
Deployable Sandwich Surfaces with
High Out-of-Plane Stiffness

Evgueni T. Filipov, A.M.ASCE1; Glaucio H. Paulino, M.ASCE2; and Tomohiro Tachi3

Abstract: This paper presents a set of deployable origami tube structures that can create smooth functional surfaces while simultaneously
maintaining a high out-of-plane stiffness both during and after deployment. First, a generalized geometric definition for these tubes is pre-
sented such that they can globally have straight, curved, or segmented profiles, while the tubes can locally have skewed and reconfigurable
cross sections. Multiple tubes can be stacked to form continuous and smooth assemblies in order to enable applications, including driving
surfaces, roofs, walls, and structural hulls. Three-point bending analyses and physical prototypes were used to explore how the orthogonal
stiffness of the tubular structures depends on the geometric design parameters. The coupled tube structures typically had their highest out-
of-plane stiffness when near to a fully deployed state. Tubes with skewed cross sections and more longitudinal variation (i.e., that had more
zigzags) typically had a higher stiffness during deployment than tubes that were generally straight. DOI: 10.1061/(ASCE)ST.1943-
541X.0002240. © 2018 American Society of Civil Engineers.
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Introduction

Over the last several decades origami has transitioned from art to
scientific research and more recently to engineering technologies,
ranging from medical devices (Randall et al. 2012) to everyday
consumer products (Morris et al. 2016). The benefits of origami
include the capability for self-assembly from a flat state, deploy-
ment from a stowed configuration, reconfiguration for multifunc-
tionality, adaptable physical properties, and more. Within civil
engineering and architecture, origami principles have been used
to conceive system components such as adaptable surfaces and fa-
cades [e.g., Del Grosso and Basso (2010) and Thün et al. (2012)]
to full, large-scale, deployable structures [e.g., Tachi et al. (2012),
Cai et al. (2015), and Ballard et al. (2016)]. Despite the potential
benefits of using origami in large-scale applications, there have
been few practical implementations, and there are still many chal-
lenges that prevent commercialization.

A fundamental challenge has been the need to use thin panels,
which allow compact packing and reconfiguration, while at the
same time preserving structural stiffness and rigidity, which con-
versely requires thick panels. To overcome this challenge, many
origami structures use a cellular or sandwich design that intention-
ally locks thin sheets into an overconstrained system after deploy-
ment [e.g., Schenk and Guest (2013), Martínez-Martín and Thrall
(2014), Gattas and You (2015), and Gattas et al. (2017)]. One issue

with this approach is that the structures are flexible and possibly
unstable during assembly and deployment. Some of these systems
are also inherently flexible, because they allow deformation mo-
tions where bending and folding of the panels occur, even in a de-
ployed and locked state. To overcome this challenge, our work uses
a zipper coupling approach for origami tubes previously introduced
by the authors (Filipov et al. 2015). These structures do not require
complex locking mechanisms and only need to be affixed at the
ends in order to prevent global motion with bending and folding.

An additional drawback for origami designs has been that they
are segmented and result in sawtoothlike structures [e.g., Cai et al.
(2015), Filipov et al. (2015), and Lee and Gattas (2016)] that cannot
be readily utilized in applications for which a smooth surface is
required. Such applications in civil engineering include roadways,
roofs, walls, and formwork. In other engineering applications such
as hulls, wings, and waterways, nonsmooth origami could lead to
complex and unwanted fluid structure interaction. The geometries
explored in this paper are based on fundamental variations of zipper
tubes that fall into a category of cylindrical generating surfaces with
mirror-symmetric walls. These systems were introduced by the
authors in Tachi et al. (2015) but were not explored in detail. These
folding systems can provide both aesthetic design and functional
purpose, such as the concept for a deployable canopy shown in
Fig. 1. The system has a smooth surface when deployed but a non-
straight profile similar to an architectural canopy. Moreover, the
zipper-coupled sandwich geometry enhances the out-of-plane
stiffness both during deployment and in the final state.

More practical challenges for implementing origami designs
on a large-scale include system design (e.g., panels connected
with hinges versus thin sheets with large strains at folds) and the
corresponding material systems (e.g., metals, polymers, compo-
sites). The systems need to allow kinematic motion but also provide
strength and stiffness for the structure. Our work does not address
these challenges; however, the proposed overall system does pro-
vide advantages for practical implementation. The coupled origami
tubes use a concept of rigid folding in which the panels remain
flat and deformations are localized at the fold lines. This folding
technique allows for thickness to be incorporated with practical ma-
terials and discrete, hinge-based designs. Furthermore the sandwich
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cell geometry of the coupled tubes makes the systems stiffer,
allowing for the use of thinner and more flexible materials.

Generalized Projection Definition for Quadrilateral
Origami Tubes

A simplified projection-based technique was used to define the
geometry of the origami tubes. In this paper, the tubes are created
only with rhombus cross sections (four equal edges), although the
techniques presented here can be used with any parallelogram cross
section. The projection methodologies can also be used on tubes
with arbitrary polygonal cross sections; however, polygonal tubes
may restrict some of the folding characteristics [see Filipov et al.
(2016)].

To construct a quadrilateral origami tube, we start by construct-
ing a rhombus cross section in the Y, Z-plane. The bottom of the
cross section is parallel with the Y-axis, and an angle θ counter-
clockwise from the Z-axis defines the rhombus. Next, two angles
ϕY and ϕZ are used to guide the direction of projection, from the
X-axis toward the Y- and Z-axes, respectively (Fig. 2).

Straight Origami Tubes

For a straight tube, we project the cross section in the X-direction
onto a projection plane that is parallel to the Y; Z-plane. A segment
length parameter li that lies only in the X; Z-plane defines the
distance between the ith and the iþ 1th projection planes. Thus,
the distance between projection planes in the X-direction can be

calculated as li cosðϕZÞ. This definition is subsequently important
for the coupling of multiple tubes.

The projection creates a new rhombus cross section that is par-
allel with the initial cross section. The corresponding edges of the
cross sections are connected with thin origami sheets, creating a
system of fold lines and panels. At the subsequent projection plane,
the tube is mirrored locally; in other words, the opposite projection
angles are used for the subsequent projection (−ϕY and −ϕZ). This
mirroring ensures the flat foldability of the origami tube, which
means that the system can theoretically fold flat into a two dimen-
sional state. For subsequent discussion, we define top/bottom folds
to be those that are symmetric to the Y-axis, while side folds are
those that are rotated θ from the Z-axis (Fig. 2).

When a square cross section is used and the angles ϕY and ϕZ
are equal ðϕ ¼ ϕY ¼ ϕZÞ, this projection approach generates a
symmetric and partially developable Miura-ori tube. The tube is
partially developable, because it has portions that can be created
by folding an initially flat sheet. The projection approach is non-
unique, and the same tube can be constructed by using different
sets of parameters. For example, a rhombus cross section for which
θ ≠ 0 and ϕY ≠ ϕZ could also be used to create a partially devel-
opable tube but in a different folded configuration (see the kinematics
of the tubes in the following section).

Curved (Nonstraight) Origami Tubes

Projection planes do not need to be parallel, and it is possible
to create a variety of curved (or nonstraight) origami tube struc-
tures in three dimensions (Tachi et al. 2015; Filipov et al. 2016).

Fig. 1. Canopy structures: (a) roof of the Connecticut Science Center by César Pelli & Associates (reprinted from Woodruff and Brown 2009, with
permission). Deployment sequence of a curved canopy constructed with zipper-coupled origami tubes shown in (b) isometric; and (c) side views.

Fig. 2. Generalized projection approach to define a straight tube inspired by the Miura-ori pattern. The tube is constructed by starting with a cross
section in the Y; Z-plane and projecting the cross section in the X-direction. The rhombus cross section has unit (1) dimensions and is defined by an
angle θ. The projection is guided by the angles ϕY and ϕZ with respect to the X-axis. The cross section is projected by a distance li in the X; Z-plane.
The tube in this figure has dimensions of ϕY ¼ 30°, ϕZ ¼ 30°, θ ¼ 15°, and l1 ¼ l2 ¼ li ¼ 1.

© ASCE 04018244-2 J. Struct. Eng.
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To facilitate the coupling of tubes, the curvature of the tubes in
this paper was limited to rotating the projection planes in the X,
Z-plane. Fig. 3 shows a tube in which the ith projection plane
is rotated in the X, Z-plane by an angle εi. The rotation occurs about
the bottom of the newly projected bottom edge of the cross section.
In other words, the bottom edge of the cross section is translated
by li cosðϕZiÞ in the X-direction and li sinðϕZiÞ in the Z-direction,
and the projection plane is rotated about this new line. The tube is
again mirrored locally about the projection plane, and the projec-
tion angle ϕZ is updated based on the projection plane rotation,
e.g., ϕZ2 ¼ ϕZ1 þ 2ε2. The symmetry imposed by mirroring en-
sures flat foldability and rigid folding kinematics.

Coupling of Two Tubes

The generalized projection scheme can be used to construct tubes
that are connected along common coupling surfaces. For clarity,
this section, and most of the paper is limited to the coupling of
two tubes, which are designated as top (T) and bottom (B) tubes

depending on their location in the Z-direction. Fig. 4 shows a sche-
matic of two tubes that were generated using the same cross section
and projection technique discussed previously. The two tubes
follow the same coupling surface defined by the projection in the
X, Z-direction; however, it is possible for the tubes to have different
cross sections and different Y-projections. The Y-projections are
defined by ϕYT and ϕYB, while the cross section rotations are de-
fined by θT and θB for the top and bottom tubes, respectively. The
angles ϕY and θ are measured counterclockwise from the X- and
Z-axes, respectively. With this definition, the bottom tube shown in
Fig. 4 has a negative ϕYB and a negative θB.

The definitions can be extended as described previously, with
the segment length li varied at different segments, as long as li is
measured at the coupling surface and is the same for both tubes.
Changing the segment length does not affect the foldability of the
tube. The coupled tubes can be made curved, similar to Fig. 3,
in which an angle ϵi was used to rotate the projection plane for
both tubes. For nonstraight zipper-coupled tubes (i.e., ϵi ≠ 0°)
to be valid and foldable, ϕYT must equal −ϕYB, and θT must

Fig. 3.Generalized projection approach to define a curved (nonstraight) tube. The tube is constructed by starting with a cross section in the Y, Z-plane
and projecting the cross section in the X-direction. Subsequent projection planes can be rotated in the X, Z-plane by an angle ϵ. The distance between
projection planes li is measured along the bottom of the tube in the X, Z-plane. The tube in this figure has dimensions of ϕY ¼ 30°, ϕZ1 ¼ 10°,
θ ¼ 15°, ϵ2 ¼ ϵ3 ¼ ϵi ¼ 7.5°, and l1 ¼ l2 ¼ li ¼ 1.

Fig. 4. Geometric definition of a zipper-coupled tube system. Two separate tubes are constructed by projecting the cross section in the X-direction.
The top (T) and bottom (B) tubes can have different projection angles in the Y-direction (ϕYT and ϕYB) and can also have different cross sections
(θT and θB). The two tubes must have the same projection characteristics in the Z, X-plane (angles ϕZ and lengths li). The zipper tube system in this
figure has dimensions of ϕYT ¼ 30°, ϕYB ¼ −30°, ϕZ ¼ 30°, θT ¼ 30°, θB ¼ −10°, and l1 ¼ l2 ¼ li ¼ 1.
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equal −θB. The other alternative is an aligned coupled system in
which ϕYT ¼ ϕYB and θT ¼ θB. The reason for these restrictions
as they relate to the kinematics and foldability are discussed in
the next section.

Folding Kinematics of Tube Variations

Origami patterns with four folds per vertex are one degree of free-
dom (one-DOF) folding mechanisms, in which the entire folded
geometry of the folds and panels can be calculated from a single
variable, such as one of the fold angles (Hull 2012). In a generic
case, when additional and arbitrary constraints are added, the sys-
tem becomes an overconstrained mechanism and is no longer
rigidly foldable. However, there are ways to incorporate additional
components (and constraints) such that the origami system main-
tains the one-DOF rigid folding mechanism: (1) origami patterns
such as the Miura-ori use repetition to connect multiple one-DOF
vertices into a system that preserves rigid foldability [e.g., Miura
(2009) and Gattas et al. (2013)]; (2) more advanced origami struc-
tures such as the Miura-ori tube use symmetry to connect multiple
patterns together while simultaneously maintaining the one-DOF
folding mechanism [e.g., Tachi (2009) andMiura and Tachi (2010)];
and (3) furthermore, the coupling of two or more identical or com-
patible tubes also preserves the folding properties [e.g., Cheung et al.
(2014) and Filipov et al. (2015)]. However, the coupling of tubes
and adding compatible components to origami systems is generally
not a trivial task.

In Tachi et al. (2015), we explored the two basic geometric fam-
ilies of allowable coupling methods for rigid foldable origami
tubes. These families allow for compatibility between the coupled
structures and permit the rigid folding motion. The two families are

(1) coupling on an arbitrary straight or curved surface where the
fold lines are parallel and mirroring is used between the bottom
and top tubes to ensure rigid foldability; and (2) coupling on a flat
developable surface with nonsymmetric fold lines, with arbitrary
fold angles calculated to preserve rigid folding motion (Tachi et al.
2015). The generalized approach used in this paper makes use of
the first family; we use an arbitrary coupling surface (defined by ϕZ
and ϵ). We then enforce symmetry on the top and bottom of the
structure by limiting the cross section and projection variations
(i.e., ϕYT ¼ −ϕYB and θT ¼ −θB).

Reconfiguration Kinematics of Single Tubes

The folding kinematics and reconfiguration of the coupled systems
are directly related to the characteristics of each of the two (or
more) coupled tubes. It is useful to first investigate the individual
tubes to understand how the geometric definitions affect the global
kinematics. Fig. 5 shows the kinematics of four origami tubes with
different projection angles and cross sections. When a square cross
section is used with ϕY ¼ ϕZ, we create a partially developable
tube that can fold into a fully deployed, flat state in the X, Y-axis
[bottom right of Fig. 5(a)]. This tube has only one folding sequence
that preserves the tubular shape. Tube variations created with the
projection methodology that are not partially developable cannot
reach a flat state in the X, Y-plane [Fig. 5(b–d)]. However, these
nonpartially developable tubes are reconfigurable because they can
extend and retract through two distinct motions.

Origami tubes with square cross sections and ϕZ < ϕY reconfig-
ure when the top and bottom surfaces reach a flattened state. The
top and bottom folds of the tube experience switching where the
mountain folds turn to valleys and vice versa [Fig. 5(b)]. However,
tubes with square cross sections and ϕZ > ϕY reconfigure with the
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Fig. 5. Initial geometries and folding kinematics of different rigid foldable tubes. A thick dotted line parallel to the Y-axis is shown as a reference for
all configurations: (a) tube created with ϕZ ¼ ϕY ¼ 30° and a square cross section; (b) tube with ϕZ ¼ 10° < ϕY ¼ 30°; the tube reconfigures when
the folds on the top and bottom surfaces change from mountain to valley folds; (c) tube with ϕZ ¼ 30° > ϕY ¼ 10°; the tube reconfigures when the
folds on the sides change from mountain to valley folds; and (d) tube with ϕZ ¼ ϕY ¼ 30° and a rhombus cross section ðθ ¼ 30°Þ; this tube follows
kinematics similar to (c). The tube in (a) is partially developable and flat foldable. The tubes in (b)–(d) are not partially developable, but are flat
foldable and can fold down through two different kinematic motions.
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side fold lines switching [Fig. 5(c)]. Changing the cross section also
influences the global kinematics in similar ways, with an increase
in θ tending toward side folds switching [Fig. 5(d)], and a decrease
in θ tending toward top/bottom folds switching. The projection and
cross section effects can counteract each other, and it is possible to
construct a partially developable tube with ϕZ < ϕY and θ > 0. For
example, one of the folded configurations in Fig. 5(a) could be the
initial geometry of a tube (defined with ϕZ < ϕY and θ > 0).

Reconfiguration Kinematics of Coupled Tubes

When two tubes are coupled, it is possible to have different types of
reconfiguration occur, with either one or both of the tubes recon-
figuring. The deployment sequence and kinematic properties are
determined by the geometry of each tube’s projection and cross
section. Reconfiguration of coupled tubes follows many of the
same characteristics as those shown in Fig. 5. If we assume that
the cross sections of both tubes are square, then possible reconfig-
uration kinematics can be grouped into four categories:
• No switching: ϕZ ¼ ϕYT ¼ −ϕYB: When all projection angles

are equivalent (or negative and equal magnitude) both tubes
are partially developable and the system can reach a flat state
in the X, Z-plane [as in Fig. 5(a)].

• Top/bottom folds switch: ϕZ < minðϕYT ;−ϕYBÞ: If the Z-
projection is the smallest of the three, then the top and bottom
folds of both tubes reconfigure [Fig. 6(a)].

• Side folds of one tube switch: ϕYT < minðϕZ;−ϕYBÞ or
−ϕYB < minðϕZ;ϕYTÞ: If one tube has a Y-projection smaller

than the Z-projection, the side folds of the tube with the smallest
Y-projection will reconfigure [Fig. 6(b)].

• Side folds of both tubes switch: ϕYT ¼ ϕYB < ϕZ: Both tubes
have equivalent Y-projection angles (or negative and equal mag-
nitude), and each tube can reconfigure independently at its side
folds when the system reaches a fully deployed state.
The kinematics of two common coupled tube cases are shown in

Fig. 6. When the cross sections are changed into rhombuses, the
switching cases remain the same as in the aforementioned four
cases, but the projection angles alone do not determine the case.
For tubes that have curvature, it is possible to have multiple cases
occur over the length of the tube. The tube shown in Fig. 6(a) has a
curve with all top and bottom folds reconfiguring simultaneously.
If the curvature of the system is varied, it is possible that only one
portion of the fold lines will flatten, and the structure will have only
one folding motion (no switching can occur).

Systems of Coupled Tubes

Coupling of tubes can be further extended to create continuous
and more complex deployable systems. The primary method for
coupling discussed herein uses a projection technique and a
common coupling surface to couple tubes (zipper-type coupling).
The projection-based coupling technique is generalized and can
allow for the coupling of curved tubes and the coupling of straight
tubes with different cross-sectional geometries. However, the
projection-based technique is partially limiting, because it can only
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Fig. 6. Initial geometries and folding kinematics of two zipper-coupled tubes. A thick dotted line parallel to the Y-axis is shown as a reference
for all configurations: (a) nonstraight tube with ϕYT ¼ −ϕYB ¼ 30°, ϕZ ¼ 0°, θT ¼ θB ¼ 0°, and ϵ2 ¼ ϵ3 ¼ ϵi ¼ 7.5°. Because ϕZ < ϕY the top and
bottom folds can switch, leading to two different folding motions [similar to Fig. 5(b)]; and (b) straight zipper tube with ϕYT ¼ 10°, ϕYB ¼ −30°,
ϕZ ¼ 30°, and θT ¼ θB ¼ 0°. The side folds of the top tube switch, leading to two different folding motions [similar to Fig. 5(c)]. The length of the
projections for both zipper tubes is not constant: l1 ¼ l2 ¼ l4 ¼ 1 and l3 ¼ 1.2.
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be continued effectively in one direction [Fig. 7(a)]. Using the
projection-based technique in multiple directions leads to systems
with self-locking and interactions that limit the folding motions
[Figs. 7(b and c)]. An alternative is to use an aligned or repetitive
coupling in which the same tube geometry and projection prop-
erties create an identical tube that conveniently has the same
kinematic properties. The aligned coupling can also be used in
multiple directions; in Fig. 7(a) the same tubes are repeated in the
Y-direction, and the top two rows of tubes are identical.

It is possible to couple a larger variety of straight tubes, because
the cross section can be changed when using the projection-based
approach. For example, the parapets of the bridge type structure in
Fig. 8(b) were created using a different geometry from the deck of
the bridge. Curved systems that use projection coupling, however,

must follow the limitation of symmetry as imposed previously
(i.e., ϕYT ¼ −ϕYB and θT ¼ −θB or ϕYT ¼ ϕYB and θT ¼ θB).

Using projection and aligned coupling simultaneously was of
primary interest in this work, because the repetition would allow
for the creation of large practical surfaces, including slabs, decks,
hulls, canopies, and others. Once the projection-based technique is
used to create two or more coupled tubes in the Z-direction, rep-
etition is used to extend the system in the Y-direction. A benefit of
aligned coupling in the Y-direction is that the global system be-
comes much like a membrane with a high global in-plane stiffness.
The large surface can be used for diaphragm action that can transfer
lateral loads between structural elements and act as a structural
member. Another benefit of coupling in two directions is the
creation of a cellular sandwich structure that can distribute forces
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Fig. 7. Basic coupling arrangements for multiple origami tubes: (a) projection-based coupling of tubes with different cross sections in the Z-direction
and aligned coupling Y-direction; and (b and c) projection-based coupling in two directions limits the system kinematics.
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Fig. 8. Examples of smooth sandwich systems created by coupling multiple tubes: (a) arched vault; (b) bridge deck consisting of tubes with different
cross sections; and (c) undulated canopy.
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and stresses to multiple locations. The cellular nature also prevents
local buckling and enhances the global stiffness of the structure.
The subsequent sections will discuss the stiffness properties asso-
ciated with the geometric design and show how to create stiff prac-
tical systems in which the top surfaces can be flat, similar to those
shown in Fig. 8.

Analytical Procedure and Global Stiffness
Characteristics

This work used a bar and hinge model to investigate the global
structural characteristics of coupled origami tubes [specifically,
the N5B8 model in Filipov et al. (2017)]. Although the bar
and hinge approach cannot capture local behaviors of the origami,
it is well suited for comparative and parametric studies of rigid
foldable origami with quadrilateral panels such as the tubes ex-
plored in this paper. The model captures three distinct behaviors,
including shear and stretching of the thin origami sheets, bending
of the sheets, and folding along prescribed crease lines. The
model is scalable with respect to thickness and length parameters,
and it simulates geometric properties reasonably well (e.g., panel
skew). For a detailed discussion of the model, its capabilities, and
its formulation, the reader is referred to Filipov et al. (2017) and
Filipov (2016).

For the deployable tubes in this work, we used arbitrary dimen-
sions and material properties that were within a realistic range for
origami. Whenever possible, unit dimensions (1) were used; for
example, the cross sections and segment lengths of projections are
1 unless otherwise noted. The thickness of the material was defined
as t ¼ 0.01 such that the length to thickness ratio was generally
L∶t≈ 100. The fold line stiffness was defined with a length scale
parameter of L� ¼ 80 mm which resulted in a fold to panel stiff-
ness ratio of about KF∶KB ≈ 1=5. The actual local stiffness of a
fold is found from Kl ¼ ðLF=L�Þ � Et3=ð12ð1 − ν2ÞÞ, where LF is
the length of the fold [see Filipov et al. (2017) for details]. We used
an arbitrary elastic modulus of E¼ 106 and a Poisson’s ratio of
ν ¼ 1=3. The units of the elastic modulus were in force per length
squared, and stiffness for the different origami components (folds
and panel) were appropriately calculated (Filipov et al. 2017).
Although a specific unit basis was not selected for this work, any
appropriate basis could be substituted (e.g., newtons and meters).
The use of these arbitrary parameters was sufficient to allow for
qualitative evaluation of behaviors and a comparative study be-
tween different origami geometries.

Our work used a small displacement formulation for the struc-
tural analysis and was primarily focused on comparing the stiff-
ness of different origami geometries and system configurations.
This analysis was well suited for capturing the initial stiffness of
structures but not the stiffness if large displacements were ex-
perienced by the system. We envision that in their practical imple-
mentation, such deployable structures would be able to undergo
large kinematic motions; however, the global stiffness should be
high enough to prevent large structural displacements from applied
loads. Designers would be able to use the geometry (e.g., number of
tubes, depth, thickness, and so forth), and the material properties
(elastic modulus and density) to improve the stiffness-to-weight
behavior of the system. Their designs would ensure that for
the given loads, the displacements would remain small enough
(e.g., Δ=L over 2%) to ensure serviceability and prevent P-delta
effects. The zipper-coupled systems explored here exhibited a de-
sired behavior in which their deployment was flexible (achieved by
the bending of flexible fold lines), yet they were substantially stiffer
for other types of system deformation (behaviors independent from

the flexible fold lines). The intrinsic properties were first explored
in Filipov et al. (2015) and are briefly discussed in the following
several paragraphs. Later in this work, we show simple physical
models of stiff coupled tubes that can support much more than
their self-weight while keeping displacements reasonably low
(Δ=L ≤ 2%). Our small-displacement analysis would likely esti-
mate the deformed shape and stiffness of such cases well, but might
significantly underestimate or overestimate the stiffness of more
flexible structures that undergo large displacements from their
applied loads.

Eigenvalue Analysis of Coupled Tube Systems

Studying the eigenvalues of an origami structure is a useful way to
understand and characterize global stiffness properties. We obtain
the eigenvalues (λi) from the linear elastic system of equations
Kvi ¼ λiMvi, where K is the stiffness matrix, and M is the mass
matrix of the structure (assuming an arbitrary density of ρ ¼ 1 for
the thin sheets). The eigenmode vi represents a deformation mode
and the corresponding eigenvalue is a representative stiffness for
that deformation. In this analysis, no restraints were used, and thus
the first six eigenmodes correspond to rigid body motions of the
entire structure. The seventh eigenmode represents the kinematic
folding motion of the origami, and subsequent eigenmodes re-
present structural deformations.

Fig. 9 shows the eigenvalues of a curved origami coupled tube
for the entire folding sequence, which involves (1) an extension to
full deployment (Configuration I); (2) a switching reconfiguration
at a full deployment length of 3.81; and (3) another extension
through which the system can retract (Configuration II). An impor-
tant concept from this plot is that there is a large separation or
band-gap between the seventh and eighth eigenvalues (note the log-
arithmic scale). The large band-gap is unique to the zipper type of
coupling and represents the large difference in stiffness between the
kinematic folding and other structural deformations. Other types of
coupling such as aligned coupling (shown in the following section)
also exhibit a band-gap but one that is not quite as significant
(Filipov et al. 2015). Although the eigenvalues can represent the
global system properties, they do not present an effective compari-
son for the different origami configurations or how the system
would perform for practical applications. For example, although
the eigenvalues change somewhat for the two folding paths, their
connection to structural stiffness and practical implementation is
not evident.

Static Analysis of Coupled Tube Systems

Static analyses are well suited to providing insight on practical
applications and are useful for performing comparative studies on
different origami geometries. To evaluate the bending stiffness of
the coupled tube structures, we perform a three-point bending test
on tubes with ten segments in the X-direction. The tubes are closed
off on both ends with thin sheet panels to restrict the global folding
motion. The system is vertically supported on both ends, but it
is free to expand lengthwise and orthogonally. A perpendicular
unit load is applied at the middle of the tube in the Z-direction
and is distributed to the nodes at that plane such that the total
load is FZ ¼ 1. A representative stiffness of the structure for the
Z-direction is then calculated as KZ ¼ FZ=ΔZ ¼ 1=ΔZ, based
on the average displacement of the loaded nodesΔZ. For complete-
ness, in this section we also evaluate the stiffness in the Y-direction
(KY). However, the Y-direction stiffness is assumed less impor-
tant because most applications will use aligned coupling in the
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Y-direction, thereby greatly enhancing the total in-plane structural
stiffness.

Fig. 10 shows static analysis for three coupled tube beams with
different geometric properties. The first system corresponds to a
classic zipper-coupled tube (Filipov et al. 2015), in which both
tubes are partially developable and have equal and opposite
Y-projections. The second case is an intermediate case in which
the top tube is partially developable, but the bottom tube has a
shallower Y-projection (ϕY ¼ −10°). The last case is an aligned
coupled case of two identical tubes. The deformed shapes for the
zipper and intermediate tubes are generally uniform, with the beam
deforming with near constant curvature and little local deformation.
The aligned tube system, however, has a varied deformation over its
length, with local deformations occurring. The tube expands sub-
stantially (deforms in the X-direction) despite the fact that the two
ends of the tube are restricted from folding. The side and top geom-
etries changed from the support to the middle of the beam, indicat-
ing local deformations and a squeezing type of motion in which
only portions of the structure fold. The aligned tubes have a smaller
eigenvalue band-gap and are more prone to these types of squeez-
ing deformations.

In Fig. 10 the deformed shapes are scaled such that the maxi-
mum displacement is equal and cannot be used to compare stiff-
ness. Instead, the vertical (KZ) and horizontal (KY) stiffness are
shown in Figs. 10(d and e), respectively, for different configura-
tions. The configuration of the tube is presented as the length of
the tube. When the aligned and zipper tube extend fully, they lay
flat in the X, Y-plane, reaching the maximum length of the flattened
coupling surface (10 units). However, the intermediate tube can
only reach a length of 8.9, at which point the side folds of the bot-
tom tube switch, and the structure retracts. The switching leads the
system to have two separate curves for stiffness, each correspond-
ing to one of the folding sequences (Configuration I or II). In most
scenarios, the classic zipper-coupled tubes have a higher stiffness

than the other two cases, except around the maximum extension of
the intermediate tube. At that point, the lower tube (ϕY ¼ −10°) has
a square cross section and is able to brace the structure in both
directions. The intermediate tube has a stiffer and more flexible
branch, which is typical for many of the reconfigurable coupled
tubes. In scenarios with reconfiguration, we focus primarily on the
stiffer of the two branches.

In the following sections, we look at more generally comparing
the stiffness of coupled tubes with different geometries. Thus, we
use points of interest on the stiffness curves that correspond to
different deployment configurations. For the vertical stiffness
analyses, we obtain the points KZ2, KZ5, KZ8, and KZMAX, repre-
senting the stiffness at configuration lengths of 2, 5, 8, and the peak
(maximum) vertical stiffness at any configuration. Fig. 10(e) shows
that in some configurations the maximum stiffness may provide
misleading results. At a configuration length of 10, both the aligned
and zipper tubes have a maximum horizontal stiffness (KYMAX);
however, in this configuration the systems are completely flat in
the X; Y-plane and have no stiffness in the Z-direction, so they
may not be practically useful. Similarly, it is also important to con-
sider the full extension sequence and possibly different branches.
Although the intermediate tube has the highest KZMAX, its vertical
stiffness is about one fourth of the stiffness of the zipper tubes
when at a configuration length of 2 in the Configuration II folding
sequence.

Bending Modulus of the Tubes

The static analyses can be further postprocessed to calculate
a representative bending modulus for the different coupled tube
beam structures. Assuming the system will deform as a uniform,
slender, simply supported beam with a load applied at the mid-
span, the bending modulus can be back-calculated as IB ¼
FZ � L3=ð48EΔZÞ. The length of the beam is L and the maximum
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Fig. 9. Eigenvalues of coupled curved tube with respect to the length of the system (measured at the coupling surface on the two farthest ends). An
increasing and decreasing horizontal axis represents the two distinct configurations of the tube structure. A large eigenvalue band-gap (β ¼ λ8 − λ7)
is present in all configurations.
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vertical displacement (ΔZ) is assumed to occur at the midspan.
Fig. 11 shows the bending modulus of the zipper, intermediate,
and aligned tube structures with respect to the number of segments
in the beam. The systems are all at the same extended state, cor-
responding to a configuration length of 8 for the 10-segment tube
(e.g., an extended length of 4.8 for a 6-segment tube or 16 for a
20-segment tube). As the number of segments in the systems in-
crease, the bending modulus increases and converges, because a
more pure bending occurs over the length of the system and local
shear deformations are reduced. Practical designers may thus con-
sider using longer and more slender tubular systems with more
segments in order to harness the higher modulus and limit the
shear deformations. However, this would require stacking more
tubes in the Z-direction to achieve the desired total stiffness. Sim-
ilar to the results shown before, the zipper-coupled tube has a
higher stiffness and thus a higher bending modulus than the other
tubes cases. The lower stiffness in the aligned tube can be attrib-
uted to the squeezing deformation motion, which also leads to the
tube expanding in the X-direction. Because the calculated stiff-
ness (e.g., KZ8) and bending modulus for different systems tend
to correspond well, we limit the remainder of the analyses in this
paper to calculating only the representative stiffness. However,
the results of bending moduli for different systems could be useful
for future practical design. During preliminary design, a user may
want to choose the length and bending modulus to optimize for
material usage and stiffness.

Deployable Tubes with Flat (Smooth) Surfaces

With the aim of tailoring these systems for practical applications,
we explore the vertical stiffness of two coupled tubes (a beam
system) that can achieve a flat surface on top when fully deployed.
This geometry is useful for creating deployable slabs, decks, walls,
and other smooth structures. In addition to their functionality, the
deployable systems may be more aesthetically pleasing than the
segmented systems currently available.

First, we explore the change in vertical stiffness when the cross
section transitions from a conventional zipper tube to a system with
a flattened top. Fig. 12 presents two cases in which a conventional
zipper tube is used as a base (ϕZ ¼ ϕYT ¼ −ϕYB ¼ 30°) and is
varied using parameter ϕVAR in order to reach a system with a flat
top. In Case 1 (ϕVAR ¼ ϕZ ¼ ϕYT ¼ −ϕYB), all projections are
varied together, and the systems are always partially developable;
in Case 2 (ϕVAR ¼ ϕZ), only the Z-projection of the coupling sur-
face is varied, and the Y-projections remain constant. The two cases
both approach a case of having a flattened top when ϕVAR

approaches zero.
The vertical stiffness with respect to the parameter ϕVAR is

presented in Fig. 12(b). For clarity, only the folding path that pro-
vides higher stiffness is shown (e.g., the maximum KZ5 from the
folding paths I and II). The results show that the maximum vertical
stiffness (KZMAX) can typically be increased by making the tubes
more square and less zigzagged (by reducing ϕVAR). However, as
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figuration (length of structure). The intermediate tube has a different stiffness for the two folding directions (I versus II); and (e) stiffness in the
horizontal direction (KY ) versus folding configuration (length of structure). Stiffness values of interest for the zipper tube are indicated (e.g., KY5
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ϕVAR approaches zero, the vertical stiffness during deployment con-
figurations (at lengths of 2, 5, and 8) decreases significantly. Thus,
the conventional zipper tube has high stiffness during deployment,
but flattening the tube for practical applications reduces this stiff-
ness significantly. Case 2, in which the Y-projection is maintained,
has a higher stiffness during deployment than the partially devel-
opable tubes; however, it is substantially less stiff than the conven-
tional zipper.

To address the decrease in stiffness from the flattening of the
tube, we next explore how changing the cross sections of the tubes
can be used to tailor the stiffness properties to create a system with
reasonably high vertical (Z-direction) stiffness during deployment.
Straight tubes are defined with a Z-projection of ϕZ ¼ 0° such
that they have a flat top surface, and with ten segment lengths
of l1 ¼ l2 ¼ li ¼ 1. The tubes are defined such that in their initial
configuration they are fully deployed, have a flat top surface,
and have a total span of 10. Because the tubes are straight, it is
possible to have nonsymmetric top and bottom tube projections

and cross sections. Fig. 12 shows that increasing the ϕY projections
can increase the stiffness during deployment; for this reason, here
we explore only the influence of cross section variations. The
Y-projections are kept the same (ϕYT ¼ −ϕYB ¼ 30°), and the cross
section angles are now varied with the parameter θVAR.

Fig. 13 presents three cross section variations: Case 1 (θVAR ¼
−θB), in which only the bottom tube cross section is varied; Case 2
(θVAR ¼ θT ¼ θB), in which the top and bottom cross sections are
rotated in the same direction; and Case 3 (θVAR ¼ θT ¼ −θB), in
which the top and bottom cross sections are rotated in opposite
directions (i.e., appear mirrored about the Y; X-plane). All cross
section variations reduce the peak vertical stiffness ðKZMAXÞ of
the system, but they increase the stiffness during deployment. In
particular, Case 3 substantially increases the vertical stiffness in in-
termediate deployment configurations. Case 3, in which the tube
cross sections are rotated in opposite directions, provides the best
design alternative for slab-type systems in which a flat surface and a
reasonable vertical stiffness are needed simultaneously. This sys-
tem would provide a high orthogonal stiffness during deployment
and would not substantially reduce the peak vertical stiffness. The
structures would be well suited for application in practice, as this
geometry would require the least material in order for the self-
weight to be effectively supported during deployment.

Influence of Tube Geometry on Vertical Stiffness

To explore the influence of reconfiguration and cross section geom-
etry on stiffness at various points of deployment, Fig. 14 compares
three tubes with different Z-projections and cross section geom-
etries (all tubes have the same Y-projection, ϕYT ¼ −ϕYB ¼ 30°).
The first tube is a zipper tube identical to the tube presented in
Fig. 10(a) (ϕZ ¼ 30°). The second tube has a flat top and square
cross sections (ϕZ ¼ 0°). The last tube has a flat top and a skewed
cross section (θT ¼ −θB ¼ −30°).

The kinematic motions of the three tube cases presented in
Fig. 14 are different. The zipper-coupled tube does not reconfigure
and follows one continuous motion from a folded system in the
Y; Z-plane to a flattened system in the X; Y-plane. Over most
of the motion, the zipper tube has a wide and deep profile (i.e., sec-
tion view in the X; Z-plane). Due to this cross section, the structure
typically has higher vertical stiffness when compared with the other
two structures.

The flat system with a square cross section is initially defined
at a fully deployed state. When fully deployed, it has the highest
vertical stiffness, because the side panels are orthogonal to the

0

500

1000

0

200

400

0 50
0

100

200

0 50
0

50

100

150

0303

K
Z

 2
K

Z
 8

K
Z

 M
A

X
K

Z
 5

VAR
 ( ˚ )

VAR
 ( ˚ )

Case 2: 

A
V

R
 =

 3
0˚

A
V

R
5

=
˚

Case 1: 

A
V

R
 =

 3
0˚

A
V

R
5

=
˚

VAR
 = 

Z YT 
= -

YB
= 30˚

VAR
 = 

Z 
= 

YT 
= -

YB

V
er

ti
ca

l s
ti

ff
ne

ss
 K

Z

(a) (b)

Fig. 12. (a) Two variation cases in which the projection angles are varied to create a system with a flat top surface; and (b) vertical stiffness
with respect to the variation of projection for the two cases. The peak KZMAX and stiffness at different configurations are shown (e.g., KZ5 stiffness
at length 5).

5 10 15
0

2000

4000

6000

8000

10000

20

B
en

di
ng

 m
od

ul
us

 o
f 

be
am

 (
I B

)

Number of segments in the beam

Zipper
Intermediate
Aligned

Fig. 11. Bending modulus of the zipper, intermediate, and aligned tube
systems versus the number of segments in the beam. Representative
deformed geometries are shown for the zipper and aligned cases with
6 and 18 segments. The deformed shapes are scaled so that the max-
imum displacement is equal to the cross section width (=1) and do not
necessarily represent stiffness.

© ASCE 04018244-10 J. Struct. Eng.

 J. Struct. Eng., 2019, 145(2): 04018244 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
 o

n 
11

/2
9/

18
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



applied load. The structure can retract in two symmetric motions.
The vertical stiffness for these two motions is the same (the plots for
motions I and II overlap), and the stiffness is close to zero when the
system approaches a stowed configuration (length <6). The profile
(in X − Z) of the tube is more shallow than the zipper, and it
approaches a triangular, accordionlike shape when stowed.

The skewed cross section system has two different reconfigura-
tion motions. Motion I has a deeper profile (in X − Z) and a higher
stiffness in the vertical direction. The profile through motion I
deployment is deeper and wider than the flat tube with a square
cross section; however, it is shallower than the zipper tube in the
same configurations. Motion II has a narrow profile in X − Z and
low out-of-plane stiffness.

The vertical depth of the tube and the internal volume of the
system relate to the stiffness properties. Fig. 14(b) shows that
deeper profiles in the Z-direction and a larger internal volume (dur-
ing deployment) lead to higher stiffness, although these do not
correlate linearly. The behavior can be explained by looking at the
system as a three-dimensional beam for which a deeper section
leads to a higher bending modulus. The deployable structures are
stiffest when they are close to fully deployed. At deployed configu-
rations their cross sections are open and they behave like deep
beams. When retracting, all tubes become more flexible because
their profile approaches more of a triangular wave and accordion-
like shape. Narrow profiles and triangular geometry lead to lower
bending stiffness. Finally, it should be noted that the skewed tube
has one reconfigurable motion of higher out-of-plane stiffness.

Verification of Stiffness Characteristics

In Fig. 15, physical models of the flat and skewed coupled tubes are
used to demonstrate the concepts of stiffness properties at different
points of deployment. The models were created with paper card
stock with a weight of 160 g=m2 and approximate thickness of
0.25 mm. The folds were created by fully perforating the material
with cuts of 0.5 mm spaced evenly every 1 mm. To achieve a length
to thickness ratio of L∶t≈ 100, the cross section dimensions and
projection lengths were all set to 25 mm. For simplicity, one unit
(panel dimension) is equal to 25 mm and the extension (ex) is clas-
sified based on the number of units; for example, an extension of
ex ¼ 10 is a fully extended system, while a system with ex ¼ 8 is

a structure folded to a span of 200 mm. These unit extensions cor-
respond to the configuration of the tubes presented previously in
Fig. 14. Models were constructed of the flat and skewed variations
to show the difference in stiffness that each system has. Each of the
coupled tube structures weighed around 10 g, but both could carry
loads that were much greater than their self-weight. The models
were loaded with steel weights, and displacements at the midpoint
of the structures (Δ) were measured from photographs before and
after loading. The camera was placed 50 cm directly in front of
the beams, and a ruler was placed behind the samples to visually
approximate the displacements in the photographs. Fig. 15 shows
that, when fully extended, both systems carried a 500 g weight with
little deflection (Δ ¼ 1 mm for the flat and Δ ¼ 2 mm for the
skewed). The deformations in the skewed system were primarily
localized at the supports. When retracted, the flat system became
more flexible and experienced large deflections when loaded with
200-g (Δ ¼ 16 mm) and 100-g (Δ ¼ 19 mm) weights at exten-
sions of ex ¼ 8 and ex ¼ 5, respectively. The skewed system
retained reasonable stiffness at these configurations and carried a
200-g weight without a substantial deflection (Δ ¼ 4 mm at ex ¼
8 and Δ ¼ 3 mm at ex ¼ 5). Only the stiff motion (I) branch is
shown for the skewed tube; the flexible branch experienced a large
deflection when retracted and loaded with a smaller weight (100 g).
The experiments presented in Fig. 15 serve only to demonstrate
the concept that the coupled tube systems can carry more than
their self-weight during deployment. They can support large loads
(e.g., 20× self-weight) while effectively keeping displacements rel-
atively low (e.g., Δ=L ¼ 4=200 ¼ 2%). A rigorous experimental
program with multiple samples should be performed to quantita-
tively verify and evaluate the stiffness properties of these and
related systems.

The parametric study in Fig. 16 shows the influence of the elas-
tic modulus E, the thickness t, and the fold length scale parameter
L� on the stiffness. The skewed structure with ten segment lengths,
a flat top, and a cross section of θT ¼ −θB ¼ −30°[the same cross
section as in Fig. 14(e)] is evaluated by changing each parameter
separately. Both the maximum stiffness and the stiffness at a de-
ployed length of 5 scale linearly with E. This scaling is to be ex-
pected, because the stiffness of all components of the origami scale
directly with the elastic modulus. Stiffness also scales approxi-
mately linearly with the thickness t. This scaling shows that the
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Fig. 14. Influence of profile geometry on stiffness: (a) vertical stiffness of the zipper, flat, and skewed tubes with ten segment lengths. Solid and
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Fig. 15. Physical verification: (a) flat tube system with initially square cross section; and (b) the flat system with a skewed cross section. The tubes,
loaded in different configurations, are shown at approximate extension ex in terms of number of segments and the applied weight w.
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stiffness is directly related to the stretching and shearing of the pan-
els (whose stiffness scales with t) and not to the bending of panels
or fold lines (both of which scale with t3). Increasing the length
scale parameter L� (thereby decreasing the fold stiffness) only
slightly decreases the overall stiffness of the structure and has a
negligible effect when compared to other parameters. This obser-
vation further verifies that stretching and shearing are the primary
means of carrying loads in this skewed variation of zipper tube
structures. Carrying loads through stretching and shearing is more
efficient than bending and allows for a global moment to be gen-
erated over the depth of the system. The parametric study further
shows that the stiffness could be increased by modifying the
material properties (E) and thickness (t). We expect that a physical
demonstration would scale appropriately with other materials
and would allow for practical structures that can carry more than
their self-weight. However, when attempting practical extensions,
we recommend that detailed analytical studies be performed to
ensure that the displacements remain reasonably low (e.g., within
1%–2%). For example, we do not believe that our analysis
effectively represents the deformed state and stiffness of the flat
prototype shown at the bottom of Fig. 15(a). Prior to practical

implementation, systematic experiments should be performed to in-
vestigate how material properties and fold characteristics influence
the performance of such structures.

Structural Systems with Rise

In this section, we investigate the stiffness of different simply sup-
ported geometries that can span a distance and also provide a rise
and clearance. First, three roof shapes are compared, and the influ-
ence of increasing rise on total stiffness is explored. A gable, a
barn (gambrel), and curve-shaped roofs are created with an initially
flat top (Z-projection of ϕZ ¼ 0°) and with skewed cross sections
(θT ¼ −θB ¼ −30°). The tubes have twelve segments with a con-
stant segment length of l1 ¼ l2 ¼ li ¼ 1. The gable roof is con-
structed with two straight tube sections and with one cross
section rotation in the middle of the span (ϵ7 ≠ 0). By increasing
the cross section plane rotation, the rise increases and the span of
the structure decreases. The barn (gambrel) roof consists of four
straight tube sections, with three equivalent plane rotations (ϵ4 ¼
ϵ7 ¼ ϵ10 ≠ 0). The curved shape is defined with the projection
plane rotated equivalently over the length with ϵ2 ¼ ϵ3 ¼ ϵi.
Schematics and the span versus rise relations for the three structures
are shown in Fig. 17.

A three-point bending test similar to that done in previous
sections is used to explore the stiffness of the simply supported
structures with rise. The analysis is linear elastic, and small defor-
mations of the structures are considered. Fig. 18 shows the vertical
stiffness of the roof structures with respect to their deployment.
Because all the structures have different dimensions, we show in-
termediate stiffness with respect to the maximum span dimension;
for example, KZ1=4s corresponds to the vertical stiffness when the
deployment is at quarter span.

To allow for a straightforward comparison with previous sec-
tions, the systems with a rise of r ¼ 0 correspond to straight tubes.
As the rise of the barn and the curved systems increases, they have a
higher maximum vertical stiffness KZMAX. This increase is likely
because the curved geometry better distributes the in-plane loads
from the load to the support. Curved geometries are well known
to be efficient at carrying vertical loads between two supports
[e.g., Tyas et al. (2011)]. When loaded at a fully deployed state,
the structures experience a spread with the two ends moving apart
[Fig. 18(a)]. The gable has a lower peak stiffness for a rise higher
than about 1; this may be due to the observed spreading behavior.

Elastic Modulus (E) Thickness (t) L*

0.001 0.01 0.1105 106 107 10 100 1000

104

103

102

101

100

103

102

101

K
Z

 M
A

X
K

Z
 5V
er

ti
ca

l s
ti

ff
ne

ss
 K

Z

1

11

1

Fig. 16. Influence of model parameters on the peak vertical stiffness
KZMAX and the stiffness at a deployment length of 5 (KZ5). Stiffness
scales linearly with the elastic modulus and thickness, and it is not sig-
nificantly affected by the fold line length scale L�. The square marker
corresponds to the initial skewed structure in Fig. 14.
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All three roof systems have a peak stiffness near their full de-
ployment, and the vertical stiffness is much lower in intermediate
deployment stages (similar to the behavior of straight tube struc-
tures). In the intermediate deployment stages the vertical stiffness
decreases with increased rise. The curved profiles lead to a more
accordionlike shape during deployment. The gable roof tends to
have a higher stiffness during deployment; this is likely because
the cross section projection is only rotated at one point. In practice,
the gable geometry presented here may pose problems, because
high stress concentrations would develop at the apex of the gable.
Changing the cross sections of these systems leads to results similar
to those observed in straight tubes in which skewed sections lead to
higher stiffness (Filipov 2016).

Concluding Remarks

This paper presents a generalized approach for creating coupled
origami tubes by projecting quadrilateral cross sections in three di-
mensional space. The framework allows for the construction of
both straight and curved tubes that can have segments of different
lengths and cross sections. When tubes are coupled and stacked in
multiple directions, it is possible to create flat and smooth deploy-
able sandwich surfaces. The tube systems are created to be both
rigid and flat foldable, meaning that they can fold into a compact
two-dimensional state with kinematic motion facilitated by folding
only along fold lines. Depending on the cross section and projec-
tion properties, the tubes could be partially developable, meaning
that parts of them could be made by folding a single flat sheet.
Some of the coupled tube systems could be reconfigurable, mean-
ing that they can deploy and retract through two or more motions.
The folding motions have different kinematics and result in differ-
ent physical properties of the tubes.

The orthogonal stiffness of the coupled tubes was explored by
performing three-point bending analyses and physical tests. Con-
ventional zipper-coupled tubes have a higher bending stiffness than
aligned tubes because squeezing motions are restrained. However,
when modifying the zipper geometry to create structures with a flat

surface, the design can result in systems with a lower orthogonal
stiffness, especially at intermediate configurations during deploy-
ment. To improve the stiffness during deployment, it is possible to
use skewed cross sections for the coupled tube structures. The
skewed cross sections and more zigzagged projection geometries
tend to create more open tube systems that have a higher bending
modulus, which would be useful for practical structures. Physical
prototypes of the skewed coupled tubes carried loads much larger
than their self-weight with little observed deflection. The work also
explored nonstraight structures that can create a rise, including the
shapes of a gable, a barn (gambrel), and curved roof types. Increas-
ing the rise (higher curvature) of these systems tends to increase the
peak stiffness but reduces stiffness at intermediate deployment
states. Based on the aforementioned motivation (e.g., see the intro-
duction), the coupled tube sandwich systems presented in this work
could lead to deployable structures where both high out-of-plane
stiffness and geometric versatility (e.g., smooth curved surfaces)
are required. However, there are still open research questions that
need to be addressed to transition these structures into practical
implementation. The cross-sectional width and height, length of
segments, number of segments, number of stacked tubes, and thick-
ness to length ratios could be optimized to improve the stiffness and
functionality for specific design problems. Additionally, materials,
fabrication methods, connections, supports, and actuation mecha-
nisms all need further investigation when structures are conceived
and designed for use in practice. This work provides a basis for
these proposed future investigations.
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