in terms of the reciprocal lattice vectors as 

k m 

= 

m 1 

N 

b 1 + 

m 2 

N 

b 2 + 

m 3 

N 

b 3 , (11) 

where m 1 , m 2 , and m 3 ∈ { −(N − 1) / 2 , −(N − 3) / 2 , . . . , (N − 3) / 2 , (N − 1) / 2 } . For the square lattices shown in Fig. 5 a and b,

the wavevectors are restricted to within the area enclosed by { Q 

′ ′ , Q 

′ , Q, R ′ } in Fig. 5 c. In matrix representation, Eq. (10) takes

the form 

˜ u = Fu , u = F −1 ˜ u , (12) 

where F ∈ C 

M N 3 ×M N 3 is the Discrete Fourier Transform matrix. 

On left multiplying Eq. (7) by F and utilizing the unitary property of F (i.e., FF ∗T = F ∗T F = I , where the symbol ∗ repre-

sents the conjugate and I is the identity matrix), we arrive at 

˜ K ̃

 u = ω 

2 ˜ M ̃

 u , where ˜ K = FKF ∗T and 

˜ M = FMF ∗T . (13) 

Due to the translational symmetry in the system, the stiffness and mass matrices ( K and M , respectively) are block-circulant

and therefore block-diagonalized by the Discrete Fourier Transform matrix F ( Aghaei et al., 2013; Karner et al., 2003; Olson

et al., 2014; Rjasanow, 1994; Süsstrunk and Huber, 2016 ). Consequently, ˜ K ∈ C 

M N 3 ×M N 3 and 

˜ M ∈ C 

M N 3 ×M N 3 are block-diagonal
4 We will assume a 3D lattice for deriving the expressions corresponding to the Bloch wave reduction. However, the results are equally applicable to 2D 

and 1D lattices, albeit with suitable simplifications. Also, without any loss of generality, we will also assume that N is odd. Indeed, the analysis is equally 

applicable to the case when N is even and when there are different number of unit cells in each of the coordinate directions. 
5 In the case of a 2D lattice: x n = x (n 1 ,n 2 ) = n 1 a 1 + n 2 a 2 . In the case of a 1D lattice: x n = x (n 1 ) = n 1 a 1 . 
6 In the case of a 2D lattice: b 1 = 2 π Ra 2 

a 1 ·Ra 2 
, b 2 = 2 π Ra 1 

a 2 ·Ra 1 
, where R is the 90 degree rotation matrix. In the case of a 1D lattice, b 1 = 2 π a 1 

a 1 ·a 1 . 
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Fig. 5. (a) and (b) Two-dimensional lattices associated to the bar-and-hinge discretization of Miura-ori and eggbox origami patterns, respectively. The 

dashed lines represent the boundaries of each unit cell within the bar-and-hinge representation. For visual clarity, only the rotational springs associated 

with nonlocal interactions of node A ′ are shown. (c) Corresponding reciprocal lattice. The area enclosed by { Q ′ ′ , Q ′ , Q, R ′ } constitutes the first Brillouin 

zone, which reduces to the area enclosed by { P ′ , P, Q, R ′ } on applying time-reversal symmetry, which further reduces to the area enclosed by { O, P, Q, R } 

on applying the vertical inversion symmetry. The area enclosed by { O, P, Q, R } constitutes the irreducible Brillouin zone (IBZ). 

 

 

 

matrices, with the blocks indexed by the wavevector k m 

. Since the diagonalization of a block-diagonal matrix is equivalent

to the diagonalization of all of its blocks independently, we arrive at an eigenvalue problem for each wavevector k m 

: 

˜ K mm ̃

 u m 

= ω 

2 
m ̃

 M mm ̃

 u m 

, (14)

where 

˜ K mm 

= 

(N −1 ) / 2 ∑ 

n = −(N −1 ) / 2 

e −i k m . x n K 0n , ˜ M mm 

= 

(N −1 ) / 2 ∑ 

n = −(N −1 ) / 2 

e −i k m . x n M 0n . (15)
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Above, ˜ K mm 

∈ C 

M×M and 

˜ M mm 

∈ C 

M×M correspond to the m 

th blocks of ˜ K and 

˜ M , respectively, and correspond to the DOFs

within the unit cell. In addition, K ij ∈ R 

M×M (or M ij ∈ R 

M×M ) is a matrix extracted from K (or M ) with rows corresponding to

the DOFs of i th unit cell and columns corresponding to the DOFs of j th unit cell. Overall, the free wave propagation problem

on the entire structure has been reduced to a single unit cell, with 

˜ K mm 

and 

˜ M mm 

being the reduced stiffness and mass

matrices corresponding to the wavevector k m 

. 

In the above analysis, the case of particular interest is N → ∞ , which corresponds to the periodic infinite structure. In

this limit, rather than the wavevector taking discrete values as given by Eq. (11) , it starts taking a continuum of values,

the volume 7 of which is referred to as the first Brillouin zone. For example, for the square lattice shown in Fig. 5 , the first

Brillouin zone is the area enclosed by { Q 

′ ′ , Q 

′ , Q, R ′ }. Therefore, the original eigenvalue problem of an infinite structure

has been reduced to an eigenvalue problem corresponding to the unit cell for infinitely many wavevectors. However, the

behavior of the structure typically has a smooth variation in reciprocal space, thereby enabling a thorough analysis even

though a finite set of wavevectors is chosen. Finally, we note that unlike the Bloch wave analysis commonly adopted for

structural systems, the above described framework is also applicable to systems in which the stiffness and mass matrices

have further than nearest node interaction. We demonstrate the need for such a framework through a 1D spring-mass

system in Appendix A . 

3.2. Symmetry based reduction of Brillouin zone: irreducible Brillouin zone 

In addition to the translational symmetry, it is common for additional symmetries (e.g., rotation, mirror) to exist in the

system. In such cases, the Bloch wave analysis described above can be further simplified, as described below. 

3.2.1. Time-reversal symmetry 

Consider the Bloch reduced stiffness and mass matrices at the wavevector k m 

′ = −k m 

= k (−m ) , i.e., ˜ K m 

′ m 

′ and 

˜ M m 

′ m 

′ ,
respectively. In the case of real-valued symmetric stiffness ( K ) and mass ( M ) matrices, we can show: 

˜ K m 

′ m 

′ = 

∞ ∑ 

n = −∞ 

e −i k (−m ) . x n K 0n = 

∞ ∑ 

n = −∞ 

e −i k m . x (−n ) K 

T 
0 (−n ) = 

˜ K 

T 
mm 

= 

˜ K 

∗
mm 

, (16) 

˜ M m 

′ m 

′ = 

∞ ∑ 

n = −∞ 

e −i k (−m ) . x n M 0n = 

∞ ∑ 

n = −∞ 

e −i k m . x (−n ) M 

T 
0 (−n ) = 

˜ M 

T 
mm 

= 

˜ M 

∗
mm 

. (17) 

Above, we have utilized the relations: K 0n = K 

T 
n0 

and M 0n = M 

T 
n0 

, which follow from the symmetry of K and M , respectively.

We have also used the relations: K n0 = K 0 (−n ) , M n0 = M 0 (−n ) , which follows from the block circulant nature of K and M ,

respectively. It follows from Eqs. (16) and (17) that ω m 

′ = ω m 

and 

˜ u m 

′ = 

˜ u 

∗
m 

. 

This above reduction is attributed to time-reversal symmetry, 8 by virtue of which it is sufficient to consider half of the

Brillouin zone to infer the behavior of the structure in the complete Brillouin zone. This can be interpreted as inversion

symmetry in reciprocal space. For example, for the square lattices shown in Fig. 5 , the first Brillouin zone enclosed by { Q 

′ ′ ,
Q 

′ , Q, R ′ } reduces to the area enclosed by { P ′ , P, Q, R ′ }. Note that in order for the system to have time-reversal symmetry,

both K and M need to be real-valued. This is typically the case for structural systems. However, the presence of active

elements (e.g., gyroscopes) can lead to complex-valued matrices, resulting in the breaking of time-reversal symmetry ( Nash

et al., 2015; Wang et al., 2015 ). 

3.2.2. Spatial symmetry 

Consider a symmetry operation of the structure that leaves the structure invariant, with the unit cell located at x n 
mapped to x n ′ . Let the corresponding symmetry operation in reciprocal space map the wavevector k m 

to k m 

′ . Denoting the

matrix representation of the symmetry operation for the unit cell by S ∈ R 

M×M , it follows that 

S ̃  K mm 

S T = 

∞ ∑ 

n = −∞ 

e −i k m ′ . x n ′ SK 0n S 
T = 

∞ ∑ 

n ′ = −∞ 

e −i k m ′ . x n ′ K 0n ′ = 

˜ K m 

′ m 

′ . (18) 

S ̃  M mm 

S T = 

∞ ∑ 

n = −∞ 

e −i k m ′ . x n ′ SM 0n S 
T = 

∞ ∑ 

n ′ = −∞ 

e −i k m ′ . x n ′ M 0n ′ = 

˜ M m 

′ m 

′ , (19) 

where we have used the properties: K 0n ′ = SK 0n S 
T and M 0n ′ = SM 0n S 

T . Consequently, it follows that ω m 

′ = ω m 

and 

˜ u m 

′ =
S ̃  u . 
m 

7 Area and length in the case of a 2D and 1D lattices, respectively. 
8 Time-reversal symmetry leads to reciprocity in wave propagation ( Cummer et al. (2016) ). The terminology has its origins in quantum mechanics where 

reversing time is equivalent to reversing momentum and hence the wavevector ( Gottfried and Yan, 2013 ). 
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In view of the above, the Bloch wave analysis does not need to be performed for wavevectors that are related to other

wavevectors through the non-trivial spatial symmetries present in the unit cell. After considering time-reversal and spatial

symmetries, the smallest region of the Brillouin zone from which the structural behavior at any wavevector can be deter-

mined is referred to as the irreducible Brillouin zone. For example, for the square lattices shown in Fig. 5 , the first Brillouin

zone enclosed by { Q 

′ ′ , Q 

′ , Q, R ′ } reduces to the area enclosed by { O, P, Q, R } on applying time-reversal symmetry and verti-

cal inversion symmetries. Overall, the above framework can be utilized to make the Bloch wave analysis more simple and

efficient by exploiting the symmetry in the structure. 

4. Design of origami acoustic metamaterials 

We now employ the framework described in the previous two sections to design Miura-ori and eggbox acoustic metama-

terials. For this purpose, we develop an implementation 

9 of the above described framework in which the origami structure

is discretized using the bar-and-hinge model, and the Bloch wave analysis is performed by solving the generalized Hermi-

tian eigenproblem given in Eq. (14) using the QR method. While doing so, rather than adopt the common strategy of only

considering wavevectors along the edges of the irreducible Brillouin zone (IBZ), we sample the entire Brillouin zone (BZ)

to ensure that the bandgaps are accurately calculated ( Kerszberg and Suryanarayana, 2015 ). In all the simulations, we fix

the edge length to be a = 1 and the stiffnesses to be K f = 1 , K b = 10 , and K e = 10 5 ( Filipov et al., 2015a ). While presenting

the results, we normalize the frequencies as ˆ ω = ω/ω 0 , where ω 0 = 

√ 

K e /aM p , with M p being the mass of the quadrilateral

panel. 

We design the Miura-ori and eggbox structures using genetic algorithms. Since we are interested in programmable and

tunable, large band, low frequency acoustic switches, we choose the objective function to be the bandgap between succes-

sive bands for all bands, with α, b , and θ being the design variables. 10 The following constraints are imposed on the design

variables: (i) 5 °≤α ≤ 85 °, 5 °≤ θ ≤ 85 °, and 1 ≤ b ≤ 5 for Miura-ori, and (ii) 5 °≤ θ ≤ 85 °, 5 °≤α ≤ 85 °, θ ≤α, and 1 ≤ b ≤ 5 for

eggbox. Thereafter, among all the structures so obtained, we denote the optimized structure to be the one that results in the

lowest frequency bandgap, with a threshold size of 0.15. 11 This optimized structure is then studied for its programmibility

(variation with respect to α and b ) and tunability (i.e., variation with respect to θ ) as acoustic switches. 

4.1. Miura-ori and eggbox strips 

We first start with the design of Miura-ori and eggbox strips shown in Fig. 6 , which also shows the projected nodal

unit cell representations and the associated lumped masses. For both structures, the unit cell contains M = 6 nodes and

therefore 18 DOFs. The IBZ consists of the interval [0, π / L x ], by virtue of the structures being periodic in the x -direction and

possessing time-reversal symmetry. On performing a preliminary Bloch wave analysis, we have found that the lower modes

predominantly consist of bending and folding deformations, whereas the higher modes are dominated by axial deformations.

After utilizing the design process described above, we obtain optimized structures with the following parameters: (i)

α = 64 . 19 ◦, b = 1 . 09 , and θ = 68 . 64 ◦ for Miura-ori, and (ii) α = 69 . 64 ◦, b = 1 . 4 , and θ = 61 . 87 ◦ for the eggbox strips, with

bandgaps of 0.57 and 0.73 occurring between the fourth and fifth bands, 12 respectively. For these optimized Miura-ori and

eggbox structures, we present the tunability of the bandgap size and location 

13 in Fig. 7 a and d, respectively (bandgap of

interest highlighted using a darker shade). Further, in the context of acoustic switches, we present the programmability of

the bandgap size and location for the (i) Miura-ori strip in Fig. 7 b and c, respectively, and for the (ii) eggbox strip in Fig. 7 e

and f, respectively. It is clear that both Miura-ori and eggbox strips can be employed as acoustic switches that are highly

programmable and tunable. 

4.2. Miura-ori and eggbox sheets 

Next, we consider the design of Miura-ori and eggbox sheets shown in Fig. 1 . The projected nodal unit cell representa-

tions along with the associated lumped masses for the Miura-ori and eggbox sheets are shown in Fig. 8 a and b, respectively.

For both structures, the unit cell contains M = 4 nodes and therefore 12 degrees of freedom (DOFs). Every node in Miura-ori

is connected to 6 bars, whereas in eggbox one set of nodes is connected to 8 bars each and the other set is connected to

4 bars. The IBZ consists for the rectangle { O, P, Q, R } shown in Fig. 5 c, obtained after applying time-reversal and vertical

inversion symmetries on the BZ (rectangle { Q 

′ ′ , Q 

′ , Q, R ′ }). On performing a preliminary Bloch wave analysis, we have found

that the number and size of bandgaps in Miura-ori and eggbox sheets is rather limited compared to their strip counterparts.
9 We developed a tailored MATLAB ( MATLAB, 1998 ) computer code for Bloch wave analysis based on the bar-and-hinge model. 
10 For the range of reconfigurability (i.e., varying θ ) considered in this work, we have observed that on applying appropriate deformations, the bandgaps 

in the lower part of the spectrum for the Miura-ori and eggbox structures can be closed (i.e., zero bandgap). 
11 Indeed, depending on the application of interest, different thresholding functions can be employed. 
12 The first 4 bands involve the zero energy rigid body modes at long wavelength limits, i.e., k → 0 
13 We define the location of the bandgap to be the normalized frequency corresponding to the middle of the bandgap. For example, the mean normalized 

frequency for the bandgap between fourth and fifth bands would be ( ̂ ω 

max 
4 + ̂  ω 

min 
5 ) / 2 , where ˆ ω 

max 
4 and ˆ ω 

min 
5 correspond to the maximum and minimum of 

bands 4 and 5, respectively. 
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. One-dimensional origami strips. (a), (c), and (e) Paper model, corresponding schematic of a 1 × 3 Miura-ori origami pattern, and projected lumped 

mass representation of its unit cell, respectively. (b), (d), and (f) Paper model, corresponding schematic of a 1 × 3 eggbox origami pattern, and projected 

lumped mass representation of its unit cell, respectively. (e) and (f) Note that M t = M p / 6 , where M t denotes a third of the triangle mass and M p is the 

panel mass. Nodes in darker color belong to the actual unit cell and those in lighter color belong to the neighboring unit cell. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

In addition, the bandgaps are located at higher frequencies. A possible explanation for these observations is that the period-

icity in both directions endows the sheets with more homogeneity compared to their strip counterparts, which makes them

less susceptible to significant bandgaps ( Appendix B ). 

After utilizing the design procedure described previously, we obtain optimized structures with the following parameters:

(i) α = 59 . 35 ◦, b = 4 . 96 , and θ = 57 . 93 ◦ for Miura-ori, and (ii) α = 58 . 67 ◦, b = 5 , and θ = 46 . 67 ◦ for the eggbox sheets, with

bandgaps of 0.51 and 0.59 occurring between the eighth and ninth bands, 14 respectively. The band structure diagrams for

these structures are presented in Fig. 9 . We find that mode 8 is dominated by axial deformations from bars with length

b = 5 whereas mode 9 is dominated by axial deformations from bars with length a = 1 . Since shorter length leads to higher

axial stiffness, a bandgap results between modes 8 and 9. For the optimized Miura-ori and eggbox structures, we present
14 The first 3 bands involve the zero energy rigid body modes at long wavelength limits, i.e., k → 0. 
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Fig. 7. (a) Tunability of the bandgap size and location for the optimized Miura-ori strip ( α = 64 . 19 ◦, b = 1 . 09 , and θ = 68 . 64 ◦). (b) and (c) Programmability 

of the Miura-ori strip as an acoustic switch in terms of bandgap size and location, respectively. (d) Tunability of the bandgap size and location for the 

optimized eggbox strip ( α = 69 . 64 ◦, b = 1 . 4 , and θ = 61 . 87 ◦). (e) and (f) Programmability of the eggbox strip as an acoustic switch in terms of bandgap 

size and location, respectively. Note that the darker shade in (a) and (d) is used to highlight the bandgap of interest, for which the programmability is 

studied in (b), (c) and (e), (f), respectively. 

Fig. 8. Projected nodal lumped mass representations for (a) Miura-ori and (b) eggbox planar unit cells. Notice that M t = M p / 6 , where M t denotes a third 

of the triangle mass and M p is the panel mass. 

 

 

 

 

 

the tunability of the bandgap size and location in Fig. 10 a and d, respectively (bandgap of interest highlighted using a darker

shade). Further, in the context of acoustic switches, we present the programmability of the bandgap size and location for the

(i) Miura-ori sheet in Fig. 10 b and c, respectively, and for the (ii) eggbox sheet in Fig. 10 e and f, respectively. It is clear that

both Miura-ori and eggbox sheets can also be employed as acoustic switches that are highly programmable and tunable. 

4.3. Composite Miura-ori and eggbox sheets 

In the above subsection, we have designed Miura-ori and eggbox sheets that can be utilized as acoustic switches. How-

ever, the associated bandgap occurs at higher frequencies relative to the Miura-ori and eggbox strips. To overcome this
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Fig. 9. Band structure diagrams of optimized origami planar configurations: (a) Miura-ori with α = 59 . 35 ◦, b = 4 . 96 , and θ = 57 . 93 ◦ . (b) Eggbox with 

α = 58 . 67 ◦, b = 5 , and θ = 46 . 67 ◦ . The parameters α, b , and θ are illustrated by Fig. 2 . The shaded region illustrates the bandgap. 

Fig. 10. (a) Tunability of the bandgap size and location for the optimized Miura-ori sheet ( α = 59 . 35 ◦, b = 4 . 96 , and θ = 57 . 93 ◦). (b) and (c) Programma- 

bility of the Miura-ori sheet as an acoustic switch in terms of bandgap size and location, respectively. (d) Tunability of the bandgap size and location for 

the optimized eggbox sheet ( α = 58 . 67 ◦, b = 5 , and θ = 46 . 67 ◦). (e) and (f) Programmability of the eggbox sheet as an acoustic switch in terms of bandgap 

size and location, respectively. Note that the darker shade in (a) and (d) is used to highlight the bandgap of interest, for which the programmability is 

studied in (b), (c) and (e), (f), respectively. 

 

 

 

 

 

limitation, we now enhance the design space by considering composite Miura-ori and eggbox sheets, 15 wherein the panels

are made up of one of two materials. These materials are denoted by green/red and yellow/red colors in the Miura-ori and

eggbox structures, respectively. The mass, axial stiffness and rotational stiffnesses of the green/yellow panels are M p , K e , K b ,

and K f , respectively. The corresponding values for the red panels are M 

′ 
p , K 

′ 
e , K 

′ 
b 

, and K f , respectively. 16 For simplicity, we

assume that the relative bending stiffness between the red and green/yellow panels is the same as that of their relative axial
15 Composite origami structures have recently been considered by Boatti et al. (2017) as possible systems with tunable thermal expansion. 
16 In order to retain the foldability of the structure, we assume that the rotational stiffness of the fold lines is uniform throughout the system. 
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Fig. 11. (a) Projection of the optimized composite Miura-ori sheet with α = 57 . 92 ◦, b = 3 . 21 , and θ = 51 . 29 ◦ – see Fig. 2 for geometric parameters. (b) 

Projection of the optimized composite eggbox sheet with α = 74 . 26 ◦, b = 2 . 92 and θ = 66 . 47 ◦ – see Fig. 2 for geometric parameters. (c) Band structure 

diagram for the optimized composite Miura-ori sheet. (d) Band structure diagram for the optimized composite eggbox sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stiffness, i.e., K 

′ 
b 
/K b = K 

′ 
e /K e . In addition, the axial stiffness of bars along fold lines common to both red and green/yellow

panels are assigned the value (K 

′ 
e + K e ) / 2 . 

In order to be able to study composite origami structures, we generalize the aforementioned design framework by en-

hancing the design variable space. Specifically, we include the material type of the panels as a binary vector, and thereafter

utilize the mixed integer optimization feature of the genetic algorithms. The number of unit cells in the simulation domain

is fixed to be four, 17 and the material contrast ratios ( M 

′ 
p /M p and K 

′ 
e /K e ) are chosen as parameters within the simulation.

Since larger K 

′ 
e /K e and smaller M 

′ 
p /M p ratios typically scale the normalized frequencies, while simultaneously increasing the

bandgap, we fix the material contrast ratios to be equal (i.e., M 

′ 
p /M p = K 

′ 
e /K e = 5 . 18 ) 

After using the above described design procedure, we obtain optimized structures with the following parameters: (i)

α = 57 . 92 ◦, b = 3 . 21 , and θ = 51 . 29 ◦ for Miura-ori, and (ii) α = 74 . 26 ◦, b = 2 . 92 , and θ = 66 . 47 ◦ for the eggbox sheets,

with bandgaps of 0.15 and 0.18 occurring between the eighth and ninth bands respectively. The optimized designs and the

corresponding band structure diagrams are shown in Fig. 11 . Notably, the location of the bandgaps in the composites occur

at much lower part of the spectrum compared to their homogeneous counterparts. For these optimized composite structures,

we present the tunability of the bandgap size and location in Fig. 12 a and d, respectively (bandgap of interest highlighted

using a darker shade). Further, in the context of acoustic switches, we present the programmability of the bandgap size

and location for the (i) composite Miura-ori sheet in Fig. 12 b and c, respectively, and for the (ii) composite eggbox sheet
17 We have found that increasing the number of unit cells does not make any significant difference in the results. 
18 This can be varied based on the application of interest. Extremely high contrast ratios are practically feasible by employing lattice based cellular solid 

materials ( Gibson and Ashby, 1999 ) 
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Fig. 12. (a) Tunability of the bandgap size and location for the optimized composite Miura-ori sheet ( α = 57 . 92 ◦, b = 3 . 21 , and θ = 51 . 29 ◦). (b) and (c) 

Programmability of the composite Miura-ori sheet as an acoustic switch in terms of bandgap size and location, respectively. (d) Tunability of the bandgap 

size and location for the optimized composite eggbox sheet ( α = 74 . 26 ◦, b = 2 . 92 and θ = 66 . 47 ◦). (e) and (f) Programmability of the composite eggbox 

sheet as an acoustic switch in terms of bandgap size and location, respectively. Note that the darker shade in (a) and (d) is used to highlight the bandgap 

of interest, for which the programmability is studied in (b), (c) and (e), (f), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 12 e and f, respectively. It is clear that both composite Miura-ori and eggbox sheets can be employed as acoustic

switches that are highly programmable and tunable. 

5. Concluding remarks 

In this work, we have developed a generalized Bloch wave framework for the dynamic analysis of structures with non-

local interactions and have applied it to the design of origami acoustic metamaterials. Specifically, we have discretized the

origami structures using a structural bar-and-hinge model that minimizes the degrees of freedom for such structures, with-

out significant loss of accuracy. Observing that this discretization results in nonlocal structural interactions—the stiffness

matrix has nonzeros between nodes that are not nearest neighbors due to the coupled deformations arising during folding

or bending—we have generalized the traditional Bloch wave method used in structural analysis to enable the study of such

systems. Utilizing this framework, while choosing the geometry of the unit cell and the folded state of the structure as

design variables, we have designed tunable and programmable Miura-ori and eggbox strips, sheets , and composites that are

large band, low frequency acoustic switches. In doing so, we have demonstrated that the number of bandgaps in the sheets

is significantly smaller than their strip counterparts and occurs at relatively higher frequencies, a limitation overcome by

considering composite structures that have individual panels made of different materials. In addition, we have found that

all the dispersion bands for homogeneous and composite sheets involve wave propagation modes with significant axial de-

formations. 

In summary, our findings indicate that origami-based patterns can be engineered as acoustic metamaterials that are use-

ful in applications like noise control, vibration isolation, impact absorption, and wave guides. In this work, we have restricted

our explorations to Miura-ori and eggbox origami patterns. Due to the characteristic deformations (which are predominantly

axial) that are required for wave propagation in these patterns (especially in the case of sheets), the range of frequencies that

we can target to create bandgaps is limited. Hence, future research could target the design origami patterns that can achieve

bandgaps at any desired range of frequencies. Also, design of origami patterns with other properties (e.g., thermal bandgaps)

could enhance the capabilities of origami assemblages as multifunctional materials. The presence of bulk bandgaps in the

origami structures opens new avenues to investigate and design patterns with topologically protected modes ( Chen et al.,

2016; Huber, 2016 ) which are useful in applications like waveguiding and acoustic cloaking. The aforementioned possibilities

can be extended from origami with parallelogram panels (used in this investigation) to origami with polygonal panels. 
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Appendix A. Bloch wave analysis of a monoatomic chain with nonlocal interactions 

In this appendix, we demonstrate that in order to accurately analyze periodic structural systems with nonlocal interac-

tions, a generalization of the commonly adopted Bloch wave analysis is required, akin to the one presented in Section 3 . As

a representative example, we choose the monoatomic chain shown in Fig. A.13 , wherein the interactions are up to second

nearest neighbors. We denote the mass by M 1 , the stiffnesses of the springs between the first and second nearest neighbors

by K 1 and K 2 , respectively, and the length of the unit cell (i.e., distance between the masses) by L 0 . 

Consider a system comprising of N unit cells of the above described monoatomic chain. The associated stiffness matrix

K ∈ R 

N×N is of the form 

K = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(2 K 1 + 2 K 2 ) −K 1 −K 2 0 . . . . . . 0 −K 2 −K 1 

−K 1 (2 K 1 + 2 K 2 ) −K 1 −K 2 0 . . . . . . 0 −K 2 

−K 2 −K 1 (2 K 1 + 2 K 2 ) −K 1 −K 2 0 . . . . . . 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

−K 1 −K 2 0 . . . . . . 0 −K 2 −K 1 (2 K 1 + 2 K 2 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (A.1)

and the mass matrix M ∈ R 

N×N is of the form 

M = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

M 1 0 0 . . . . . . . . . 0 0 

0 M 1 0 0 . . . . . . . . . 0 

0 0 M 1 0 0 . . . . . . . . . 

. . . 0 0 M 1 0 0 . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . 0 0 M 1 0 

0 0 . . . . . . . . . 0 0 M 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (A.2)

It follows from Eq. (15) that 

˜ K mm 

= K 00 + e −i k m L 0 K 01 + e −i2 k m L 0 K 02 + e i k m L 0 K 0(−1) + e i2 k m L 0 K 0(−2) 

= ( 2 K 1 + 2 K 2 ) − e −i k m L 0 K 1 − e −i2 k m L 0 K 2 − e i k m L 0 K 1 − e i2 k m L 0 K 2 , (A.3)

˜ M mm 

= M 1 , (A.4)

from which we arrive at the following dispersion relation ( Eq. (14) ): 

ω 

2 
m 

= ((2 K 1 + 2 K 2 ) − e −i k m L 0 K 1 − e −i2 k m L 0 K 2 − e i k m L 0 K 1 − e i2 k m L 0 K 2 ) /M 1 . (A.5)

For this system, if we had instead utilized the standard Bloch wave analysis that is commonly employed in the structural

mechanics literature (e.g., Gonella and Ruzzene, 2008; Mousanezhad et al., 2015; Phani et al., 2006; Ruzzene et al., 2003 ),
Fig. A.13. Monoatomic chain with nonlocal interactions. 

https://doi.org/10.13039/100000001
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we would have arrived at the following incorrect result: 

ω 

2 
m 

= ((2 K 1 + 2 K 2 ) − e −i k m L 0 K 1 − e i k m L 0 K 1 ) /M 1 . (A.6)

This example highlights the need for the generalized Bloch wave analysis developed in Section 3 while analyzing structures

possessing nonlocal interactions. 

Appendix B. Effect of inhomogeneity on the diatomic chain’s bandgap 

In this appendix, we study the effect of inhomogeneity on the bandgap of the diatomic chain shown in Fig. B.14 . We

denote the alternating masses by M 1 and M 2 , the stiffnesses of the alternating springs by K 1 and K 2 , and the length of the

unit cell by L 0 . Proceeding as in Section 3 , consider a system comprising of N unit cells of the diatomic chain. The associated

stiffness matrix K ∈ R 

N×N is of the form 

K = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(K 1 + K 2 ) −K 1 0 . . . . . . . . . 0 −K 2 

−K 1 (K 1 + K 2 ) −K 2 0 . . . . . . . . . 0 

0 −K 2 (K 1 + K 2 ) −K 1 0 . . . . . . . . . 

. . . 0 −K 1 (K 1 + K 2 ) −K 2 0 . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . 0 −K 2 (K 1 + K 2 ) −K 1 

−K 2 0 . . . . . . . . . 0 −K 1 (K 1 + K 2 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (B.1) 

and the mass matrix M ∈ R 

N×N is of the form 

M = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

M 1 0 0 . . . . . . . . . 0 0 

0 M 2 0 0 . . . . . . . . . 0 

0 0 M 1 0 0 . . . . . . . . . 

. . . 0 0 M 2 0 0 . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . 0 0 M 1 0 

0 0 . . . . . . . . . 0 0 M 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (B.2) 

It follows from Eq. (15) that 

˜ K mm 

= 

[
K 1 + K 2 −K 1 − K 2 e 

i k m L 0 

−K 1 − K 2 e 
−i k m L 0 K 1 + K 2 

]
, ˜ M mm 

= 

[
M 1 0 

0 M 2 

]
, (B.3) 

from which we arrive at the following dispersion relation ( Eq. (14) ): 

ω 

2 
m 

− ω m 

(K 1 + K 2 )(M 1 + M 2 ) 

M 1 M 2 

+ 4 

K 1 K 2 

M 1 M 2 

sin 

2 (k m 

L 0 / 2) = 0 . (B.4) 

Thereafter, the normalized bandgap for this system can be written as 

ˆ δ = 

√ 

(1 + κ)(1 + γ ) + 

√ 

(1 + κ) 2 (1 + γ ) 2 − 16(γ κ) 

−
√ 

(1 + κ)(1 + γ ) −
√ 

(1 + κ) 2 (1 + γ ) 2 − 16(γ κ) , (B.5) 

where ˆ δ = δ/ 
√ 

K 1 /M 1 with δ being the bandgap, κ = K 2 /K 1 is the stiffness ratio, and γ = M 1 /M 2 is the mass ratio. We plot

the resulting contours of ˆ δ in Fig. B.15 , from which it is clear that the bandgaps become larger as the stiffness and mass

ratios become larger. Indeed, when the system is homogeneous (i.e., κ = γ = 1 ), there is no bandgap. This example suggests

that bandgaps are likely to be larger in systems that are more inhomogeneous. 
Fig. B.14. Diatomic chain. 



P.P. Pratapa et al. / Journal of the Mechanics and Physics of Solids 118 (2018) 115–132 131 

Fig. B.15. Contours of bandgap in a diatomic chain as a function of the stiffness ratio κ and mass ratio γ . 
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