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Abstract Multi-material topology optimization is a practi-
cal tool that allows for improved structural designs. How-
ever, most studies are presented in the context of continuum
topology optimization – few studies focus on truss topology
optimization. Moreover, most work in this field has been
restricted to linear material behavior with limited volume
constraint settings for multiple materials. To address these
issues, we propose an efficient multi-material topology opti-
mization formulation considering material nonlinearity. The
proposed formulation handles an arbitrary number of can-
didate materials with flexible material properties, features
freely specified material layers, and includes a general-
ized volume constraint setting. To efficiently handle such
arbitrary volume constraints, we derive a design update
scheme that performs robust updates of the design variables
associated with each volume constraint independently. The
derivation is based on the separable feature of the dual prob-
lem of the convex approximated primal subproblem with
respect to the Lagrange multipliers, and thus the update of
design variables in each volume constraint only depends on
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Maceió, AL 57092-970, Brazil

the corresponding Lagrange multiplier. Through examples
in 2D and 3D, using combinations of Ogden-based, bilin-
ear, and linear materials, we demonstrate that the proposed
multi-material topology optimization framework with the
presented update scheme leads to a design tool that not only
finds the optimal topology but also selects the proper type
and amount of material. The design update scheme is named
ZPR (phonetically, zipper), after the initials of the authors’
last names (Zhang-Paulino-Ramos Jr.).

Keywords Multi-material topology optimization ·
Multiple volume constraints · ZPR update scheme ·
Ground structure method · Material nonlinearity · Design
update scheme · Potential energy · Discrete filter · Multiple
load cases · KKT conditions

1 Introduction

Topology optimization is a powerful computational design
tool used to find optimal layouts of structures and material
microstructures. Within the field of topology optimiza-
tion, multi-material topology optimization is an emerg-
ing trend because practical engineering designs, such as
buildings, aircraft, and composite materials typically con-
sist of multiple material types. The literature on multi-
material topology optimization is vast and growing but
mostly focuses on the continuum setting. With the density-
based approach, various generalizations and extensions
of the Solid Isotropic Material with Penalization (SIMP)
(Bendsøe and Sigmund 1999) or other material interpo-
lation schemes for single-material topology optimization
are made to accommodate multiple materials. For exam-
ple, Sigmund and Torquato (1997) and Gibiansky and
Sigmund (2000) present extensions of the SIMP model to
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three-phase materials (two material phases plus one void
phase) and apply them to the design of material microstruc-
tures with extreme thermal expansion and extreme bulk
moduli. Hvejsel and Lund (2011) generalize the SIMP
scheme and the Rational Approximation of Material Proper-
ties (RAMP) scheme (Stolpe and Svanberg 2001) to include
an arbitrary number of material phases. However, in order
to enforce the selection of, at most or exactly, one material
at each design subdomain, their study uses a large number
of sparse linear constraints. A similar generalization of the
SIMP scheme that includes an arbitrary number of mate-
rial phases is made by Stegmann and Lund (2005), who use
the Discrete Material Optimization (DMO) in the design
of laminated composite structures. Another variation of the
scheme by Yin and Ananthasuresh (2001) proposes a peak
function approach that uses only one density variable to
interpolate the effective material properties as opposed to
multiple density variables. Their scheme uses a Gaussian
distribution “peak function” as the weight of each material
phase, and the selection of a given material phase is made if
the density variable corresponds to a material peak. In addi-
tion to the density-based approach, phase-field (Wallin et al.
2015; Zhou and Wang 2007; Tavakoli and Mohseni 2014)
and level set (Wang and Wang 2004; 2005; Wang et al.
2005; Mei and Wang 2004) approaches have also been used
for multi-material topology optimization formulations.

While the majority of existing studies of multi-material
topology optimization deals with the continuum setting,
only a small number of studies in multi-material topol-
ogy optimization include discrete elements, e.g., truss and
lattice networks. Among these studies, Stanković et al.
(2015) propose a multi-material formulation to optimize
lattice structures, incorporating manufacturing constraints.
Their study uses the Young’s modulus of each truss as
the design variables and optimizes them on a layout with
fixed cross-sectional areas. Other studies have attempted
to integrate truss elements into continuum topology opti-
mization by considering concrete as a continuum solid and
steel rebars as truss members (see, e.g., Gaynor et al. (2012),
Victoria et al. (2011), Bogomolny and Amir (2012), Amir
and Sigmund (2013), and Zegard and Paulino (2013)) for
the purpose of designing reinforced concrete structures and
studying strut and tie models. However, in the literature, few
multi-material topology optimization studies focus on truss
layout optimization, which is the emphasis of our work.

A promising technique to optimize truss layouts is the
ground structure method (GSM), see, e.g., Dorn et al.
(1964), Kirsch (1989), Kirsch (1993), Rozvany et al. (1995),
Christensen and Klarbring (2009), and Bendsøe and Sig-
mund (2003). In this technique, the design domain is dis-
cretized by a set of nodes, which are interconnected by truss
members to form an initial ground structure (GS). By means
of an update scheme and sensitivity information, the final

design is then obtained by gradually removing unnecessary
members from the initial GS (subtractive method).

For the initial assignment of material layers in the GSM
in the present paper, each candidate material is associ-
ated with a design layer (ground structure); thus, users are
free to specify the location of each material. The multiple
material layers can either share or split the design domain,
or combine both, as demonstrated in Fig. 1. Scenario 1
(Fig. 1c) shows the case where the initial ground structures
associated with the four materials are overlapping and is
designed to enable automatic assignment of the materials.
Scenario 2 (Fig. 1d) can be used to fulfill various design
requirements such as assigning certain materials in specific
locations of a structure. As shown in Fig. 1e, sharing &
splitting can be combined to enable a more flexible design
space.

One limitation of most existing work in multi-material
topology optimization is that only linear material behavior
is considered (for the study that considers nonlinear mate-
rial behavior, see Wallin et al. (2015) for multi-material
phase-field topology optimization under finite deforma-
tion). However, real materials generally display nonlin-
ear constitutive relations. Studies of material nonlinearity
in single material topology optimization (e.g., Achtziger
(1996), Ohsaki (2010), Sokół (2011), Ramos and Paulino
(2015), and Zhang et al. (2017)) have demonstrated the
impact of accounting for nonlinear material behavior in
structural optimization. For instance, it has been shown that
various optimal topologies can be obtained in material non-
linear cases by changing the material behavior and load
level. In the case of multiple materials with linear material
behavior, an individual volume constraint has to be assigned
to each candidate material to ensure its presence in the
optimized topology. If one total/global volume constraint
is assigned to all the linear candidate materials, the opti-
mizer always favors the best linear candidate material, e.g.
the stiffest material in the minimum compliance optimiza-
tion, and final topologies consisting of only a single material
type can occur, as shown in Fig. 2b. However, if the non-
linear material behavior is incorporated in multi-material
topology optimization, the optimizer naturally avoids con-
sistently favoring the stiffest linear material and, there-
fore, enables a more general setting of volume constraints.
As demonstrated in Fig. 2c, when a global volume con-
straint is assigned to two nonlinear candidate materials (one
tension-dominated and the other compression-dominated),
the resulting topology contains both nonlinear candidate
materials. To address the aforementioned issues, we incor-
porate material nonlinearity into multi-material optimiza-
tion because it produces various optimized structures and
enables enhanced freedom of volume constraints.

From the optimization formulation perspective, another
limitation of multi-material topology optimization is related
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Candidate materials:a

edc Scenario #2: split tilps&erahs:3#oiranecSerahs:1#oiranecS

bDesign domain

Fig. 1 Illustration of the combinations of material layers: a Design
domain; b candidate materials; c Scenario #1, four materials share
the domain (initial ground structures of all materials overlap) enabling
automatic material assignment; d Scenario #2, four materials split the

domain, which can be used to fulfill certain design needs; e Scenario
#3, four materials share & split the domain, which enables a more
flexible design space. (Online version in color)

to the limited settings of volume constraints and the sub-
sequent need for a tailored update scheme. Most stud-
ies on multi-material topology optimization either use a
total/global volume constraint for all materials (e.g., Hve-
jsel and Lund (2011), Yin and Ananthasuresh (2001),
Gaynor et al. (2012), Victoria et al. (2011), Bogomolny
and Amir (2012), and Amir and Sigmund (2013)), which
may lead to issues with linear materials (see Fig. 2b);
or assign an individual volume constraint to each mate-
rial (e.g., Sigmund and Torquato (1997), Gibiansky and
Sigmund (2000), Wallin et al. (2015), Zhou and Wang
(2007), Tavakoli and Mohseni (2014), Wang and Wang
(2004), and Wang et al. (2005)), which may impose higher
demands on computational implementations and update
schemes. A more general setting, e.g., the combination of
both types of constraints for various design scenarios, is
rarely considered. In an effort to enable a more general
setting of the volume constraints for multi-material topol-
ogy optimization, an update scheme that handles multiple
constraints is naturally needed. Although the Optimality
Criteria (OC) method is a robust update scheme for single
material topology optimization (see, for example, Chris-
tensen and Klarbring 2009; Groenwold and Etman 2008),
it generally deals with one constraint, and thus, cannot be
directly applied into multi-material topology optimization.
An OC method that handles multiple constraints is dis-
cussed in Haftka and Gürdal (1992), and an extension of
the OC method to handle multiple displacement constraints
is presented in Yin and Yang (2001); both methods require

the calculation of coupled Lagrange multipliers. On the other
hand, the multi-material topology optimization literature
typically adopts general-purpose update schemes, such as
sequential linear programming (Sigmund and Torquato
1997) or the Method of Moving Asymptotes (MMA)
(Svanberg 1987). An active-phase algorithm that extends
the OC method for multi-material topology optimization is
proposed by Tavakoli and Mohseni (2014). Similar to the
Gauss-Seidel and Jacobi iterative optimization methods, the
active-phase algorithm arranges the material phases by stiff-
ness and performs sequential binary updates using the OC
method. This active-phase algorithm is further studied in
the work of Cui and Chen (2014) and Park and Sutradhar
(2015) with improved performance. However, the active-
phase algorithm only applies to linear material behavior
and loses efficiency as the number of candidate materials
increases. When nonlinear material behavior is consid-
ered in multi-material topology optimization, the sequential
binary updates of the active-phase algorithm become chal-
lenging with respect to arranging a pre-defined ordering
scheme for nonlinear candidate materials. Therefore, an
effective and efficient update method, tailored for multi-
material topology optimization with an arbitrary number
of volume constraints and capable of handling general
nonlinear material behavior, is needed.

Taking into account the aforementioned limitations, we
propose an efficient multi-material optimization formu-
lation. This formulation incorporates nonlinear material
behavior and is designed to account for an arbitrary number
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Fig. 2 Multi-material topology
optimization (with one
total/global volume constraint):
Linear versus nonlinear
materials. a Design domain; b
two linear material models,
initial material distribution
(schematic GSs), and the
corresponding optimized
structure that favors the stiffer
linear material; c two nonlinear
Ogden-based material models,
initial material distribution
(schematic GSs), and the
corresponding optimized
structure that contains both
nonlinear materials. (Online
version in color)
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of candidate materials with general scenarios of volume
constraints. In this study, we present a design update
scheme, called ZPR (Zhang-Paulino-Ramos Jr.), that is
capable of handling an arbitrary number of volume con-
straints. This tailored update scheme performs efficient and
robust updates of the design variables associated with each
volume constraint (in an independent fashion).

The remainder of the paper is organized as follows.
Section 2 proposes the multi-material topology optimiza-
tion formulation using the GSM, followed by sensitivity
analysis, Karush-Kuhn-Tucker (KKT) conditions, incorpo-
ration of a discrete filter, and remarks of the proposed
formulation. Section 3 presents the ZPR design update

scheme and is followed by its detailed derivation. Section 4
describes selected material nonlinear models and their
corresponding strain energy density functions. Section 5
presents numerical examples in two- and three-dimensions,
highlighting the properties of the proposed formulation, and
Section 6 provides concluding remarks with suggestions for
expanding our work.

2 Multi-material topology optimization

This section introduces the proposed formulation of
multi-material topology optimization using the GSM, its
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sensitivity analysis, the KKT conditions, and the incorpora-
tion of the discrete filter. We further provide some remarks
on the proposed formulation.

2.1 Formulation

First, we present the proposed multi-material topology opti-
mization formulation for trusses with the assumption of
small deformation. The topology design consists of deter-
mining the cross-sectional areas of the truss members using
the GSM. Assuming a total of m types of materials, we
denote xi as the design variables (cross-sectional areas of
the truss elements) associated with material i, where i =
1, ..., m are the material indices. We also assume a total of
nc independent volume constraints, where 1 ≤ nc ≤ m,
and denote G j as the set of material indices associated
with the j th volume constraint. The proposed formulation
of multi-material topology optimization using the GSM is
given as

min
x1,..., xm

J (x1, ..., xm)= min
x1,..., xm

− Π (x1, ..., xm, u (x1, ..., xm))

s.t. gj (x1, ..., xm) = ∑

i∈G j

LT
i xi − V

j
max ≤ 0, j = 1, ..., nc,

xmin ≤ x
(e)
i ≤ xmax, i = 1, ..., m, and e = 1, ..., Mi,

with u (x1, ..., xm) = arg min
u

Π (x1, ..., xm, u) .

(1)

The objective function J is the negative total potential
energy of the system in the equilibrium state, where Π is
the total potential energy of the equilibrated system, and
u (x1, ..., xm) is the equilibrating displacement field (state
variable). The term V

j
max is the prescribed upper bound on

the total volume associated with the j th volume constraint,
gj ; xmin and xmax are the lower and upper bounds of the
design variables; x

(e)
i is the cross-sectional area of truss

member e with the ith material; Li is the length vector cor-
responding to the ith material; Mi is the number of truss
members in the ground structure of the ith material. As a
demonstration of the notation in the proposed multi-material
optimization formulation (1), Fig. 3 and Table 1 summa-
rize the parameters for a case with four materials (m = 4,
M1 = 5, M2 = 6, M3 = 9, M4 = 9) and three volume
constraints (nc = 3, G 1 = {1, 2}, G 2 = {3}, G 3 = {4}).

The total potential energy of the entire system Π is
defined as

Π (x1, ..., xm, u) =
m∑

i=1

Mi∑

e=1

x
(e)
i L

(e)
i Ψ

(e)
i (u) − fT u, (2)

where L
(e)
i and Ψ

(e)
i (u) are the length and strain energy

density function of the eth member of material i, and f is
the external force vector. The strain energy density function,
Ψ

(e)
i (u), is assumed to be convex and differentiable for any

x M

x M

x M

x M

Fig. 3 Illustration of parameters in multi-material optimization for-
mulation: four materials share & split the design domain (m = 4,
M1 = 5, M2 = 6, M3 = 9, M4 = 9) with three volume constraints
(“Material 1” and “Material 2” share one volume constraint while
“Material 3” and “Material 4” have individual constraints, nc = 3,
G 1 = {1, 2},G 2 = {3},G 3 = {4}). (Online version in color)

given u. The expressions of Ψ
(e)
i (u) for Ogden and bilin-

ear materials are described in Section 4. According to (2),
the total potential energy Π is interpolated as a linear func-
tion of the design variable (after the strain energy density
function of each member, Ψ

(e)
i (u), is obtained through the

nonlinear structural analysis).
Here, we compute the sensitivity for the above optimiza-

tion formulation. The sensitivity of the objective function is
as follows,

∂J

∂x
(e)
i

(x1, ..., xm)=− ∂Π

∂x
(e)
i

(x1, ..., xm,u (x1, ..., xm))

−
[
∂Π

∂u
(x1, ..., xm,u (x1, ..., xm))

]

·
[

∂u

∂x
(e)
i

(x1, ..., xm,u(x1, ..., xm))

]

. (3)

Under the assumption of global equilibrium, u is the equi-
librating displacement field under external load f in the
objective function, therefore, the second term on the right-
hand-side of (3) vanishes. By using (2) and the fact that the
term fT u is (explicitly) independent of the design variables,
we obtain the sensitivity as

∂J

∂x
(e)
i

(x1, ..., xm) = − ∂Π

∂x
(e)
i

(x1, ..., xm, u (x1, ..., xm))

= −L
(e)
i Ψ

(e)
i (u (x1, ..., xm)) . (4)

Note that the sensitivity given by (4) is always non-positive
because L

(e)
i Ψ

(e)
i (u (x1, ..., xm)) ≥ 0, and the computa-

tion of sensitivity does not involve an adjoint vector. The
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Table 1 Illustration of
parameters in multi-material
optimization formulation
(Fig. 3)

Materials, m = 4 Mi xi = {x(e)
i }T , i = 1, ..., m, e = 1, ...,Mi

1 M1 = 5 x1 = {x(1)
1 , x

(2)
1 , x

(3)
1 , x

(4)
1 , x

(5)
1 }T

2 M2 = 6 x2 = {x(1)
2 , x

(2)
2 , x

(3)
2 , x

(4)
2 , x

(5)
2 , x

(6)
2 }T

3 M3 = 9 x3 = {x(1)
3 , x

(2)
3 , x

(3)
3 , x

(4)
3 , x

(5)
3 , x

(6)
3 , x

(7)
3 , x

(8)
3 , x

(9)
3 }T

4 M4 = 9 x4 = {x(1)
4 , x

(2)
4 , x

(3)
4 , x

(4)
4 , x

(5)
4 , x

(6)
4 , x

(7)
4 , x

(8)
4 , x

(9)
4 }T

Vol. constraints, G j gj = ∑
i∈G j LT

i xi − V
j
max ≤ 0, j = 1, ..., nc

nc = 3

1 G 1 = {1, 2} g1 = LT
1 x1 + LT

2 x2 − V 1
max ≤ 0

2 G 2 = {3} g2 = LT
3 x3 − V 2

max ≤ 0

3 G 3 = {4} g3 = LT
4 x4 − V 3

max ≤ 0

sensitivity of the j th volume constraint for member e is
calculated as

∂gj (x1, ..., xm)

∂x
(e)
i

=
⎧
⎨

⎩

L
(e)
i if i ∈ G j ,

0 otherwise.
(5)

2.2 KKT conditions

In this subsection, we show the KKT conditions of the
multi-material optimization formulation (1). To derive the
KKT conditions, the Lagrangian takes the following form

by introducing a set of Lagrange multipliers φ
j

V , j =
1, ..., nc, corresponding to the volume constraints:

L
(
x1, ..., xm, φ

1
V , ..., φ

nc

V

)
= J (x1, ..., xm)

+
nc∑

j=1

φ
j

V

⎛

⎝
∑

i∈G j

LT
i xi −V

j
max

⎞

⎠. (6)

If we denote x∗
1, ..., x

∗
m as the optimal solutions of design

variables and φ
1,∗
V , ..., φ

nc,∗
V as the corresponding Lagrange

multipliers; for any i ∈ G j , j = 1, ..., nc, we have:

∂L

∂x
(e)
i

(
x∗

1, ..., x
∗
m, φ

1,∗
V , ..., φ

nc,∗
V

)
≤ 0, if x

(e),∗
i = xmax, (7)

∂L

∂x
(e)
i

(
x∗

1, ..., x
∗
m, φ

1,∗
V , ..., φ

nc,∗
V

)
= 0, if xmin <x

(e),∗
i <xmax, (8)

∂L

∂x
(e)
i

(
x∗

1, ..., x
∗
m, φ

1,∗
V , ..., φ

nc,∗
V

)
≥ 0, if x

(e),∗
i = xmin, (9)

where the derivative of the Lagrangian is given by

∂L

∂x
(e)
i

(
x1, ..., xm, φ

1
V , ..., φ

nc

V

)
= −L

(e)
i Ψ

(e)
i (u (x1, ..., xm))

+φ
j

V L
(e)
i , ∀i ∈ G j . (10)

Combining (10) with (7)–(9), we obtain the KKT condi-

tions for the optimal solution
(
x∗

1, ..., x
∗
m, φ

1,∗
V , ..., φ

nc,∗
V

)

of the optimization formulation (1) as follows (for any i ∈
G j , j = 1, ..., nc):

Ψ
(e)
i

(
u
(
x∗

1, ..., x
∗
m

)) ≥ φ
j,∗
V , if x

(e),∗
i =xmax, (11)

Ψ
(e)
i

(
u
(
x∗

1, ..., x
∗
m

))= φ
j,∗
V , if xmin <x

(e),∗
i <xmax, (12)

Ψ
(e)
i

(
u
(
x∗

1, ..., x
∗
m

)) ≤ φ
j,∗
V , if x

(e),∗
i =xmin. (13)

From (12), we observe that at the optimal design, the strain
energy density values for the members (with inactive box
constraints) within the same volume constraint are identi-
cal (equal to the optimal solution of the associated Lagrange

multiplier, φ
j,∗
V ), regardless of the material type. This idea

is further verified by a numerical example in Section 5.3.
For instance, let’s assume that “Material 1” and “Material
2” have different material models. If these two materials
are assigned to one constraint, the members associated with
“Material 1” and “Material 2” in the optimal design should
have the same values of strain energy density (even though
the material behaviors differ). This observation concern-
ing multi-material topology optimization is analogous to
the full-stress design in the linear case with single material
(Christensen and Klarbring 2009).

2.3 Incorporation of the discrete filter into the proposed
multi-material formulation

To improve the computational efficiency and define struc-
tures that satisfy global equilibrium, we implement the
discrete filter (Ramos and Paulino 2016; Zhang et al.
2017) into the nonlinear multi-material topology optimiza-
tion framework in (1). Denoting αf as the filter parameter
for controlling the resolution of the topology, we introduce
the filter operation as follows:

Filter
(
x, αf , e

) =

⎧
⎪⎨

⎪⎩

0 if x(e)
max(x)

< αf < 1,

x(e) otherwise.

(14)
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We perform the filter operation during the optimization
process to remove the information associated with the set
of truss members with normalized areas below the filter

parameter αf . Therefore the complete multi-material topol-
ogy optimization formulation with the discrete filter is as
follows:

min
x1,..., xm

J (x1, ..., xm) = min
x1,..., xm

− Π (x1(x1), ..., xm(xm),u (x1, ..., xm))

s.t. gj (x1, ..., xm) =
∑

i∈G j

LT
i xi (xi ) − V

j
max ≤ 0, j = 1, ..., nc,

0 ≤ x
(e)
i ≤ xmax, i = 1, ..., m, and e = 1, ...,Mi, (15)

with u (x1, ..., xm) = arg min
u

{

Π (x1(x1), ..., xm(xm),u) + Γ

2
uTu

}

,

x(e)
i = Filter

(
xi , αf , e

)
, i = 1, ..., m, and e = 1, ...,Mi,

where xi denotes the filtered design variables associated
with the ith material. In formulation (15), the lower bound
is taken as xmin = 0 to account for the removal of members,
which transforms the sizing problem in (1) into a topol-
ogy optimization problem. A Tikhonov regularization term
Γ
2 uTu is added to the total potential energy in the state
equation to prevent singular stiffness matrices (Tikhonov
and Arsenin 1977; Felippa n.d; Ramos and Paulino 2016;
Talischi and Paulino 2013).

2.4 Remarks

The properties of the proposed multi-material topology opti-
mization framework relate to several aspects. First, the
optimization formulations in (1) and (15) are capable of
handling a general number of materials. The constitutive
relationship of each material is flexible (e.g., linear, bilinear,
or nonlinear). For example, we can obtain a variety of mate-
rials by changing the parameters of the Ogden-based model
(see Section 4). Second, the choice of the specific mate-
rial model is independent for each material. For instance,
we can use an Ogden-based model for certain material
layers and a bilinear model for others. Third, in the opti-
mization formulation, the assignment of volume constraints
for multiple materials contains general scenarios, meaning
that the number of volume constraints satisfies the relation
1 ≤ nc ≤ m. As a demonstration, Table 2 summarizes three

Table 2 Three possible combinations of volume constraints for three
materials

Materials Scenarios of volume constraints

(Fig. 4c) (Fig. 4d) (Fig. 4e)

1 V 1
max V 1

max V 1
max

2 V 2
max V 2

max3 V 3
max

possible combinations of volume constraints if three mate-
rials (m = 3) are used in the optimization problem. Figure 4
shows the three representative scenarios of the volume con-
straint assignment, i.e., sharing (Fig. 4c), splitting (Fig. 4d),
and a combination of sharing & splitting (Fig. 4e). The case
of assigning a total/global volume constraint to all materi-
als corresponds to nc = 1 and G 1 = {1, 2, 3} (Fig. 4c), and
the case of assigning individual volume constraint to each
material corresponds to nc = m = 3, G 1 = {1}, G 2 =
{2}, G 3 = {3} (Fig. 4d). To handle an arbitrary number
of volume constraints, we propose a unified design update
scheme in Section 3. This update scheme performs efficient
and robust updates of the design variables associated with
each volume constraint in an independent fashion.

3 The ZPR design update scheme

In this section, we present the ZPR (zipper, phonetically)
design update scheme. In the proposed multi-material for-
mulations in (1) and (15), we have multiple (nc) volume
constraints. Accordingly, we need an update scheme that
can handle multiple constraints. The standard OC method
is a robust and efficient update scheme for single mate-
rial topology optimization, however, it only handles a single
volume constraint. Consequently, the OC method cannot be
directly applied to the proposed multi-material formulations
in (1) and (15), unless only one volume constraint is used,
i.e., nc = 1. To address such limitation, we present the
ZPR design update scheme, which is capable of handling
an arbitrary number of volume constraints while preserving
the efficiency and effectiveness of the standard OC method.
The proposed ZPR design update scheme allows for the
separation and independent updating of design variables
associated with each volume constraint. In computational
implementations, the ZPR update scheme loops over the
set of volume constraints. For the j th volume constraint,
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only the associated design variables are updated by using
the Lagrange multiplier associated with the j th volume
constraint.

In the remainder of this section, we present the derivation
of the ZPR design update scheme for the proposed optimiza-
tion formulation in (1) containing an arbitrary number of
volume constraints (nc). The first step of the derivation is to
perform an explicit convex approximation of the objective
at each optimization step (Christensen and Klarbring 2009).
In this convex approximation, we first introduce a set of
intervening variables yi (xi ) such that y(e)

i (x
(e)
i ) = (x

(e)
i )−α ,

i = 1, ..., m, and e = 1, ...,Mi , where α is an arbitrary and
strictly positive number. At the kth optimization step, we
then approximate the objective function as a linear function
of yi as follows:

J (x1, ..., xm)≈ J k (x1, ..., xm) = J
(
xk

1, ..., x
k
m

)

+
m∑

i=1

[
∂J

∂yi

(
xk

1, ..., x
k
m

)]T [
yi (xi )−yi

(
xk

i

)]

= J
(
xk

1, ..., x
k
m

)

+
m∑

i=1

[
bi

(
xk

1, ..., x
k
m

)]T [
yi (xi )−yi

(
xk

i

)]
, (16)

where xk
i and yi (x

k
i ) are the design and intervening vari-

ables, respectively, at the kth optimization step of material
i. Notice that for a given optimization step k, the vector

bi

(
xk

1, ..., x
k
m

)
is a constant vector whose component (e) is

given by

b
(e)
i

(
xk

1, ..., x
k
m

)
= ∂J

∂y
(e)
i

(
xk

1, ..., x
k
m

)

= −
(
x

(e),k
i

)1+α

α

∂J

∂x
(e)
i

(
xk

1, ..., x
k
m

)
, (17)

where ∂J/∂x
(e)
i (xk

1, ..., x
k
m) is the eth component of the sen-

sitivity vector of the ith material at step k. Therefore, the
approximated subproblem of the original problem at the kth
step is given by

min
x1,...,xm

J k (x1, ..., xm) = min
x1,...,xm

m∑

i=1

[
bi (x

k
1, ..., x

k
m)

]T

yi (xi )

s.t.
∑

i∈G j

LT
i xi − V

j
max ≤ 0, j = 1, ..., nc, (18)

x
(e),k
i,L ≤ x

(e)
i ≤ x

(e),k
i,U , i = 1, ..., m, and e = 1, ...,Mi,

with y
(e)
i (x

(e)
i )=(x

(e)
i )−α, i =1, ..., m, and e=1, ...,Mi,

where x
(e),k
i,L = max(xmin, x

(e),k
i − move) and x

(e),k
i,U =

min(xmax, x
(e),k
i +move) are the lower and upper bounds of

the design variables in the subproblem, and move is the pre-
scribed move limit. In vector notation, the lower and upper

Mat. 1 
Mat. 2
Mat. 3

Mat. 2

Mat. 3

Mat. 1 Mat. 1

Mat. 2
Mat. 3

a
Candidate materials:

b Total vol. constraint

dc eScenario #2: split
3 vol. constraints

Scenario #1: share
1 vol. constraint

Scenario #3: share & split
2 vol. constraints

Vmax

V1
max

V1 
max

V3
max

V2
max V1 

max

V2 
max

Fig. 4 Potential combination of volume constraints: a Candidate
materials; b total volume constraint, Vmax; c Scenario #1: three materi-
als share the (single) total volume constraint, nc = 1, G 1 = {1, 2, 3};
d Scenario #2: three materials split the total volume constraint, (i.e.,
each material is associated with an individual constraint, nc = 3,

G 1 = {1},G 2 = {2},G 3 = {3}); e Scenario #3: three materials share
& split the volume constraint (i.e., “Material 1” has an individual con-
straint while both “Material 2” and “Material 3” share another volume
constraint, nc = 2, G 1 = {1},G 2 = {2, 3}). (Online version in color)
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bounds are denoted as xk
i,L and xk

i,U. When we introduce a

set of Lagrange multipliers φ
j
V for each volume constraint,

the above Lagrangian function of the subproblem in (18)
takes the form

L k
(
x1, ..., xm, φ1

V , ..., φnc
V

)
=

m∑

i=1

[
bi

(
xk

1, ..., x
k
m

)]T

yi (xi ) +
nc∑

j=1

φ
j
V

⎛

⎝
∑

i∈G j

LT
i xi − V

j
max

⎞

⎠

=
nc∑

j=1

⎧
⎨

⎩

∑

i∈G j

[[
bi

(
xk

1, ..., x
k
m

)]T

yi (xi ) + φ
j
V LT

i xi

]

− φ
j
V V

j
max

⎫
⎬

⎭
. (19)

The dual objective function is given by

Dk
(
φ1

V , ..., φnc
V

)
= min

xk
1,L≤x1≤xk

1,U ,..., xk
m,L≤xm≤xk

m,U

L k
(
x1, ..., xm, φ1

V , ..., φnc
V

)

=
nc∑

j=1

⎧
⎨

⎩
min

xk
i,L≤x

i∈G j ≤xk
i,U

∑

i∈G j

[[
bi

(
xk

1, ..., x
k
m

)]T

yi (xi ) + φ
j
V LT

i xi

]

− φ
j
V V

j
max

⎫
⎬

⎭
. (20)

Notice that the dual objective function has a clear separa-
ble structure and thus can be recast as Dk

(
φ1

V , ..., φnc
V

) =
∑nc

j=1 Dj,k
(
φ

j
V

)
, where Dj,k

(
φ

j
V

)
has the form

Dj,k
(
φ

j
V

)
= min

xk
i,L≤x

i∈G j ≤xk
i,U

∑

i∈G j

{[
bi

(
xk

1, ..., x
k
m

)]T

yi (xi ) + φ
j
V LT

i xi

}

− φ
j
V V

j
max. (21)

The optimality condition of the first term on the right-hand-
side of (21) takes the form

∂
{[

bi

(
xk

1, ..., x
k
m

)]T
yi (xi )+φ

j
V LT

i xi

}

∂x
(e)
i

= −αb
(e)
i

(
xk

1, ..., x
k
m

)

×
(
x

(e)
i

)(−α−1)

+φ
j
V L

(e)
i =0, ∀i ∈ G j ,

(22)

which gives

x
(e) ∗
i =Q

(e),k
i

(
φ

j
V

)
=

[
αb

(e)
i

(
xk

1, ..., x
k
m

)

φ
j
V L

(e)
i

] 1
1+α

, ∀i ∈ G j .

(23)

Having obtained x
(e) ∗
i , we then check if the assumption that

it is within the interval
[
x

(e),k
i,L , x

(e),k
i,U

]
holds. The final form

of the primal-dual relationship is given by

x
(e) ∗
i = Q

(e),k
i

(
φ

j
V

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
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[
αb

(e)
i

(
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k
m

)

φ
j
V L

(e)
i

] 1
1+α

< x
(e),k
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[
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(e)
i

(
xk
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k
m

)

φ
j
V L

(e)
i

] 1
1+α

if x
(e),k
i,L ≤

[
αb

(e)
i

(
xk

1,...,x
k
m

)

φ
j
V L

(e)
i

] 1
1+α ≤ x

(e),k
i,U

x
(e),k
i,U if

[
αb

(e)
i

(
xk

1,...,x
k
m

)

φ
j
V L

(e)
i

] 1
1+α

> x
(e),k
i,U

, ∀i ∈ G j . (24)
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Inserting the above primal-dual relation into the dual func-
tion, we obtain the dual problem:

max
φ1

V ,...,φnc
V

Dk
(
φ1

V , ..., φnc
V

)
=

nc∑

j=1

max
φ

j
V

Dj,k
(
φ

j
V

)
. (25)

Notice that the dual objective function is also separable, and
the stationary condition with respect to φ

j
V yields:

∂Dk

∂φ
j
V

=
∑

i∈G j

Mi∑

e=1

L
(e)
i x

(e) ∗
i

(
φ

j
V

)
− V

j
max = 0. (26)

Observe that the above equation is a monotonic algebraic
equation of φ

j
V (Christensen and Klarbring 2009), and thus

can be solved by various algorithms, such as the bisection
method. In addition, the calculation of the Lagrange mul-
tipliers can be done independently. We hereby denote φ

j ∗
V

as the solution to the j th of (26). The update of the eth
component of the design variables then takes the form:

x
(e),k+1
i = Q

(e),k
i

(
φ

j ∗
V

)
, ∀i ∈ G j . (27)

By plugging in the sensitivity information (4), a simplified
expression for the design variable update of the ZPR update
scheme can be obtained as

x
(e),k+1
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x
(e),k
i,L if

[
Ψ
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(
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(
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k
m

))
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]η
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Ψ
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(
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(
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]η

x
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i if x
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Ψ

(e)
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(
u
(
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k
m

))

φ
j ∗
V

]η

x
(e),k
i ≤ x

(e),k
i,U

x
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i,U if

[
Ψ

(e)
i

(
u
(
xk

1,...,x
k
m

))

φ
j ∗
V

]η

x
(e),k
i > x

(e),k
i,U

, ∀i ∈ G j . (28)

In the above expression, the parameter η is introduced as
η = 1/(1+α), which is commonly referred as the damp-
ing factor. It can be either constant (e.g. Christensen and
Klarbring 2009) or adaptive (Groenwold and Etman 2008).

We remark that from (27) and (28), the update of the
design variable depends only on the Lagrange multiplier
of the corresponding volume constraint. Therefore, in the
case of multiple volume constraints, the design variables
associated with each volume constraint can be updated
independently. Note that because the update of design vari-
ables in each volume constraint is independent, the update
can be done either in sequence or in parallel. The proce-
dure of multi-material topology optimization with the ZPR
design update scheme using sequential updates is illustrated
in Algorithm 1.

4 Material nonlinear models

In this section, we briefly review the theory of hyperelas-
tic constitutive models on which the structural analysis part
of the paper is based. For details of the derivation, read-
ers are referred to the studies by Ramos and Paulino (2015)
and Zhang et al. (2017). For the kinematics and constitutive
models, we assume small deformation kinematics and non-
linear constitutive relationships. We compute the linearized
stretch λ for the truss element as (see, for example, Bonet
and Wood 2008):

λ = 1 + NT
(
uq − up

)

L
, (29)

where N is the unit directional vector of the truss member,
up and uq are the nodal displacement vectors of nodes p

and q of the element, and L is the length of the element.
We account for nonlinear constitutive relationships by using
the energy density function based on Ogden (1984), which
allows various materials to be represented and has the capa-
bility to reproduce a variety of hyperelastic models. The
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Fig. 5 Material models: a
Hyperelastic Ogden-based
models with different parameters
(β1, β2); b bilinear material
model with elastic behavior
(different Young’s moduli for
tension and for compression)
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strain energy density function for this hyperelastic Ogden
material is as follows:

ΨOG (λ1, λ2, λ3) =
M∑

j=1

γj

βj

(
λ

βj

1 + λ
βj

2 + λ
βj

3 − 3
)

, (30)

where λ1, λ2, λ3 denote the principal stretches in three
directions, and M , γj , and βj are material parameters. For
truss members, if we assume that λ1 is the axial stretch,
namely, λ1 = λ, and the stretches in the other two directions
are taken to be λ2 = λ3 = 1. Then (30) can be rewritten as

Ψ̂OG (λ) =
M∑

j=1

γj

βj

(
λβj − 1

)
. (31)

Therefore, for the Ogden-based model with M = 2 and
γ2 = −γ1, the principal (Cauchy) stress is obtained as

σOG (λ) = dΨ̂OG

dλ
(λ) = γ1

(
λβ1−1 − λβ2−1

)
. (32)

The tangent modulus is then obtained as follows:

ET (λ)= dσOG

dλ
(λ)=γ1

[
(β1−1) λβ1−2−(β2−1) λβ2−2

]
.

(33)

The tangent modulus (in an undeformed state) reduces to
Young’s modulus in linear elasticity, namely,

ET (1) = γ1 (β1 − β2) = E0 =  + 2μ, (34)

where  and μ are the Lamé constants. Note that if
the parameters satisfy the following conditions: β1 ≥ 1,
β2 ≤ 1, β1 �= β2, γ1 > 0, and subsequently ET > 0
(dσOG (λ) /dλ > 0), then the material model is convex, i.e.,
Ψ̂OG (λ) is convex for λ > 0. The stress-stretch relationship
of the Ogden model is then expressed as

σOG (λ) = E0

β1 − β2

(
λβ1−1 − λβ2−1

)
. (35)

By varying the set of parameters (β1, β2), as shown in
Fig. 5a, this Ogden-based model generates a variety of
material behaviors.

Another constitutive model used in this paper is the bilin-
ear material. The bilinear constitutive model has a kink at
the origin (see Fig. 5b). To treat this class of nonsmooth
problems, we refer the reader to Klarbring and Rönnqvist
(1995). Using the same format of the Ogden-based model
to describe the bilinear model, the energy density function
is as follows:

ΨBi (λ) =
⎧
⎨

⎩

1
2Et (λ − 1)2 if λ > 1,

1
2Ec (λ − 1)2 otherwise,

(36)

Table 3 Brief description of the numerical examples

Example Dimension Material model Description Feature

1 2D Two bilinear models Opposite loads in a simply sup-
ported rectangular domain

Verification

2 2D Four Ogden-based models Opposite loads in a simply sup-
ported rectangular domain

Influence of initial material distributions

3 2D Two bilinear and one linear models Long-span bridge design Generality of the formulation
including combinations of vol-
ume constraints

4 3D Two Ogden-based and one linear
models

Crane design subjected to multi-
ple load cases

Potentially translational design:
from academia to structural engi-
neering practice
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Fig. 6 Example 1: geometry (L = 10m), load (P = 100kN), and
boundary conditions. The domain is discretized using a 30 × 10 grid

where Et and Ec are Young’s moduli for tension and com-
pression, respectively. The stress-stretch relationship for the
bilinear material is then obtained as

σBi (λ) =
⎧
⎨

⎩

Et (λ − 1) if λ > 1,

Ec (λ − 1) otherwise.
(37)

Note that this bilinear material model is always convex as
dσBi (λ) /dλ ≥ 0. The term dσBi (λ) /dλ may become zero,
i.e., Et = 0 or Ec = 0.

5 Numerical examples

In this section, we provide several numerical examples
to demonstrate the proposed multi-material topology opti-
mization using the GSM. Example 1 verifies the pro-
posed multi-material methodology by comparing the results
obtained from the proposed scheme with the results
obtained from the single material topology optimization.

Single material, one vol. constraint

Initial GS 

1

        Et=7E, Ec=2E
Material

Material model

b

a

c
1.0 Vmax
(Vol. constraint 1)

(kPa)

(m/m)

Fig. 7 Example 1: single material topology optimization. a The mate-
rial model of one bilinear material; b the initial level-10 (schematic)
GS; c the corresponding optimized structure (cf. Fig. 8c). (Online
version in color)

Multi-material, one vol. constraint

Multi-material, two vol. constraints

Initial GS for each material (share)
b

a

c

Et=7E, Ec=0

Mat. 2 

Mat. 1 

Et=0, Ec=2E

d

1.0 Vmax
(Vol. constraint 1)

0.5 Vmax
(Vol. constraint 2)

0.5 Vmax
(Vol. constraint 1)

Material models

1

Fig. 8 Example 1: multi-material topology optimization. a Material
models of two bilinear materials; b two layers of identical initial level-
10 (schematic) GSs; c the optimized structure of two bilinear materials
with one total volume constraint (cf. Fig. 7c); d the optimized struc-
ture of two bilinear materials with two individual volume constraints.
(Online version in color)

Example 2 compares different combination of initial mate-
rial distributions and their optimized results. Example 3
demonstrates combination of volume constraints and their
optimized results. The last example considers multiple load
cases and illustrates the application of the proposed multi-
material formulation to a 3D crane design using a com-
bination of various material models and general volume
constraint setting.

We generate the initial ground structures without over-
lapped members in each material layer using the collision
zone technique by Zegard and Paulino (2014) and Zegard
and Paulino (2015) and plot final topologies in 3D using
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Table 4 Numerical
information for Example 1
(Figs. 6, 7, and 8),
E = 107kPa

2D cases J (x∗
i ) Material Volume Final #

(kN · m) Et Ec constraint, V
j
max Vfrac Elements

1 material 1.136 7E 2E Vmax 1.00 48
2 materials 1.136 7E 0 Vmax 0.63 25
(1 vol. constraint) 0 2E 0.37 19
2 materials 1.179 7E 0 0.5Vmax 0.5 42
(2 vol. constraints) 0 2E 0.5Vmax 0.5 33

the program GRAND3 (Zegard and Paulino 2015). It is
worth noting that we do not verify the stability of members.
For studies that address stability issues, readers are referred
to Rozvany (1996), Achtziger (1999a), Achtziger (1999b),

Ben-Tal et al. (2000), and Tyas et al. (2006). The GSM
without stability constraints may lead to structures with
aligned nodes, i.e., hinges connecting two collinear mem-
bers. The procedure for removing aligned nodes consists of

Fig. 9 Example 2: influence of
initial material distributions. a
Design domain (L = 10m,
P = 1000kN); b material
models: four Ogden-based
materials; c initial material
distribution (schematic GSs) and
the corresponding optimized
structure for the case of
materials sharing & splitting the
domain; d initial material
distribution (schematic GSs) and
the corresponding optimized
structure for the case of
materials sharing the entire
domain. (Online version in
color)
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Table 5 Numerical
information for Example 2
(Fig. 9)

2D cases J (x∗
i ) Material Volume #

(kN · m) β1 β2 constraint, V
j
max Elements

4 materials

35.44

2200.3 −5.1 0.4Vmax 11

7.2 −2194.0 0.4Vmax 11

(share & split) 1043.3 −1843.1 0.1Vmax 10

1848.8 −1039.2 0.1Vmax 10

4 materials

27.53

2200.3 −5.1 0.4Vmax 42

7.2 −2194.0 0.4Vmax 42

(share) 1043.3 −1843.1 0.1Vmax 42

1848.8 −1039.2 0.1Vmax 42

identifying the nodes that connect only two collinear mem-
bers (except those nodes connecting to load or displacement
boundary conditions). Then we remove the aligned node by
replacing two collinear members with one long member that
takes the larger (or equal) area from the two. Therefore, the
resulting objective value decreases (or remains unchanged).
For all GSM results, we remove aligned nodes and float-
ing members and check the final topologies to ensure that
they are at global equilibrium. A detailed explanation can
be found in the references (Zhang et al. 2016; Zhang et al.
2017). The nonlinear solution scheme is based on a Newton-
Raphson approach with line search (see Zhang et al. 2017)
for a detailed explanation). For all the examples, the dis-
crete filter is used to obtain valid structures and improve
computational efficiency (see Section 2.3). We use the fil-
ter value αf = 10−4 during the optimization process, and
the filter operation is performed at every optimization step.

Consistent units are implied throughout, and all the exam-
ples have initial tangent modulus, E0 = 7 × 107kPa;
stopping criterion: tolopt = 10−9; move value: move =
104x0, where x0 is the initial guess of the design vari-
ables; and initial damping factor for the ZPR design update
scheme: η = 0.5. Subsequent damping factors are updated
according to the scheme provided by Groenwold and Etman
(2008). The upper bound for the design variable is defined
by xmax = 104x0. All of our examples are solved by the ZPR
design update scheme proposed in Section 3. The examples
are summarized in Table 3.

5.1 Example 1: Verification of the multi-material
topology optimization framework

The first example verifies the proposed multi-material method-
ology and the ZPR design update scheme by comparing

(kPa)

(m/m)

Initial GS for each material (share)

1

Material models
Material 1
(cable-like)

Material 2
(steel-like)

Material 3
(concrete-like)

Et = 17E,  Ec = 0.001*7E

Et = 7E,  Ec = 7E

Et = 0.001*2E,  Ec = 2E

ba

c

Design domain

Fig. 10 Example 3: influence of volume constraint combinations. a Design domain (L = 1m,P = 100kN); b material models: two bilinear and
one linear materials; c initial full-level (schematic) GS for each material. (Online version in color)
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Multi-material, two vol. constraints

Multi-material, three vol. constraints
a

b

0.4 Vmax
(Vol. constraint 1)

0.1 Vmax
(Vol. constraint 2)

0.5 Vmax
(Vol. constraint 3)

0.5Vmax
(Vol. constraint 1)

0.5Vmax
(Vol. constraint 2)

Fig. 11 Example 3: influence of volume constraint combinations. a
Optimized structure for the first volume constraint combination (3 con-
straints) where each material is assigned to an individual constraint;
b optimized structure for the second volume constraint combination
(2 constraints) where cable-like and steel-like materials are assigned
to one constraint and the concrete-like material is assigned to another
constraint. (Online version in color)

the results obtained from the proposed formulation (using
two bilinear materials) with the results obtained from the
standard GSM using a single (bilinear) material. We use a
2D box domain, discretized by a 30×10 grid. The geometry
(L=10m), load (P =100kN), and support conditions (two
fixed supports) are shown in Fig. 6. The total prescribed
maximum volume takes the following value, Vmax =0.15m3.

For the single material case, using a level-10 initial
ground structure with 19,632 non-overlapped members and

341 nodes, we perform optimization with a bilinear mate-
rial (Et = 7E and Ec = 2E, E = 107kPa). For the two
multi-material cases, two materials share the entire domain.
Hence, we use two layers of level-10 initial ground struc-
tures (one for each material) with 39,264 members (truss
members within each material layer are not overlapped),
341 nodes, and two bilinear materials (Et1 = 7E, Ec1 = 0
and Et2 = 0, Ec2 = 2E). The combination of these
two materials is designed to reproduce the results from
the single material case. For multi-material cases, two sce-
narios of assignments for volume constraints are used. In
one scenario, two materials are assigned to one total vol-
ume constraint (nc = 1), i.e., V 1

max = Vmax; in another
scenario, each material is assigned to an individual vol-
ume constraint (nc = 2), i.e., V

j
max = 0.5Vmax, j =

1, 2. Note that in all single and multiple materials cases,
the prescribed maximum volume, Vmax, is the same. The
initial ground structures, material models, and optimized
structures obtained using one bilinear material and two
bilinear materials are shown in Figs. 7 and 8, respectively.
The associated numerical information is summarized in
Table 4.

The multi-material formulation with one volume con-
straint (Fig. 8c) yields a structure and an optimal objective
value identical to those obtained using the single material
formulation (Fig. 7c). This comparison verifies the pro-
posed formulation and the ZPR design update scheme. In
addition, for the case that two materials share the entire
domain and are assigned to one volume constraint, the opti-
mizer assigns materials to appropriate locations with proper
amounts according to each material’s property. For the case
with two constraints (Fig. 8d), the optimized structure dif-
fers from the one volume constraint case (Fig. 8c) and has a
slightly (3.7%) higher objective value.

5.2 Example 2: Opposite loads in a simply supported
rectangular domain

In the second example, we demonstrate the different scenar-
ios of initial material distributions using four Ogden-based
materials in the proposed methodology and compare their

Table 6 Numerical
information for Example 3
(Figs. 10, 11, and 12),
E = 107kPa

2D cases J (x∗
i ) Material Volume Final #

(kN · m) Et Ec constraint, V
j
max Vfrac Elements

3 materials 20.957 17E 0.001E 0.4Vmax 0.40 35

7E 7E 0.1Vmax 0.10 27

(3 vol. constraints) 0.002E 2E 0.5Vmax 0.50 27

3 materials 14.755 17E 0.001E 0.5Vmax 0.16 31

7E 7E 0.34 31

(2 vol. constraints) 0.002E 2E 0.5Vmax 0.50 31
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Fig. 12 Example 3: influence of volume constraint combinations. a
Strain energy density for the first volume constraint combination (3
constraints); the members within the same volume constraint have
identical values of strain energy density. b Strain energy density for

the second volume constraint combination (2 constraints); the mem-
bers within the same volume constraint have identical values of strain
energy density, regardless of the material type, which verifies the KKT
conditions discussed in Section 2.2. (Online version in color)

optimized results. The design domain with load and bound-
ary conditions (L = 10m,P = 1000kN) and material
models are shown in Fig. 9a and b. We compare two sce-
narios of initial material distributions. In the first scenario,
four materials share & split the domain (Fig. 9c), resulting
55,818 members and 341 nodes. The total prescribed max-
imum volume takes the following value, Vmax = 0.15m3.
Each material is associated with an individual volume con-
straint (nc = 4), as shown in Table 5. The initial GS for
each material and the corresponding optimized structures
are shown in Fig. 9c. The multi-material framework with
materials sharing & splitting the domain leads to a structure
without overlapping members (selecting at most one mate-
rial for each subdomain). In the final design without any
overlapping members, the values of strain energy density
of all the truss members for the same material are identical
(Ramos and Paulino 2015; Zhang et al. 2017).

In the second scenario, four materials share the entire
domain (Fig. 9d). Four layers (one for each material) of
identical level-10 initial ground structures (based on a 30 ×
10 grid) with a total of 78,528 members and 341 nodes are
used. Similar to the first scenario, the total prescribed max-
imum volume takes the value, Vmax = 0.15m3, and each
material is associated with an individual volume constraint
(nc = 4), see Table 5. The initial GSs for the second sce-
nario and the corresponding optimized structures are shown
in Fig. 9d. The associated numerical information is sum-
marized in Table 5. In the optimized structure, we observe
that the selection of more than one material for some truss
members (i.e., overlapping of truss members from different
materials) occurs when materials share the entire domain. In
this case of selecting more than one material, truss members
with several materials may have unequal strain energy density
values. While the selection of multiple materials at certain

subdomains is beyond the scope of the present work, the
results with overlapping members may be realized through
composite materials.

5.3 Example 3: Long-span bridge design using linear
and bilinear materials

This bridge example investigates different combinations of
volume constraints using one linear and two bilinear mate-
rials in the proposed multi-material formulation. The design
domain with load and boundary conditions (L = 1m,P =
100kN) is shown in Fig. 10a. Two bilinear and one lin-
ear materials are used to represent cable-like (“Material 1”),
steel-like (“Material 2”), and concrete-like (“Material 3”)
materials ([Et, Ec]cable = [17E, 0.007E]; [Et, Ec]steel =
[7E, 7E]; [Et, Ec]concrete = [0.002E, 2E]; where E =
107kPa), as shown in Fig. 10b. Three materials share the
entire domain, as shown in Fig. 10c, leading to three iden-
tical layers of full-level initial ground structures (based on
an 18 × 7 grid) with 21,249 non-overlapping members
and 152 nodes. We use two combinations of assignments
for volume constraints. In one combination (three volume
constraints, nc = 3), each material is assigned to an individ-
ual volume constraint (Fig. 11a). In the other combination
(two volume constraints, nc = 2), cable-like and steel-
like materials are assigned to one volume constraint, and
the concrete-like material is assigned to another volume
constraint (Fig. 11b), see Table 6. Note that in both combi-
nations, the prescribed maximum volume, Vmax = 0.05m3,
is the same. The optimized structures for the two combi-
nations of volume constraints are shown in Fig. 11. The
associated numerical information is summarized in Table 6.
Different combinations of volume constraints lead to var-
ied optimized structures. The case with two constraints has
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Fig. 13 Example 4: multi-material crane design with multiple load cases. a Design domain discretized using a 14 × 2 × 2 grid for the top domain
and a 2 × 2 × 10 grid for the bottom domain; b design domain with void zone; c five equal-weighted load cases

smaller objective value than the case with individual volume
constraint for each material (i.e., three constraints). The
amount of usage for the cable-like material decreases when

its volume constraint is combined with a steel-like mate-
rial. The strain energy density for each member in these two
combinations of volume constraints are shown in Fig. 12. In
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Fig. 14 Example 4:
multi-material crane design with
multiple load cases. a Material
models: two Ogden-based and
one linear materials; b
illustration of the initial material
distribution. (Online version in
color)
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the optimized design, we observe that the members within
the same volume constraint have the same strain energy
density value regardless of the material type, verifying the
KKT conditions discussed in Section 2.2. In the case that
“Material 1” and “Material 2” are assigned to one volume
constraint, the strain energy density values in the optimized
structure are the same even though the properties of the two
candidate materials are different.

5.4 Example 4: 3D crane design subjected to multiple
load cases

Using a combination of different materials with a more
general volume constraint setting, we apply the proposed
multi-material formulation to a 3D crane design subjected
to multiple load cases. These load cases are implemented
using the weighted-sum formulation, which averages the

Fig. 15 Example 4: the
optimized structure for the 3D
crane design – no overlapping
members are observed in the
final design. (Online version in
color)

top view

3D view

front view side view

Ogden 1

Ogden 2 Linear 
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Table 7 Numerical information for Example 4 (Figs. 13, 14, 15, and 16), E = 107kPa

3D case J (x∗
i ) Material Volume Vfrac #

(kN · m) type property constraint, V
j
max initial final Elements

3 mats. 457 Ogden β1 = 1197, β2 = −43 0.4Vmax 0.2 0.20 18

(share Ogden β1 = 45, β2 = −1193 0.2 0.20 26

& split) Linear ET = Ec = 7E 0.6Vmax 0.60 0.60 84

objective functions from all load cases. The geometry of
the crane (L = 1m,P = 60kN), in Fig. 13a and b, has
a fixed end and a void zone for practical design purposes
(Zegard and Paulino 2015). To obtain constructible struc-
tures, we use a 14 × 2 × 2 grid (with a level 6 GS) for the
top domain and a 2 × 2 × 10 grid (with a level 3 GS) for
the bottom domain, containing a total of 10,276 members
and 216 nodes. As shown in Fig. 13c, five equal-weighted
load cases are applied to the crane. We perform optimiza-
tion with three materials (one linear and two Ogden-based
materials), as shown in Fig. 14a. As indicated by the ini-
tial GSs (Fig. 14b), these three materials share & split the
domain, we assign two Ogden-based materials to the top
domain and the linear material to the bottom domain.

Two volume constraints are used (nc = 2) where two
Ogden-based materials are associated with one constraint,
and the linear material is associated with the second con-
straint. The total prescribed maximum volume takes the
following value, Vmax = 0.014m3. In addition to a small fil-
ter (αf = 10−4) used in the entire optimization, we apply a
larger filter (αf = 10−2) in the final step of the optimization
to control the resolution of the final topology. The optimized
structure is shown in Fig. 15. The associated numerical
information is summarized in Table 7. The multi-material
framework with multiple load cases leads to a crane design
with a clear layout and no overlapping members. In fact,

the lower part of the crane design exhibits the 2/3 bracing
rule (Zegard et al. 2014), which is shown to be the opti-
mal bracing point for lateral loads. The values of initial and
final volume fractions of the two Ogden-based materials in
Table 7 indicate that the optimizer chooses and distributes
the materials according to their properties. The geometry
data of this crane design (Fig. 15) is exported to STL (or
stereolithography) format using the method proposed by
Zegard and Paulino (2016). The design is then manufac-
tured with 3D printing using a fused deposition modeling
(FDM) process and painted using multiple colors, each
corresponding to one material, as shown in Fig. 16.

6 Concluding remarks

In this paper, we propose a general multi-material formu-
lation for truss topology optimization using the GSM con-
sidering material nonlinearity. This formulation is designed
to handle an arbitrary number of candidate materials. Each
candidate material is associated with an individual layer of
the ground structure. Therefore, the location of each mate-
rial layer can be freely specified – multiple material layers
can either share or split the design domain, or combine both.
For each material, the choice of the constitutive model is
flexible and independent. As shown by the KKT conditions

Fig. 16 Example 4: printed
model of the optimized crane
design with three materials
using FDM process. a 3D view;
b top, front, and side views. The
dimension of the manufactured
model is 12.8 in × 2.3 in × 10.2
in. (Online version in color)

top view

3D view

front view side view 

a b

1 in
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(see Section 2.2), our formulation leads to identical val-
ues of strain energy density for members within the same
volume constraint (and whose optimal design variables are
in the optimum range xmin < x

(e),∗
i < xmax), regardless

of the material type (see (12) and Fig. 12). Furthermore,
the assignment of volume constraints is generalized in the
proposed formulation (e.g., one volume constraint can be
assigned to either one or multiple materials). To efficiently
handle the generalization of volume constraints, the ZPR
design update scheme is utilized, which performs efficient
and robust updates of the design variables associated with
each volume constraint independently.

By means of several 2D and 3D examples, using combi-
nations of Ogden-based, bilinear, and linear materials, we
verify and demonstrate the effectiveness of the proposed
multi-material formulation and the ZPR design update
scheme. The incorporation of material nonlinearity is shown
to naturally eliminate the tendency of multi-material opti-
mization, using linear materials, to favor the stiffest material.
In addition, different initial material distributions are found
to provide a variety of optimized structures. In certain sce-
narios (e.g., the scenario of multiple materials sharing the
domain), the selection of more than one material for truss
members (the overlapping of truss members from different
materials) in the final design may occur, which may denote a
composite material configuration. Furthermore, the compar-
ison of different combination of volume constraints shows
that fewer constraints on the material volume lead to stiffer
optimized structures. In the case of one total/global volume
constraint with all materials sharing the entire domain, we
achieve automatic assignment of the materials, that is, the
optimizer chooses and distributes the materials according
to their properties. In this case, the stiffest optimized struc-
tures are achieved. Multiple load cases using a combination
of various materials and a more general volume constraint
assignment are considered in the 3D crane design. The
multi-material framework with multiple load cases leads to
a crane design exhibiting the 2/3 bracing rule (Zegard et al.
2014), which has been shown to be the optimal bracing point
for lateral loads. The optimized crane was manufactured
with 3D printing (using FDM) and painted using multi-
ple colors that are consistent with the material assignment
scheme.

Given the present investigation and outcome of the exam-
ples, we conclude that the proposed multi-material topology
optimization framework, which accounts for material non-
linearity using the ZPR update scheme, leads to a design
tool that not only finds the optimal topology but also selects
the proper type and the amount of material. The ZPR design
update scheme is flexible and customized to handle a gen-
eral number of volume constraints – it is also applicable
to continuum topology optimization with multiple volume
constraints.

This work provides insights for future multi-material
topology optimization research. One possible direction is
the extension of the present framework to large-scale par-
allel computing in both the structural and the optimization
models. For multiple load cases, each load case can be
done in parallel (e.g., displacement and sensitivity), and the
update of the Lagrange multipliers and design variables in
the ZPR update scheme can also be done in parallel for
each volume constraint. Another direction is to enforce the
selection of at most one type of material at each design
subdomain in the final design to eliminate overlapping
members. In addition, multi-material formulations can be
applied to the design of lattice structures. Finally, the con-
nection of multi-material topology optimization to additive
manufacturing should be further explored.
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Appendix: Nomenclature

α Exponent coefficient used in the ZPR
model to define yi

αf Filter value
η Damping factor in the ZPR model
Γ Tikhonov regularization parameter
γi , βi Ogden material parameters
λ Linearized stretch
, μ Lamé constants
λi Principal stretches
G j The set of material indices associated with

the j th volume constraint in the ZPR
model

xi Vector of filtered design variables (cross-
sectional areas) with material i

x
(e)
i Filtered cross-sectional area of member e

with material i

φ
j
V Lagrange multiplier introduced for the j th

volume constraint in the ZPR model
φ

j ∗
V The optimal Lagrange multiplier intro-

duced for the j th volume constraint in the
dual problem of the ZPR model

Π Total potential energy
Ψ

(e)
i Strain energy density function of member

e with material i

ΨBi Bilinear strain energy density function
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ΨOG Ogden strain energy density function
σ Principal Cauchy stress
bi (x

k
1, ..., x

k
m) Sensitivity vector of the objective function

J with respect to yi evaluated at the kth
step in the ZPR model

f External force vector
Li Vector of member length for material i

N Unit directional vector of a given truss
member

u Displacement vector
up, uq Displacements of nodes p and q for a

given truss member
xi Vector of design variables (cross-sectional

areas) with material i

yi Vector of intervening variables with mate-
rial i

d Number of dimensions (e.g., d = 2, 3)
E0 Initial tangent modulus (Young’s modulus)
ET Tangent modulus
gj The j th volume constraint in the ZPR

model
J Objective function
J k Approximated objective function in the

subproblem at optimization step k

L
(e)
i Length of truss member e with material i

M Ogden material parameter
m Total number of materials
Mi Number of truss members in material i

move Prescribed move limit in the ZPR model
nc Total number of volume constraints in the

ZPR model
tolopt Tolerance value

V
j
max Prescribed maximum volume in the j th

volume constraint of the ZPR model
xmax Upper bound for design variables
xmin Lower bound for design variables
x

(e)
i Cross-sectional area of member e with

material i

x
(e),k
i,L The lower bound of the eth design vari-

able with material i in the subproblem at
optimization step k in the ZPR model

x
(e),k
i,U The upper bound of the eth design vari-

able with material i in the subproblem at
optimization step k in the ZPR model
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Haftka RT, Gürdal Z (1992) Elements of structural optimization.
Springer, Netherlands

Hvejsel CF, Lund E (2011) Material interpolation schemes for uni-
fied topology and multi-material optimization. Struct Multidiscip
Optim 43(6):811–825

Kirsch U (1989) Optimal topologies of truss structures. Comput
Methods Appl Mech Eng 72(1):15–28

Kirsch U (1993) Structural optimization: fundamentals and applica-
tions. Springer, Berlin
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