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Abstract The structural performance of a grid-shell
depends directly on the geometry of the design. Form-
finding methods, which are typically based on the search for
bending-free configurations, aid in achieving structurally
efficient geometries. This manuscript proposes two form-
finding methods for grid-shells: one method is the potential
energy method, which finds the form in equilibrium by
minimizing the total potential energy in the system; the
second method is based on an augmented version of the
ground structure method, in which the load application
points become variables of the topology optimization prob-
lem. The proposed methods, together with the well-known
force density method, are evaluated and compared using
numerical examples. The advantages and drawbacks of the
methods are reviewed, compared and highlighted.
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1 Introduction

The present work introduces two form-finding methods
for grid-shells: one method based on the minimization of
potential energy, dubbed as the potential energy method
(PEM); and a second method based on an augmented form
of the ground structure method (GSM) (Dorn et al. 1964).
The main advantage of the potential energy method is the
reliance on all equations of mechanics (kinematics, equilib-
rium, and constitutive relations), all of which have direct
physical interpretation. On the other hand, the ground struc-
ture method approximates the absolute optimal shape (with
no dependence on additional user-supplied parameters).

From the aforementioned, the PEM can be considered
as a stiffness-type method, since it not only considers force
equilibrium, but the constitutive and compatibility equations
as well. However, it does not make direct use of the stiff-
ness matrix: instead, it minimizes the potential energy of the
system considering large deformations. It is therefore akin
to the experimental approach originally used by Gaudı́ and
Isler (Bergós and Llimargas 1999; Chilton 2010). The prob-
lem of potential members in compression (when seeking a
tension-only solution) (Haber and Abel 1982), is solved by
relaxing the stiffness to trigger the snap-through process of
these members.

The (augmented) ground structure method’s core idea
consists of replacing the topology, shape and sizing problem
by a sizing-only problem (Hemp 1973). This sizing-only
problem is done for a highly-redundant and interconnected
truss system (i.e. the ground structure), from which the opti-
mal layout is extracted and sized. The standard formulation
of the method is augmented to include the load applica-
tion points as variables of the problem, thus making the
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method suitable for the form-finding of compression-only
structures (no need to flip the result). The proposed method
considers the iterative refinement of the initial ground struc-
ture based on previous results, thus increasing the degree
of precision of the resulting geometry. The method can
be performed over any (discretized) footprint thanks to
a graph-theory based generation algorithm (Zegard and
Paulino 2014, 2015), and requires no a priori connectivity
or sizing. The resulting (optimal) geometry is highly pre-
cise; but the lattice-like underlying structure does require
a posteriori interpretation or rationalization to finalize the
design.

The rest of the manuscript is organized as follows:
Section 1.1 reviews the literature in the field of form-
finding; Section 1.2 briefly reviews the well-known force
density method (for the purpose of completeness and com-
parison); Section 2 describes the various types of static
loads that are considered in the form-finding process;
Section 3 is dedicated to the form-finding method based
on the principle of minimum potential energy; Section 4
introduces the form-finding method using the augmented
ground structure method; Section 5 shows three numeri-
cal examples designed with the three form-finding meth-
ods previously presented; Section 6 discusses the fea-
tures of the two proposed form-finding methods and the
force density method; Finally, a summary and compari-
son of these methods, as well as concluding remarks are
given in Section 7. Appendix A has details on the for-
mulation of the force density method, and Appendix B
presents the nomenclature used in the main text of this
manuscript.

1.1 Literature review

Grid-shells are a type of compression-only structure, where
efficiency is attained by minimizing (or ideally elimi-
nating) the bending moment and shear forces. Optimal
compression-only designs can be analytically derived under
specific conditions of loads and geometry. However, in
most practical applications a compression-only design can-
not be obtained analytically. Early works in form-finding
can be traced back to the experimental models used by
Antoni Gaudı́: the form for the Colonia Güell was obtained
using a scaled experimental model consisting of hanging
chains and weights, which he called a funicula (or funicular)
model. This model was continuously revised for 10 years;
adjusting the cord lengths and hanging weights (Bergós
and Llimargas 1999; Martinell et al. 1975). The results
from this experimental model were mirrored vertically, and
traced over for further graphical refinement in order to
obtain a compression-only solution (Collins 1977). An anal-
ogous concept was later used by Frei Otto, but using soap
film models instead of hanging chains (Addis 2007). Heinz

Isler, used hanging cloths to overcome the difficulties of
soap films, and used this experimental technique to design
impressive thin shell concrete structures (Chilton 2010).

With the rise of computers, new (computational)
form-finding methods replaced the previous experimental
approach using scaled models. One said method consists of
constructing the stiffness matrix using the elastic constitu-
tive equations, and solving for a configuration in equilib-
rium for a given set of external loads (e.g., Siev and Eidel-
man 1964; Argyris et al. 1974; Tabarrok and Qin 1992).
Methods in this rationale can be viewed as simulating the
physical hanging models using the finite element method.
Drawbacks include the computationally expensive construc-
tion of the stiffness matrices, and the possibility to obtain
compressive members in what should be a tension-only
structure (Haber and Abel 1982). An alternative approach
was later proposed that solves for the steady state of a
dynamic equilibrium problem, which is equivalent to the
equilibrium state of the static problem (Barnes 1977, 1988).
This dynamic approach was later used in the design of axial-
force-only particle-spring systems (Kilian and Ochsendorf
2006). Methods based on dynamic relaxation are typically
faster than those based on stiffness matrices, but require
additional parameters which may not have physical mean-
ing, and may require tuning to ensure the stability and
convergence of the solution (Nouri-Baranger 2004; Miki
et al. 2014). Circa 1970, the design of the Munich Olympic
Complex required form-finding capabilities beyond those
offered by the available methods (Lewis 2003). The Force
Density Method (FDM) was developed in response to this
requirement: the form is obtained in a purely geometric
manner by ensuring equilibrium of forces, but requiring
assumptions on the members’ force densities, defined as
the force divided by the length of the member (Linkwitz
and Schek 1971; Schek 1974). The computations involved
in the FDM make it relatively inexpensive compared to
stiffness-based methods, and hence it rose quickly in pop-
ularity due to the relatively scarce computational resources
of the time. The method has been extended and modified
numerous times to alleviate specific problems, or expand
its capabilities (e.g., Haber and Abel 1982; Bletzinger and
Ramm 1999; Nouri-Baranger 2004; Sánchez et al. 2007;
Pauletti and Pimenta 2008). In addition to the aforemen-
tioned techniques, other works make use of structural opti-
mization (Bletzinger and Ramm 1993, 2001; Bletzinger et
al. 2005), or graphic statics (Block and Ochsendorf 2007;
Block 2009; Thrall et al. 2012; Akbarzadeh et al. 2015), to
name a few. None of these methods is free of issues, and
therefore there is ongoing research to improve existing or
develop new form-finding methods. The reader is referred to
Lewis (2003) and Veenendaal and Block (2012) for a more
thorough comparison of the most popular form-finding
methods.
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1.2 Review of form-finding by the force density method
(FDM)

The force density method (FDM) by Linkwitz and Schek
(1971) (in German) and Schek (1974) is a form-finding
method for general cable network structures. In this method,
a parameter called force density is defined as the ratio of
the (signed) member force over the member length. Given
the user-defined force densities and member connectivity, a
fixed geometric stiffness matrix can be constructed, which
relates the geometry (form), with the force equilibrium at
each node. The solution of this system yields the nodal
coordinates for which the geometry is under equilibrium
for the given external loads. In the present work, an itera-
tive scheme is introduced to cope with the design-dependent
load calculation described in Section 2. It should be noted
however, that this method does not consider the constitu-
tive laws nor the compatibility equations. Thus, the resulting
geometry is not dependent on the initial geometrical config-
uration of the network. The equations involved in the FDM
are given in Appendix A for completeness.

2 Load derivation

In the following section, the loads in the {x, y, z} directions
for a node i are defined as fi . These nodal loads are built
from three types of sources: loads applied directly at the
nodes f•i , line loads on the edges f�i , and area loads from the
polygonal panels f�i . The total load is therefore:

fi = f•i + f�i + f�i ∀ i = 1, 2 . . . Nn (1)

where Nn is the number of nodes in the network.
In the form-finding process, the nodal loads are depen-

dent on the displacements: the load contributions coming
from f�i and f�i are updated based on the (new) nodal loca-
tions. Thus, the algorithm iterates until some convergence
criterion is met. In the case of the PEM and FDM methods,
we use a displacement-based criterion:

∣
∣unew − uold

∣
∣

Nf

< ε (2)

where unew and uold are the updated and previous nodal dis-
placements, respectively, Nf is the number of degrees of
freedom, and ε is a user-defined tolerance. Whereas in the
GSM, there is a user-defined number of iterations. Nonethe-
less, for this last method, an automatic convergence criterion
can be implemented based on variations of the interpolated
surface.

2.1 Panel loads

The panel loads are resolved to their respective nodes using
a tributary area distribution. The methodology can not only
handle triangles and quadrangles, but any convex polygon1.
The polygonal panels are triangulated from the center of
mass (CM) as shown in Fig. 1a; which is calculated using
a temporary triangulation from the average of the panel’s
nodal coordinates. It should be noted that this procedure will
introduce error if the panels are significantly warped out-
of-plane. Thus, it is assumed that the panel partition has a
relatively small out-of-plane warping.

The area of the polygon’s triangles are calculated sequen-
tially: half of each triangle’s area is assigned to the corre-
sponding exterior node, as shown in Fig. 1a. This process is
repeated for all load panels, and thus the tributary area asso-
ciated with a node may receive contributions from multiple
load panels (see Fig. 1b).

The panel load can itself be of three types: self-weight
by unit area q, projected load w in the {x, y, z} directions
respectively, and an internal pressure p normal to each
panel. A two-dimensional simplified illustration of these is
shown in Fig. 2.

Thus, for a node i in the network, the loads in the {x, y, z}
direction due to panel loads are:

f�i =
∑

�
0.5

(

δij + δik

) (

a
�
jk

) (

q ê3 + w : n̂�
jk + pn̂�

jk

)

(3)

where a
�
jk is the area of a single triangle in the polygon’s

triangulation associated with the exterior nodes j and k (see
Fig. 1a), δij is the Kronecker delta (ensuring loads are only
added to the exterior nodes in the triangle), q is the self-
weight of the panel by unit area applied in the positive z

direction (i.e. q is usually negative), ê3 is the unit vector in
the positive z direction, w is the projected distributed load
in the {x, y, z} directions respectively, n̂�

kj is the unit nor-
mal vector of a single triangle associated with the exterior
nodes j and k, and p is the internal pressure load by unit
area (positive outwards). For each triangle in the polygon’s
triangulation, we derive its area aij and unit normal vector
n̂ij by

n�
ij = vi × vj

a
�
ij = 0.5

∣
∣
∣n�

ij

∣
∣
∣

n̂�
ij = n�

ij /

∣
∣
∣n�

ij

∣
∣
∣ (4)

where vi is the vector from the polygon’s center of mass to
node i (see Fig. 1a).

1Minor concavities can be handled, but are generally not advised since
they may introduce structural instabilities in the node–bar network.
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Fig. 1 Tributary area derivation: a A polygonal panel is triangulated
from the center of mass. For each triangle, the area is calculated and
then evenly assigned to the two adjacent nodes. Arrows indicate the
nodes that the tributary area is assigned to; b Tributary area associated
with a single node in the network

2.2 Edge loads

The edge loads are calculated based on the length �jk and
cross-sectional area ajk of the bar between nodes j and k.
Half of the bar’s weight is assigned to each node. The imple-
mentation of projected loads in linear members is relatively
simple; however, these loads are rare in practice, and are
therefore not considered in this work. Thus, for a node i in
the network, the nodal loads in the {x, y, z} direction due to
the edges are:

f�i =
∑

�
0.5

(

δij + δik

) (

�jkajk

) (

γ ê3
)

(5)

where γ is the specific weight of the bars.

ρ

(a)

wz

wx
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p

(c)

Fig. 2 Two-dimensional illustration for the 3 types of panel load: a
Self-weight; b Projected load; c Internal pressure

3 Form-finding by the potential energy method
(PEM)

The potential energy method (PEM) finds the form in equi-
librium by minimizing the total potential energy of the
system, as its name suggests. This approach considers large
deformations in the expression for the potential energy,
where the designer can implicitly control the resulting form
by manipulating the material properties and the initial nodal
positions. The design is in an up-side-down configura-
tion, which mimics the 3D hanging chain models used by
Antoni Gaudı́ (Bergós and Llimargas 1999; Collins 1977;
Martinell et al. 1975). The reciprocal relationship between
the up-side-down tension-only structure and the standing
compression-only structure under the same loading case is
illustrated in Fig. 3, which is inspired by Zalewski and Allen
(1997). To prevent members in undesired compression, the
snap-through process is triggered by relaxing the stiffness of
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initial (unloaded) configuration

deformed configuration

(a) (b)

(c) (d)

Fig. 3 A funicular in pure tension can be inverted vertically to
obtain a compression-only funicular and vice-versa: a Tensile funic-
ular form obtained by suspending three weights from springs or
cables; b Compression-only funicular obtained from inverting the

three-weight tensile form; c Deformed configuration for a cable in ten-
sion under a uniformly distributed load; d Compression-only quadratic
arch obtained from inverting a cable under a uniformly distributed load

these members in compression (Jiang 2015). The following
subsections elaborate on the details of the PEM.

3.1 Initial network generation

The first step for grid-shell form-finding with the PEM is
to generate an initial network. This initial network is com-
prised of hinge nodes, bar members, boundary conditions,
and (optional) load panels. Figure 4 illustrates how an ini-
tial network is generated for a small example. The nodes are
defined by their 3-dimensional coordinates in space, with
support boundary conditions added where appropriate. Bar
members are defined by a pair of nodes with their ordering
having no effect in the network definition. Load panels are
defined by the numbering of their vertices: the panel has a
positive normal outwards based on counter-clockwise order-
ing. This can define panel meshes such as the one shown in
Fig. 4a. Load panels can have any number of sides and do
not contribute to the structural behavior. Bar members can
be automatically generated from the load panels if required,
with differentiation of the inner and boundary members if
necessary2. If the nodes at both ends of a bar are fixed,
the bar is not considered in the form-finding process and is
removed from the network. Using the automatic generation

2Each inner member forms the edge of 2 load panels while each
boundary members forms the edge of 1 load panel.

from load panels, a total of 12 bar members are defined as
illustrated in Fig. 4b.

The method’s goal is to find a suitable form in equilib-
rium under a single load case, where the members suffer
no bending moment or shear force (other than those caused
by self-weight between nodes). All bar members will be
subject to axial loads only with the following assumptions:

1. All bar members are hinge-connected;
2. Loads are only applied at the nodes.

3.2 Formulation of the potential energy method

The total potential energy PE is defined as the sum of mem-
ber strain energy minus the work done by the external loads.
Thus, the minimization statement is:

min
u

PE =
Nb∑

i=1

1

2
k̃i (��i)

2 − {f(u)}T u (6)

where k̃i is a reduced and relatively low axial stiffness
associated with the i-th member for the form-finding pro-
cess only, ��i the i-th member’s change in length, f is the
nodal load vector (dependent on the displacements) calcu-
lated as per Section 2 of the present manuscript, and u is the
nodal displacement vector. The unconstrained minimization
problem is solved by a quasi-Newton algorithm with the
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Fig. 4 Initial network
generation for a simple example:
a Eight load panels enclosed by
dashed lines; b Twelve active bar
members between hinged nodes
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BFGS Hessian updating scheme. Note that f is dependent
on the displacements, which introduces a nonlinearity into
the problem. Thus, we iterate until the form is in equilib-
rium for the loads under the updated configuration (within a
small error tolerance).

The final grid-shell form is determined by deformation
of the initial configuration, which means that the resulting
form is dependent on the initial domain geometry. While
this can be seen as a drawback of the current method, it
can be used as an additional degree-of-freedom to tune
the resulting shape (in addition to the reduced member
stiffnesses k̃i).

3.3 Snap-through triggering

A network of pin-connected bars may have more than one
equilibrium configuration, with the resulting shape deter-
mined by the loading history. Under certain conditions,
the PEM may converge to a solution with one or more

Fig. 5 An example of a possible equilibrium configuration with mem-
bers in compression. These members comprise a kink, which may be
avoided if a snap-through action takes place. Arrows on nodes denote
nodal loads

members in compression. An illustrative example in Fig. 5
shows an equilibrium configuration with an undesirable
kink composed of members in compression. The configu-
ration indicates a local minimum of the potential energy.
These members in compression are likely to have another
valid configuration in tension, which can be attained after
undergoing a snap-through. Figure 6 illustrates the concept
of these two configurations separated by a snap-through.
Consider a 2-bar truss system loaded vertically downwards
at the center node by a force p, as shown in Fig. 6a.
If the load is large enough (force pA) to load beyond
the snap-through multi-stable region, the only equilibrium

p

(a)

uA

pA

(b)

pB

uB

(c)

pB

*uB

(d)

Fig. 6 A two-bar truss system loaded at the center with a snap-through
behavior: a Unloaded configuration; b Case A—equilibrium config-
uration for a large load; c Case B—equilibrium configuration for a
small load, where bars are in compression; d Case B—equilibrium
configuration for a small load, where bars are in tension
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configuration is in tension (Case A) and is shown in Fig. 6b.
However, if the load is small (force pB ), there may be two
possible equilibrium configurations that are stable (Case B).
Based on the initial configuration and assuming a relatively
slow and monotonic loading history, the equilibrium config-
uration is reached after a small displacement uB with both
members in compression, as shown in Fig. 6c. The second
stable configuration, shown in Fig. 6d, has both members
in tension: the node has snapped-through downwards and
the displacement u�

B is large compared to uB . In the context
of form-finding, the configuration in Fig. 6d is preferred,
since this will result in a compression-only grid-shell once
the result is inverted (or flipped) up-side-down: a feature
usually sought in grid-shell structures.

The snap-through load-displacement behavior for this
two-bar problem is illustrated in Fig. 7. Because the
load history and initial configuration determine the final
deformed shape of the loaded structure (Leon et al. 2011),
the computational algorithm by which the structure is
loaded and solved will have impact on the solution. Start-
ing from the configuration shown in Fig. 6a: for Case A
the solution is unique (pA, uA), although depending on the
algorithm used, the load history or path might not be cor-
rect; in Case B however, the stable solution

(

pB, u�
B

)

is
reached before the preferred configuration at (pB, uB). To
cope with the situation, a snap-through relaxation proce-
dure is implemented. If a member is found in a state of
compression, its stiffness will be reduced to a relatively
small value (e.g. 1% of the original value), such that the
snap-through condition is artificially triggered. Later in the
solution iterations, if said member returns to a state of
tension, its original stiffness is restored. Thus, in the con-
text of the two-bar problem shown in Fig. 6, for Case B

u

p

0

pA

*uB

pB

uB uA

Solution with 

Theoretical load-disp curve
snap-through relaxation

Fig. 7 The load-displacement plot for the two-bar system. The true
load-displacement curve and the one using snap-through relaxation,
coincide in the tension-only region but not on the compression regime

the equilibrium configuration will likely be the preferred
tension-only (pB, uB), as illustrated in Fig. 7.

3.4 Member sizing

The member cross-sectional areas are designed such that the
members are all fully-stressed. Coelho et al. (2014) docu-
ment several experiences of grid-shell form-finding using
commercial software and introduce an additional member
sizing step after the final form is found (Coelho et al. 2014).
The member sizing approach in the present work consid-
ers large displacements in the analysis, which is performed
using the minimum potential energy approach. Based on
the analysis result, the members are sized using the stress
ratio method (Gallagher and Zienkiewicz 1973; Barnes
et al. 1977). The stress ratio method can consider differ-
ent limits in tension and compression, however due to the
snap-through relaxation described in Section 3.3, only the
tension limit is used by the algorithm (compression once the
result is flipped up-side-down). The stress ratio method is
an iterative procedure which can include considerations for
buckling or other criteria. Common steel section families
have their moment of inertias proportional to their cross-
sectional areas (Baker 1992). Thus, the inclusion of elastic
buckling in the stress limit is straightforward provided that
a section family is chosen. However, for the sake of sim-
plicity and generality of the present work, this limit value is
assumed constant (i.e. no buckling criterion is used).

Given a set of member cross-sectional areas, the equilib-
rium state is solved by the PEM:

min.
u

PE =
Nb∑

i=1

1

2
ki (��i)

2 − fT u (7)

where the stiffness of the i-th member is defined as

ki = Eiai

�i

(8)

in which Ei is the material Young’s modulus, ai is the cross-
sectional area and �i is the member length.

Note that ki is the (real) member stiffness (i.e. ki �
k̃i), and, assuming small displacements, the load does not
depend on the displacements. The form-finding and mem-
ber sizing formulations presented ((6) and (7) respectively),
bear many similarities with the key differences being:

1. In the member sizing, the member stiffness ki is calcu-
lated by (8); whereas k̃i is user-defined and compara-
tively low.

2. In the member sizing, the nodal load vector f is assumed
to be constant; whereas in the form-finding (6), f is
dependent on the form. In the member sizing stage, we
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assume that the cross-section change introduces a rel-
atively small change in the overall form, resulting in
negligible changes in the loads3.

The cross-sectional member areas are then updated by
the stress ratio method (Gallagher and Zienkiewicz 1973;
Barnes et al. 1977), where σadm,i is the limit admissible
stress4 for the i-th member:

ak+1
i = ak

i

(

σk
i

σadm,i

)η

(9)

where ak
i and ak+1

i are the cross-sectional areas of the i-th
member in the current and next iteration respectively. The
stress ratio is defined as the ratio of the current member
stress σk

i over the member’s admissible stress σadm,i , and is
used as a factor to update the cross-sections. The parameter
η is a numerical damper 0 < η ≤ 1 that improves the con-
vergence and stability of the method. Based on experience,
good results are expected for η in the range of [1/2, 1/3],
with lower values recommended in the event that buck-
ling limits are considered (buckling introduces an additional
design nonlinearity).

During some design trials, we observe that the member
sizing may result in a design that is almost fully-stressed but
with some grid members with a stress ratio less than 1. As
iterations proceed, these non-fully-stressed grid members
should vanish with negligible cross-section areas. It should
be noted, however, that the stresses of these vanishing mem-
bers can be non-zero and still be determined without a
cross-section: stresses can be calculated with displacements
and constitutive relations only (case of a singular topology,
refer to Rozvany (2001)).

3.5 Group member sizing

For cost and constructibility purposes, the design may be
restricted to a reduced number of distinct cross-sectional
areas. This can be achieved by a group member sizing,
where bar members in the same user-defined group will
have identical cross-sectional areas. All members within a
group g will have the same cross-section ag throughout the
design process (including the initial guess). The stress ratio
updating scheme is modified to be

ak+1
g = ak

g

[

max.
j∈Gg

(

σk
j

σadm,g

)]η

(10)

where Gg is a user-defined group of members with equal
cross-sectional area ag , and admissible tension limit σadm,g ,

3The load could depend on the displacements or the cross-sections, but
because the displacements are small, they are assumed constant for the
sake of simplicity.
4Considering the material’s yield limit, and optionally including con-
siderations for buckling or other criteria.

for all g = {1, 2, 3 . . .} number of groups. This updating
scheme will not result in a fully-stressed design; instead
each group should have at least one fully-stressed member
(assuming the solution is not degenerate (Rozvany 2001)).

3.6 Summary of form-finding by the PEM

The processes of form-finding by PEM and member sizing
are summarized with flowcharts in Fig. 8. Note that as the
form-finding and member sizing are separate processes, the
form and load input for member sizing is not restricted to
the PEM results.

4 Form-finding by the ground structure method
(GSM)

The ground structure method (GSM) is a topology opti-
mization technique developed for obtaining the optimal
geometry, connectivity, and cross-sections of pin-jointed
frameworks or trusses (Dorn et al. 1964). This method has
seen extensive use as an aid in the derivation of closed-form
analytical solutions for optimal structures (Lewiński et al.
1994; Rozvany et al. 1997; Pichugin et al. 2012; Lewiński
et al. 2013; Sokół and Rozvany 2013; Rozvany and Sokół
2013 Sokół 2011, 2014). The power of the method lies
in its ability to formulate the optimization statement as a
linear programming5 problem (Hemp 1973). The linear pro-
gramming problem can be solved very efficiently using
the interior-point method family of linear program solvers
(Karmarkar 1984; Wright 2004). The method requires an
initial highly-redundant and interconnected truss network,
the ground structure, from which the best possible solution
is extracted, with this being an approximation of the theoret-
ical optimum. Since the solution will only contain members
in the original ground structure, this ground structure can
be tailored (or specially generated) to meet the design
requirements or geometric restrictions. The method is only
limited by the user’s ability to generate this ground struc-
ture. Recently, a methodology was introduced to generate
ground structures in any two-dimensional domain, including
concavities and holes, based on graph theory and collision
detection (Zegard and Paulino 2014). This methodology was
later extended to three-dimensional space (Zegard 2014;
Zegard and Paulino 2015), and thus serves as the foundation
for this section.

5There are two common versions of the GSM: one based on the plastic
formulation, and one based on the elastic formulation. Only the plastic
formulation can be formulated as a linear programming problem. The
elastic formulation (Bendsøe et al. 1994; Christensen and Klarbring
2009; Ramos and Paulino 2015), despite being computationally more
expensive, considers compatibility and can include material and geo-
metric non-linearities to name a few features. The present work uses
the plastic formulation in the form-finding process.
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Fig. 8 Process of form-finding by the PEM and member sizing: a Flowchart for form-finding by the PEM; b Flowchart for member sizing

The optimization formulation for the (plastic version of
the) GSM is:

min
s+,s−

{

�T κ �T
} {

s+
s−

}

= σT V

s.t.
[

BT −BT
]
{

s+
s−

}

= f

s+, s− ≥ 0 (11)

where s+
i and s−

i are (positive) slack variables associated
with the tension and compression force of the i-th member
respectively, κ = σT /σC is the ratio of the tension to com-
pression stress limits, � is the vector of member lengths, and
V is the volume of the resulting structure. The matrix BT

is the nodal equilibrium matrix built from the directional
cosines of the members, and f is the nodal force vector, both
excluding the components associated with supports. The
cross-section of the i-th member is ai = s+

i /σT + s−
i /σC ,

and the respective force is ni = s+
i − s−

i . The solution
to this problem assumes the design is fully stressed, which
is valid for problems with a single load case. For addi-
tional details on the assumptions and derivations leading to
(11) the reader is referred to Hemp (1973) and Zegard and
Paulino (2014).

4.1 Formulation with transmissible loads

The GSM finds the optimal structure (within the ground
structure) given the nodal loads and supports. This poses
a difficulty for grid-shell form-finding: since the grid-shell
geometry is not known a priori, the points of application

of the loads are unknown. Rozvany and Wang (1983) and
Wang and Rozvany (1983) use the concept of transmis-
sible loads: the load is applied to fictitious nodes con-
nected by virtual members to the real structure. These
members are essentially free and allow the load to posi-
tion itself optimally. It may be incorrectly assumed that
this is equivalent to making the vertical members in the
ground structure free, which in the context of (11) trans-
lates into artificially assigning a zero member length to
verticals: the (ideally) unique solution will be repeated ver-
tically multiple times because the optimal lies in an edge
or facet of the feasible domain (infinite solutions). As a
consequence, the numerical result will vary with the lin-
ear program solver used: for the benchmark problem in
Fig. 9a, the solution using the modified version of LIP-
SOL in MATLAB® (Zhang 1996a, b) is shown in Fig. 9b,
where the repetition artifact of this flawed approach is
clear.

The approach of transmissible loads using virtual bars
has also been applied to continuum optimization (Fuchs
and Moses 2000; Chiandussi et al. 2009; Yang et al. 2005).
Instead of virtual vertical members, the transmissible loads
can be analogously implemented by extending the prob-
lem in (11) to include the vertical loads as variables, and
adding equations to maintain equilibrium (Gilbert et al.
2005; Darwich et al. 2010). The present work considers
a generalization of this extended formulation, allowing for
any number, direction and magnitude of the transmissible
loads. This approach is combined with an adaptive and
unstructured discretization of the domain used to gener-
ate the ground structure (Zegard and Paulino 2015). The
solution in Fig. 9c is the result of this proposed method,
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q=1 / length

L  =3X

L 
 =
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Z

(a)

(b)

(c)

Fig. 9 Regular and orthogonal simple mesh to illustrate the trans-
missible loads in the GSM: a Base mesh of 60 × 40 elements used
in the ground structure generation; b Assigning zero length to the
vertical members leads to an (incorrect) degenerate solution that is
repeated vertically; c Solution obtained using the augmented GSM
with transmissible loads, with equal limits in tension and compression
(i.e. κ = σT /σC = 1)

where the spokes radiating or branching from the supports
are indeed part of the optimal solution for the case of equal
limits in tension and compression (Darwich et al. 2010; Tyas
et al. 2010). Conversely, the solution for a compression-only
arch under a constant distributed load is a parabolic arch
(Rozvany and Wang 1983), which will be used to verify the
proposed method.

The unknown vertical loads are integrated as variables in
the linear program by augmenting the system in (11). This is
done by splitting the equations associated with the vertical

Fig. 10 Simple domain discretization with 9 transfer groups. Transfer
groups can have different numbers of nodes

loads (z direction, as in Fig. 10) and horizontal in-plane
loads (x and y direction):

(12)

where fxy are the nodal loads associated with the x and y

coordinates, and fz are the vertical nodal loads. The sub-
scripts xy denote an aggregation of terms associated with
the x and y coordinates, i.e.:

BT
xy =

{
BT

x

BT
y

}

, fxy =
{

fx
fy

}

(13)

The vertical loads fz are allowed to transfer (or move) ver-
tically to optimally position themselves within a transfer
group: a transfer group Ti is defined by all nodes sharing
the same x and y coordinates (within some small toler-
ance), as shown in Fig. 10. It should be noted that there is
no order or structured requirement; i.e. the transfer groups
can have different size and are automatically generated. The
total load (fv)i associated with the i-th transfer group Ti

will be distributed among the nodes of the group, thus:

(fv)i =
∑

j∈Ti

(fz)j (14)

with (fv)i = 0 if any vertical (z direction) degree-of-
freedom in group Ti is supported. If the (vertical) load can
position itself anywhere in the transfer group, the existence
of a support will draw all the loads to itself.

The nodal vertical loads fz are split into a (positive)
magnitude f�z and direction β, therefore:

fz = β : f�z (15)
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This splitting is convenient since standard linear programs
require all variables to be positive, and the goal is to make
fz a variable in the optimization statement. Thus, the nodal
equilibrium in the z direction becomes:

BT
z

(

s+ − s−
) − diag (β) f�z = 0 , (16)

with the load direction vector β defined as:

βi =
{

1 if i ∈ Tj and fj ≥ 0
−1 if i ∈ Tj and fj < 0

(17)

A rectangular matrix A indicates the correspondence of a
node to a transfer group:

Apq =
{

1 if q ∈ Tp

0 otherwise
(18)

with an explicit relationship between the correspondence
matrix A and the load direction vector: β = AT sgn� (fv),
with sgn� (·) being the sign operator reserving that
sgn� (0) = 1. It is assumed that every node belongs to a sin-
gle transfer group Ti , and that all nodes belong to a transfer
group (even if the group contains a single node). By naming
fv the vector of vertical transfer loads associated with each
transfer group, the augmented ground structure formulation
is:

(19)

where the relation Af�z = |fv| is enforcing the vertical loads
to add to the specified external vertical loads (14). Equation
(19) is the main optimization formulation adopted in this
work.

4.2 Surface interpolation and refinement

The location of the grid-shell surface is interpolated based
on the point of application of the transmissible load. For
each transfer group Tj , the vertical location of the grid-shell
surface z̄j is the weighted average of the node vertical posi-
tion zi , weighted by the fraction of transmissible load in it
(

f �
z

)

i
:

z̄j =
∑

i∈Tj
(zi)

(

f �
z

)

i
∑

i∈Tj

(

f �
z

)

i

=
∑

i∈Tj
(zi)

(

f �
z

)

i

|fv|j
(20)

with |fv|j being the magnitude of load applied in the j -
th transfer group. In the event that no vertical loads are
assigned to a transfer group, an equivalent procedure can be
done using the relative cross-sections of members connect-
ing to each node within a group.

It has been shown that the tension region spokes in the
arch solution in Fig. 9c result in a better (lighter or less-
compliant) structure than a compression-only arch (Darwich
et al. 2010; Tyas et al. 2010). In the present work how-
ever, the interest is in compression-only solutions; which are
also known as Prager structures (Rozvany and Prager 1979;
Rozvany et al. 1982). The spokes radiating or branching
from the supports in Fig. 9c constitute a compression-
tension orthogonal field that will bias the surface interpola-
tion towards a shallow configuration. The compression-only
solutions can be filtered by reducing the tension to com-
pression limit ratio κ in (19). It has been proven that for
a two-dimensional arch, such as the benchmark problem in
Fig. 9, a tension to compression limit ratio κ = σT /σC <

1/3 is sufficient to yield a compression-only solution (Dar-
wich et al. 2010). In the three-dimensional case, and to cover
a wide range of geometries and load configurations, ide-
ally κ → 0 to obtain compression-only solutions. However,
a value of κ = 0.01 > 0 is used for numerical stability
while still rendering close-to compression-only solutions:
problems with overhanging awnings or cantilevers require
a tension region, thus κ > 0 allows the algorithm to find
a solution in those cases (though severely punishing the
tension region).

The solution with κ = 0.01 for the benchmark prob-
lem in Fig. 9 is shown in Fig. 11a; with its interpolated

(a)

(b)

Fig. 11 Ground structure solution for the compression-only single
arch: a Solution obtained using κ = 0.01 for the problem in Fig. 9a; b
Surface interpolation obtained from (20)
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Fig. 12 Refinement of the domain for the problem in Fig. 9a: a First
refinement. Surface is extruded in both directions for a total height of
0.5; b Second refinement. Surface is extruded in both directions for a
total height of 0.125

surface shown in Fig. 11b. This interpolated surface is
reasonably smooth, despite the coarseness of the domain
partition and having a large portion of the ground structure
outside the scope of the optimal arch (hence a large compu-
tational overhead). This interpolated surface is used to refine
the discretization used in the ground structure generation
by shrinking the domain, thus achieving better solutions.
Figure 12a shows the result after shrinking the domain to
1/4 of the initial vertical span, based on the interpolated sur-
face in 11(b): the supports are centered on the mesh, and the
collinear tolerance6 is reduced by 5% (initially ColT ol0 =
0.999999, thus ColT ol1 = 1 − 0.05 (1 − ColT ol0) =
0.99999995). The result shown in Fig. 12b is obtained after
repeating the process once more (again reducing the vertical
span by 1/4 and the collinear tolerance by 5%).

The quality of the results and the efficacy of the refine-
ment can be evaluated with help of the analytical solution:
the summary of the results is displayed in Table 1. The GSM
makes use of discrete nodal locations, and thus the surface
interpolation can over- or under-estimate the height of the
arch depending on the partition. However, the optimal vol-
ume will converge to the optimal volume from above as the
solution improves.

In the three-dimensional space, the geometry (form-
finding) of the grid-shell is determined by the surface
interpolation procedure. The ground structure solution asso-
ciated with it provides information on the optimal load-path

6Refer to Zegard and Paulino (2014) for details on the effect of the
collinear tolerance on the ground structure generation process.

Table 1 Convergence and error of the arch height and volume with
refinement for the problem in Fig. 9a

Case Arch height Volume V

Analytical
√

3Lx

4 = 1.2990 4qL2
x

4
√

3σC
= 5.1962

Orthogonal 1.3209 5.2200

grid error = 1.68% error = 0.46%

1st 1.2962 5.2010

refinement error = −0.22% error = 0.09%

2nd 1.2964 5.1962

refinement error = −0.20% error = 0.01%

of the forces in the optimized grid-shell geometry, which
can be used to guide the optimal layout of the mem-
bers in the grid-shell. In addition, previous work has also
focused on the automatic layout of the members for a given
grid-shell geometry (Richardson et al. 2013).

The method of transmissible loads using the ground
structure generation framework from Zegard and Paulino
(2015) was here exemplified with a two-dimensional exam-
ple. While this section dealt with a known two-dimensional
problem and a design-independent load, the power of the
proposed method lies in its extension to three-dimensional
space, and the capability of addressing (almost) any domain
shape. The inclusion of self-weight, and design-dependent
loads can be readily applied, and is described in Section 2.
This is a remarkable property of the present GSM because
in the case of a continuum density-based method, special
procedures are needed to handle design-dependent loads
(Bendsøe and Sigmund 2003).

5 Numerical examples

The three form-finding methods mentioned above are
implemented and tested with three numerical examples. The
examples include a quadratic synclastic dome, a polygonally
tessellated pavilion and a doubly-curved bowtie surface.

– Quadratic synclastic dome: the simplicity of this prob-
lem allows for easy comparison and visual evaluation
of the various results obtained with each method.

– Polygonally tessellated pavilion: this problem high-
lights the ability of the methods to address grid-shells
with unstructured polygonal load panels with the possi-
bility of holes and concavities.

– Doubly-curved bowtie surface: the capability to handle
non-flat curved boundaries and to yield compression-
only results are showcased with this example.

The units used are kilonewton (kN) for forces and meters
(m) for length unless otherwise specified.
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Fig. 13 Quadratic synclastic dome: rendering of the design competi-
tion used as inspiration for the design (image courtesy of SOM LLP)

5.1 Quadratic synclastic dome

This example addresses the form-finding of a synclastic
dome with quadratic edges in the XY plane, which is illus-
trated in Figs. 13, 14, 15, 16, 17, 18, 19, 20 and 21. This
problem is inspired by a competition design of Skidmore,
Owings & Merrill LLP (SOM LLP) (see Fig. 13). The orig-
inal design was obtained using a heavy soap film-inspired
approach based on isogeometric continuum shell optimiza-
tion. This approach considers a different treatment of the
supports, with their geometry being part of the optimization
process. The reader is referred to Mitchell (2013) for details
on the procedure used to obtain the result in Fig. 13.

The grid-shell is meant to provide cover for a 2808 m2

footprint. The edges are both quadratic in plane, with the

63m, 7 Bays

4.5m

36
m

,7
 B
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a = 4aunit
a = 2aunit
a = 1aunit

Fig. 14 Quadratic synclastic dome: footprint, panel mesh, boundary
conditions, and the prescribed cross-sectional areas used in the PEM.
The value of aunit is 5, 000 mm2 in the PEM-based form-finding stage
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Fig. 15 Quadratic synclastic dome: form-finding result by the PEM.
a Isometric view; b Front view; c Side view

longer edge convex outwards, and the shorter edges con-
cave inwards as shown in Fig. 14. The longer edges are
fixed to the ground level, while the opposite edges are open.
Requirements of the design include:

– The opening should be no less than 5 m high;
– The apex height should be approximately 12 m.

a/ amax  Plot, amax=5665 mm2

0

0.2

0.4

0.6

0.8

1

Fig. 16 Quadratic synclastic dome: area-ratio plot showing the ratio
of the members’ cross-sectional area over the maximum value in the
structure. Both the line width and color-scale in the plot are corre-
lated with the area-ratio.The maximum cross-sectional area amax =
5, 665 mm2
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 a1=4238 mm2

 a2=5670 mm2

 a3=1053 mm2

(a)

Resulting stress ratios are in the range [0.298, 1.000]
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Fig. 17 Quadratic synclastic dome: group member sizing results. a
Resulting cross-sectional areas for the three groups; b Stress ratio
plot shows that each group has at least one fully-stressed member, as
indicated by an arrow

5.1.1 PEM solution

The design domain is discretized into the structured network
with 64 nodes, 49 load panels, and 98 bars (edges) as shown
in Fig. 14. The system is loaded by its panels, considering a
self-weight load of 4.5 kN/m2 and an upward wind suction
load of 0.5 kN/m2. The member stiffnesses are determined
by k̃i = Eiai/�i , in which E is assumed to be 1 GPa for all
members, and �i is the original length of the i-th member
in the initial configuration (i.e. z = 0, ∀x = {x, y, z}).
The cross-sectional areas are shown in Fig. 14, where aunit

equals 5, 000 mm2. These fictitious cross-sections are tuned
to yield the desired geometric requirements (opening height
> 5 m, and apex height of ≈ 12 m).

The isometric, front, and side view of the form-finding
results by PEM are shown in Fig. 15a, b and c, respec-
tively. It can be observed from Fig. 15c that the openings
are 5.34 m in height, with an apex height of 11.33 m, which
conforms with the design requirements.

Member sizing is conducted after the form-finding stage
using the stress ratio method with a numerical damping

of η = 0.5. The design material is assumed to be A500
Gr. B carbon steel, with a Young’s modulus of 200 GPa,
and an admissible stress of 315 MPa. The admissible stress
reduction factor is 0.9 against yielding. The critical load
combination of 1.2 times the dead load and 1.0 times the
wind load is considered, with these loads inherited from the
form-finding stage. Starting from a uniform initial guess of
5, 000 mm2, the ai values converge to those shown in Fig. 16
after 28 iterations. The maximum cross-sectional area is
5, 665 mm2, with all members reaching a stress ratio equal
to 1.0 (within a tolerance of 0.0005).

Group member sizing is conducted for comparison. The
members are divided into 3 groups as shown in Fig. 17a.
Starting with an initial guess of ag = 5, 000 mm2 for
all groups, the cross-sectional areas converge to a1 =
4, 238 mm2, a2 = 5, 670 mm2, and a3 = 1, 053 mm2, after
16 iterations (see Fig. 17a). Figure 17b confirms that each
group has at least one member with stress ratio equal to 1.0.

5.1.2 GSM solution

The initial domain extrusion assumes a flat configuration
of the surface (i.e. z̄ = 0 everywhere), and is extruded to
a height of 26 using 12 elements in thickness as shown in
Fig. 18a. The structure is loaded by the self-weight of the
panels, which is taken to be q = 1 unit/m2, and calcu-
lated based on the current surface configuration. After the
optimal (pin-jointed) solution is found, a new surface is cal-
culated (20) and the loads are updated. The domain is again
extruded around the calculated surface, solved and updated
a total of 6 times. With the exception of the very first
domain, the surface is extruded equally in both directions.
The extrusion thickness is continuously decreased through-
out the iterations: the second domain is extruded to a total
thickness of 13 and is shown in Fig. 18b; the sixth and final
domain is extruded to a total thickness of 2.6 and can be
seen in Fig. 18c. The interpolated surface obtained from
the last iteration in the process is shown in Fig. 18d. The
ground structure solution (Fig. 19a) provides information on
the optimal load-path of the forces in the optimized grid-
shell geometry, with the relative magnitude of these forces
illustrated by the member thickness: the load-path hints at
a mostly one-way structural system, with smaller members
providing lateral support and resolving the perpendicular
components. The resulting (interpolated) height shown in
Fig. 19b does not depend on user-defined parameters, and it
closely approximates the (tessellated) optimal shape.

5.1.3 FDM solution

The initial domain is discretized in the same manner as in
the PEM solution (see Fig. 14). The force density is assigned
as shown in Fig. 20, with runit = 50 kN/m.
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Fig. 18 Quadratic synclastic
dome: domain discretizations
used in the ground structure
generation algorithm (GSM). a
Initial discretization; b Domain
discretization after the 1st

refinement; c Domain
discretization after the 5th

refinement; d Final interpolated
surface geometry

(a) (b)

(c) (d)

The form converges after 5 iterations, and the result is
shown in Fig. 21. The geometric requirements are met with
an apex height of 12.19 m and an opening height of 6.15 m.
After this form-finding process, the members can be sized
in the same manner as in the PEM method (if needed).

(a)
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20

22.23

(b)

Fig. 19 Quadratic synclastic dome: optimized ground structure
obtained after 5 domain refinements (6 analysis processes). a Member
layout; b Optimized height

5.2 Polygonally tessellated pavilion

The second example is a polygonally tessellated pavilion
with internal supports and multiple openings, which is illus-
trated by Figs. 22, 23, 24, 25, 26 and 27. The domain is
discretized into polygonal panels in the XY plane using the
educational software PolyMesher (Talischi et al. 2012). This
example demonstrates that the proposed methods work with
unstructured polygonal load panels, holes, and concavities.

5.2.1 PEM solution

Figure 22 shows the domain partition, consisting of 270
nodes, 138 load panels, and 369 bars (edges). The system
is loaded by its panels, considering a self-weight load of

r =4runit
r =2runit
r =1runit

Fig. 20 Quadratic synclastic dome: user-defined force densities
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Fig. 21 Quadratic synclastic dome: form-finding result by FDM. a
Isometric view; b Front view; c Side view

4.5 kN/m2 and an upward wind suction load of 0.5 kN/m2.
The bars have an identical Young’s modulus of 1 GPa and
cross-sectional area of 120 mm2. The isometric and front
view of the resulting form after 5 iterations are shown in
Fig. 23a and b, respectively. We observe that the apex occurs
near the center of the domain with a height of 4.10 m.

Member sizing is done after the form-finding stage
using the stress ratio method with a numerical damping
of η = 0.5. The adopted material properties, admissi-
ble stress reduction and load combination are the same
as used in Section 5.1.1. Starting with an initial guess of
5, 000 mm2 for all cross-sections, the values converge to the

22.21 m

14
.6

3 
m

Fig. 22 Polygonally tessellated pavilion: footprint with load panel
partition and support boundary conditions
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Fig. 23 Polygonally tessellated pavilion: form-finding result by the
PEM. a Isometric view; b Front view

fully-stressed design shown in Fig. 24 after 115 itera-
tions. The maximum cross-sectional area in the structure is
218 mm2.

5.2.2 GSM solution

The initial domain extrusion assumes a flat configuration
of the surface (i.e. z̄ = 0 everywhere), and is extruded
to a height of 6 using 8 elements in thickness as shown
in Fig. 25a. The structure is loaded by the self-weight of
the panels, which is taken to be q = 1 unit/m2, and cal-
culated based on the current surface configuration. After
the optimal (pin-jointed) solution is found, a new surface
is calculated (20) and the loads are updated. The domain
is again extruded around the calculated surface, solved and
updated a total of 6 times. With the exception of the very
first domain, the surface is extruded equally in both direc-
tions. The extrusion thickness is continuously decreased
throughout the iterations: the second domain is extruded to

a/ amax  Plot, amax=218 mm2
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Fig. 24 Polygonally tessellated pavilion: area ratio plot based on the
PEM solution
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Fig. 25 Polygonally tessellated
pavilion: domain discretizations
used in the ground structure
generation algorithm (GSM). a
Initial discretization; b Domain
discretization after the 1st

refinement; c Domain
discretization after the 5th

refinement; d Final interpolated
surface geometry. (a) (b)

(c) (d)

a total thickness of 3 and is shown in Fig. 25b; the sixth
and final domain is extruded to a total thickness of 0.6 and
can be seen in Fig. 25c. The interpolated surface obtained
from the last iteration in the process is shown in Fig. 25d.
The ground structure solution (Fig. 26a) provides informa-
tion on the optimal load-path of the forces in the optimized
grid-shell geometry, with the relative magnitude of these
forces illustrated by the member thickness. The resulting
(interpolated) height shown in Fig. 26b does not depend

(a)
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0.5

1

1.5

2

2.5

3

3.5

4

4.30

(b)

Fig. 26 Polygonally tessellated pavilion: optimized ground structure
obtained after 5 domain refinements (6 analysis processes). a Member
layout; b Optimized height

on user-defined parameters, and it closely approximates the
(tessellated) optimal shape.

5.2.3 FDM solution

The FDM solution uses the same domain discretization as
the PEM solution (see Fig. 22). A uniform force density of
15 kN/m is applied to all members. With this setup, the form
converges after 6 iterations. Figure 27a and b show the iso-
metric and front view of the resulting form, respectively. We
observe that the apex occurs near the center of the domain
and has a height of approximately 4.25 m.

5.3 Doubly-curved bowtie grid-shell

This example covers a doubly-curved bowtie-shaped wavy
surface with a targeting apex height of 25 m approximately,
which is illustrated by Figs. 28, 29, 30, 31, 32, 33, 34 and

(a)
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(b)

Fig. 27 Polygonally tessellated pavilion: form-finding result by the
FDM. a Isometric view; b Front view
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Fig. 28 Doubly-curved bowtie grid-shell: footprint, panel mesh,
boundary conditions, and the prescribed cross-sectional areas used in
the PEM. The prescribed cross-sectional areas used in the PEM adopt
an aunit value of 6, 000 mm2

35. The grid-shell lies in a quasi-rectangular domain in the
XY plane, with doubly curved longer edges and concave
short edges. The edge geometry uses spline curves in its
geometric definition and is shown to scale in Fig. 28.

5.3.1 PEM solution

The grid mesh is structured with 11 bays in the x-direction
and 6 bays in the y-direction. The discretized domain shown
in Fig. 28 is comprised of 84 nodes, 124 bars and 66 load
panels. The constrained nodes are not flat on the ground
(i.e. z �= 0 m), but can be 9 m away from the ground level.
The system is loaded by its panels, considering a self-weight
load of 4.5 kN/m2 and an upward wind suction load of
0.5 kN/m2. The initial interior nodes’ height (z direction) is
interpolated from the exterior boundary in a smooth manner:
a user-defined initial condition to achieve a desired form.
The varying nodal elevations in the initial configuration
cause the structure to have compressive local equilibrium
conditions: i.e. the snap-through relaxation is necessary to
achieve a tension-only form. Due to symmetry, the resulting
form is expected to have a doubly-curved surface with two
apexes aligned along the x axis. In addition to the domain
specification, Fig. 28 also shows the cross-sectional areas
of the members in the form-finding process, with aunit =
6, 000 mm2. All bars share the identical Young’s modulus
of 1 GPa.

The resulting form is obtained after 5 iterations, and is
shown in Fig. 29. To better illustrate the variable height sup-
ports, the final configuration is shown with the columns that
prop the grid-shell in said position. We observe that the form
is indeed doubly-curved as desired, with a symmetric apex
height of 24.99 m, and an opening height of 13.90 m, both
measured from the zero level.

Fig. 29 Doubly-curved bowtie grid-shell: isometric view of the PEM
form. Note that the grid-shell support columns are plotted only to show
height fluctuation of boundary nodes, but they are not part of analysis
nor optimization

The member sizing is done after the form-finding stage
using the stress ratio method with a numerical damping
of η = 0.5. The adopted material properties, admissi-
ble stress reduction and load combination are the same as
used in Section 5.1.1. The member sizing results are plot-
ted in Fig. 30, with a maximum cross-sectional area of
13, 515 mm2.

5.3.2 GSM solution

The initial domain extrusion assumes a flat configuration
of the surface (i.e. z̄ = 0 everywhere), and is extruded
to a height of 24 using 10 elements in thickness as shown
in Fig. 31a. The structure is loaded by the self-weight of
the panels equal to 4.5 kN/m2 and an upward wind suction
of 0.5 kN/m2, both calculated based on the current surface
configuration.

After the optimal (pin-jointed) solution is found, a new
surface is calculated (20) and the loads are updated. The
domain is again extruded around the calculated surface,
solved and updated a total of 6 times. With the exception
of the very first domain, the surface is extruded equally
in both directions. The extrusion thickness is continuously
decreased throughout the iterations: the second domain is
extruded to a total thickness of 12 and is shown in Fig. 31b;
the sixth and final domain is extruded to total thickness
of 2.4 and can be seen in Fig. 31c. The interpolated sur-
face obtained from the last iteration in the process is shown

0

0.5

1
a/ amax  Plot, amax= 13515 mm2

Fig. 30 Doubly-curved bowtie grid-shell: area ratios based on the
PEM form
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Fig. 31 Doubly-curved bowtie
grid-shell: domain
discretizations used in the
ground structure generation
algorithm (GSM). a Initial
discretization; b Domain
discretization after the 1st

refinement; c Domain
discretization after the 5th

refinement; d Final interpolated
surface geometry.

(a) (b)

(c) (d)

in Fig. 31d. The ground structure solution (Fig. 32a) pro-
vides information on the optimal load-path of the forces in
the optimized grid-shell geometry, with the relative magni-
tude of these forces illustrated by the member thickness: the
surface works as two independent synclastic domes inter-
connected by an anticlastic region in the middle; i.e. there
is (relatively) no force exchange between the two synclas-
tic regions. The resulting (interpolated) height shown in
Fig. 32b does not depend on user-defined parameters, and it
closely approximates the (tessellated) optimal shape.

Symmetry of the interpolated surface is enforced in this
problem. The numerical nature of the interior-point method
solver, which stops (within some tolerance) before reaching
an absolute vertex of the feasible domain, together with the

(a)

0

5

10

15

20

24.65

-1.43

(b)

Fig. 32 Doubly-curved bowtie grid-shell: optimized ground structure
obtained after 5 domain refinements (6 analysis processes). a Member
layout; b Optimized height

relative flatness of the objective near the optimum, cause
the symmetry of this problem to be lost. This loss of sym-
metry is unnoticeable after a single step. However, after the
series of 6 domain refinements, load updates, optimization
and interpolation steps, this asymmetry is accentuated (note
the minor differences in Fig. 32a). Thus, for a symmetric
problem (like the one addressed here), it is recommended to
enforce symmetry of the interpolated surface.

5.3.3 FDM solution

The FDM process uses the same domain discretization as in
the PEM section (see Fig. 28). The force density of all bars
is defined as 106 kN/m. The resulting form converges after
7 iterations and is shown in Fig. 33. As done for the PEM
form, the final configuration is shown with the columns that
prop the grid-shell in said position to better illustrate the
variable height supports. We observe that the form is indeed
doubly-curved as desired, with an symmetric apex height of
24.98 m, and an opening height of 19.60 m, both measured
from the zero level.

5.3.4 Convergence history

In the form-finding process, the nodal loads are design-
dependent. Thus, iterations are needed to obtain a converged
form. The convergence history for the bowtie example
is shown in Fig. 34. For the PEM and FDM, the result

Fig. 33 Doubly-curved bowtie grid-shell: isometric view of FDM
form. Note that the grid-shell support columns are plotted only to show
height fluctuation of boundary nodes, but they are not part of analysis
nor optimization
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Fig. 34 Doubly-curved bowtie grid-shell: convergence history for the
form-finding methods (PEM, GSM, and FDM)

converges after 5 and 7 iterations, respectively. Convergence
is achieved once the residual (2) is less than a specified tol-
erance. For the bowtie example, Nf = 180 and ε = 10−3.
For the GSM, a specific number of iterations (6) is specified,
and the residual is evaluated.

5.3.5 Layout investigation

Figure 35 shows the PEM, GSM and FDM form of the
doubly-curved bowtie grid-shell considering XY (plane
view) and XZ (front view) projections. Note that the GSM

form is obtained using the interpolated surface with a struc-
tured mesh similar to the PEM and FDM form. In the left
column of Fig. 35, the red dashed line denotes the horizon-
tal location (along Y dirction) of the top of the left edge arch
in the FDM form diagram. We observe that the FDM form
diagram has a smaller footprint as the edge arch curves sig-
nificantly towards the center. In the right column of Fig. 35,
the dark dashed lines denote the apex heights. We observe
that the PEM form diagram is the least vaulted in the sense
that in the front view, most of the top boundary is lower
than the apex height. On the other hand, the FDM form dia-
gram is the most vaulted, and the GSM form diagram is in
between the other two diagrams.

5.3.6 Tonnage evaluation and comparison among the
methods

From a design point of view, the effectiveness of a layout
can be evaluated by the material tonnage. The closer to the
optimal layout the design is, the lower the tonnage. Here we
use preliminary member sizing results to estimate (a lower
bound of) the material tonnage. Table 2 shows the estimated
tonnages and the vertical load sums for the three forms
obtained by PEM, GSM and FDM for the doubly-curved
bowtie grid-shell.

From Table 2, we observe that the GSM form requires the
least material tonnage among the three forms. In addition,
the load sums are different as load forces are dependent on
the geometry. The load sums of the PEM form and the GSM

Fig. 35 Doubly-curved bowtie
grid-shell: comparison of the
PEM, GSM and FDM form
considering XY (plane view)
and XZ (front view) projections
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Table 2 Doubly-curved bowtie grid-shell: tonnage and load sum
comparison of the designs obtained by the three form-finding methods

Method PEM GSM FDM

Tonnage [ton] 71.1 63.2 71.9

Normalized Tonnage 1.12 1.00 1.14

Load sum [kN] 44629 45287 36515

The tonnage is calculated by multiplying the total material volume by
the material density. Assume that the construction material is A500 Gr.
B carbon steel with a density of 7.85 ton/m3. The normalized tonnage
is calculated by dividing the tonnage by the GSM tonnage

form are comparable. The vertical load summation of the
FDM form is lower than the other two, because the FDM
form has a smaller footprint. As a result, the total tributary
area for load calculation is smaller. Comparing both the
tonnage and the vertical load sum, we observe that the GSM
form supports the largest vertical load with the least amount
of material.

To understand why the GSM design is more efficient,
we investigate several parameters related with the load path.
One parameter of interest is the Michell number (Michell
1904), which is defined as

∑ |P |L, where P is the mem-
ber force (positive for tension)and L is the member length.
Another important quantity, Maxwell number (Maxwell
1890), is defined as

∑
P ·L. In our cases, the grid-shell is or

is close to compression-only and thus the Michell number
and the Maxwell number are of similar magnitudes. Accord-
ing to Maxwell’s theorem (Maxwell 1890), the Maxwell
number equals the sum of the force-distance product from
all forces. Thus
∑

P · L =
∑

FT D (21)

where F is the external force vector and D is the distance
vector pointing from an arbitrary origin to the point where
the force F is applied. With the above definition, the con-
cerned parameters are calculated and tabulated in Table 3.
Specifically, we calculate the total force-distance product
together with the components from the load forces and
reaction forces, respectively.

First of all, we verify that the calculation is correct
by noticing that the normalized tonnages are equal to the
normalized Michell numbers. For fully-stressed truss struc-
tures, the Michell number is linearly correlated with the
material volume (Baker et al. 2013), as
∑

|P | L =
∑

σadmAL = σadm

∑

AL = σadmV (22)

where A denotes the member cross sectional area and V

is the total material volume. Similarly, the tonnage is also
linearly correlated with V , as

Tonnage = ρV (23)

Table 3 Doubly-curved bowtie grid-shell: Michell number, Normal-
ized Michell number, Maxwell number and force-distance product of
the designs obtained by the three form-finding methods

Method PEM GSM FDM

Michell Number [kN · m] 2.57 × 106 2.29 × 106 2.60 × 106

Normalized Michell number 1.12 1.00 1.14

Maxwell number [kN · m] −2.57 × 106 −2.28 × 106 −2.60 × 106

Force-distance product
[kN · m]

−2.57 × 106 −2.28 × 106 −2.60 × 106

Force-distance prod-
uct from load forces
[kN · m]

−6.83 × 105 −8.32 × 105 −7.11 × 105

Force-distance product from
reaction forces [kN · m]

−1.89 × 106 −1.44 × 106 −1.89 × 106

The normalized Michell number is calculated by dividing the Michell
number by the GSM Michell number

where ρ is the material density. Thus the normalized ton-
nage should be equal to the normalized Michell number if
the calculation is correct.

From Table 3, we observe that the GSM form provides
the least magnitude of the force-distance product (equiva-
lently, the Michell number or the magnitude of the Maxwell
number) among the three forms. Due to the large load
sum and relatively vaulted form, the GSM form has the
largest magnitude of the force-distance product from load
forces. However, the GSM form results in smaller reaction
forces in the XY plane than the other two forms, and its
force-distance product from reaction forces is also smaller.
Overall, the total force-distance product of the GSM form is
still smaller than that of the other forms. Thus, we conclude
that the structural efficiency of the GSM form comes from
the more benign horizontal reaction forces.

6 Discussion

Several aspects can influence the choice of the form-
finding method. One aspect of concern is the computational

Table 4 Computational cost of the form-finding methods used in the
numerical examples section. The computational costs are measured in
real time in seconds a

Method PEM GSM FDM

Dome 2 1168 0.1

Pavilion 17 19635 0.3

Bowtie 4 773 0.2

aThe computations were conducted using MATLAB R2015b on a
desktop computer with an Intel® Xeon® CPU E5-1660 v3 @ 3.00GHz
processor and an installed memory (RAM) of 64 GB
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Table 5 Qualitative
comparison of the form-finding
methods presented

Method PEM GSM FDM

Computational complexity moderate heavy mild

Physics equilibrium, mechanics, and compatibility equilibrium equilibrium

Initial configuration dependency yes no no

Pre-defined connectivity yes no yes

complexity, which can be preliminarily evaluated by means
of the computational runtime as shown in Table 4. This
aspect, as well as other metrics of interest are qualitatively
compared in Table 5.

In summary, the PEM yields solutions with full physi-
cal consideration of the standard constitutive relationships.
Thus, all the parameters required have direct physical mean-
ings, and the method can be easily understood from an
intuitive point of view. A key drawback of the method is the
dependence of the resulting form on the initial configura-
tion. However, it may also be argued that this dependence
can be exploited to drive the solution towards some desir-
able form.

The GSM with transmissible loads requires no a priori
assumption on the geometry nor the member connectivity,
thus making it the most agnostic of the three methods. How-
ever, it ranks high in computational complexity and requires
interpretation (or rationalization) of the results. The result-
ing configuration does not depend on additional parameters
such as member stiffness or force density; it only requires
the footprint geometry. In other words, for a given problem,
the method converges to a unique grid-shell configuration.

The FDM is the most computationally inexpensive of the
three form-finding methods. A major drawback of FDM is
that the force density, a parameter that the method heav-
ily relies on, may not have a clear physical interpretation.
Therefore, the outcome from the FDM is relatively hard to
predict and control, relying on the user’s experience or some
degree of trial-and-error. While the FDM does not depend
on the initial configuration, connectivity information is still
required (see Appendix A for further information).

7 Concluding remarks

In this paper, two form-finding methods for grid-shell
designs are proposed: a method based on minimum potential
energy, and a method based on an augmented form of the
ground structure method, including domain refinement. The
load derivation scheme used in the present work allows for
various types of static loads, which can be applied to load
panels, bar members, and/or directly at the nodes. These
loads can be design-dependent, and thus the form-finding
process is iterative. The results from the two proposed form-
finding methods, together with the widely-known force

density method, were compared with three design examples.
These examples demonstrate the capability of the form-
finding methods to handle various load types, unstructured
domains, and polygonal discretizations. In particular, we
investigate the layout and tonnage for the doubly-curved
bowtie grid-shell to compare the structural efficiency of the
forms obtained with different methods.

Last but not least, we note that the three form-finding
methods (two proposed and one reviewed) do not consider
buckling in their form-finding nor sizing stages. Considera-
tion for elastic buckling can be integrated into the proposed
methods provided that a section family is defined (refer
to Section 3.4). However, the results should be considered
as an initial approach towards a complete design, which
complies with local building codes (e.g. International Code
Council 2015; ACI Committee 318, American Concrete
Institute 2014; American Institute of Steel Construction
2011).
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Appendix A: Force density method formulation

The formulation of the force density method presented here
follows the procedure in Schek (1974), and is presented here
for the sake of completeness.

The nodes are numbered from 1 to Nn and bar members
(or branches) from 1 to Nb. For any bar member j , there are
2 corresponding nodes with number cj and dj . The Nb ×Nn

branch-node matrix Cs is constructed as follows:

Cs (j, i) =
⎧

⎨

⎩

+1 for cj = i

−1 for dj = i

0 otherwise
(24)

The branch-node matrix Cs can be subdivided into C and
Cf , which corresponds to the columns associated with free
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and fixed nodes, respectively. The unknown nodal coordi-
nates are defined as x, y, and z; and the coordinates of the
fixed nodes as xf , yf and zf . The vectors denoting the coor-
dinate difference between 2 connected nodes are u, v, and
w (in the x, y and z coordinates respectively). Thus, the
relations between the nodal coordinates and the coordinate
differences are:

u = Cx + Cf xf

v = Cy + Cf yf

w = Cz + Cf zf (25)

For each element j in the network its length is calculated

as �j =
√

u2
j + v2

j + w2
j , and its force density is defined

as qj = nj/�j , where ni is the member internal force.
The member lengths are grouped in a vector �, the mem-
ber forces in n, and the user-defined force densities for all
members in the network in q.

We denote the diagonal matrices of vectors u, v, w, � and
q as U, V, W, L and Q. The nodal force equilibrium can
then be expressed as:

CT UL−1n = fx
CT VL−1n = fy
CT WL−1n = fz (26)

where fx , fy , and fz, are the nodal force vectors in the x, y

and z coordinates, respectively. Using the definition of force
density in (26) we obtain:

CT Uq = fx
CT Vq = fy
CT Wq = fz (27)

where a simple transformation gives:

Uq = Qu

Vq = Qv

Wq = Qw (28)

Using the definition of coordinate difference (25) and the
definitions in (27) and (28), we obtain:

CT QCx + CT QCf xf = fx
CT QCy + CT QCf yf = fy
CT QCz + CT QCf zf = fz (29)

Finally, defining the matrix D as D = CT QC, and Df as
Df = CT QCf , a linear system for the free (unknown)
nodal coordinates that ensures force equilibrium at every
node is obtained:

Dx = fx − Df xf

Dy = fy − Df yf

Dz = fz − Df zf (30)

Appendix B: Nomenclature

A Correspondence matrix of nodes belonging to a
transfer group

a Vector of member cross-sectional areas
a

�
ij Area of one single triangle associated with the

edge nodes i and j

ak
i Cross-sectional area of the i-th bar in the k-th

iteration
ak
g Cross-sectional area of bars in the g-th group in the

k-th iteration
BT Nodal equilibrium matrix
D Distance vector
F External force vector
f Nodal load vector
fxy Nodal loads associated with the x and y coordinates
fz Nodal loads associated with the z coordinate
fv Vector of loads associated with each transfer group
f•i Load vector applied directly at the i-th node
f�i Line loads associated with the edges
f�i Area loads associated with the load panels
k̃i Reduced bar stiffness for the i-th member used in

the PEM form-finding process
ki Real bar stiffness for the i-th member
L Member length
� Vector of member lengths
��i Length change for the i-th member
Nf Number of degrees of freedom
n Vector of member forces
n�

ij Unit normal vector of the triangle associated with
the edge nodes i and j

P Member force
PE Potential Energy
q Self weight by unit area
s+ Slack variables associated with tension
s− Slack variables associated with compression
u Displacement vector
unew Displacement vector in the current iteration
uold Displacement vector in the previous iteration
vi Vector from a polygon’s center of mass to the i-th

node
V Material volume of the resulting structure
w Projected area load acting on the load panels
β Transfer group’s load direction vector
γ Material specific weight of the bar members
η Numerical damping for the stress-ratio method
κ Ratio of tension to compression stress limit, i.e.

σT /σC

ρ Material density of the bar members
σadm,i Admissible stress associated with the i-th bar
σi Stress in the i-th bar
σC Compression stress limit
σT Tension stress limit
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