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Highlights
• Exploring arbitrarily-shaped polygons/polyhedra in computational mechanics.
• The VEM is established for elastodynamics with explicit time integration.
• Novel diagonal matrix-based stabilization scheme improves VEM performance (and accuracy).
• The critical time step is evaluated using the maximum eigenvalue of a system of equations.

Abstract

While the literature on numerical methods (e.g. finite elements and, to a certain extent, virtual elements) concentrates on
convex elements, there is a need to probe beyond this limiting constraint so that the field can be further explored and developed.
Thus, in this paper, we employ the virtual element method for non-convex discretizations of elastodynamic problems in 2D and
3D using an explicit time integration scheme. In the formulation, a diagonal matrix-based stabilization scheme is proposed to
improve performance and accuracy. To address efficiency, a critical time step is approximated and verified using the maximum
eigenvalue of the local (rather than global) system. The computational results demonstrate that the virtual element method is
able to consistently handle general nonconvex elements and even non-simply connected elements, which can lead to convenient
modeling of arbitrarily-shaped inclusions in composites.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

General polygonal and polyhedral elements have great potential in the field of computational mechanics
[1]. Consideration of arbitrary element shape leads to great flexibility on domain discretization and associated
computational schemes, e.g. easy treatment of representative volume elements, mesh refinement, coarsening and
adaptivity. When the finite element method (FEM) is considered with arbitrarily shaped polygonal and polyhedral
elements, the construction and integration of shape functions pose major challenges, especially in three dimensions
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(3D). For example, the Wachspress shape functions [2] are limited to convex polyhedra [3], while the shape functions
from the Mean Value coordinates are applicable to ones with simplicial faces [4]. Alternatively, harmonic shape
functions [5,6] and maximum-entropy shape functions [7,8] can be utilized for more general polyhedra, but, in
practice, their values and gradients need to be computed numerically at every integration point of every element in
the mesh, which can become cumbersome, especially in 3D. In terms of numerical integration, the shape functions of
polygonal and polyhedral finite elements are typically non-polynomial — thus, standard Gauss quadrature will lead
to consistency errors that do not vanish under mesh refinement [9]. As a result, integrating non-polynomial shape
functions and their gradients within general polyhedra typically require numerous quadrature points [9], together
with schemes to correct consistency errors [6,9–11].

The virtual element method (VEM) has been proposed (e.g., [12,13]) to consistently handle general polygonal
and polyhedral elements. In contrast to the standard FEM, the VEM shape functions of each element are implicitly
defined such that their projections onto the space of polynomials of suitable order can be exactly computed, and the
approximation of the discrete bilinear form decomposed into consistency and stability terms. Because of the implicit
shape functions, the VEM provides great flexibility on element shape, e.g., convex, non-convex, and non-simply
connected [14]. The VEM has been successfully utilized to solve a large range of problems, including elliptic
partial differential equations (PDEs) [15], parabolic PDEs [16,17], hyperbolic PDEs [18,19], elastostatics [20–24],
fracture mechanics [25,26], topology optimization [27–29], Stokes and Navier–Stokes fluids [30–32], and others.
For example, Beirão da Veiga et al. [30] defined a virtual element space so that the computed velocity field is
divergence-free for Stokes and Navier–Stokes problems. Chi et al. [21] demonstrated that a displacement-based
VEM formulation did not provide volumetric locking with a nearly incompressible material. Wriggers et al. [33]
utilized VEM to efficiently handle non-matching meshes for contact problems. Because the VEM field is constantly
expanding, then the aforementioned references are just an incomplete sample.

In this study, the VEM is tailored to consistently handle general nonconvex elements for elastodynamic problems
with explicit time integration in both 2D and 3D. A diagonal matrix-based stabilization scheme is proposed to
enhance the accuracy of the VEM solution, and a critical time step is approximated using the maximum eigenvalue
of the local system. The computational results demonstrate that the VEM is able to consistently handle general
nonconvex, and even non-simply connected (e.g., one with a hole in the interior) elements. A summary regarding
the remainder of this paper follows. Section 2 addresses the basic VEM formulation, and Section 3 details the
analytical estimation of the critical time step. Afterwards, Section 4 provides elastodynamic computational results.
Finally, Section 5 presents concluding remarks, including the key findings of the present study.

2. Virtual element method formulation

Consider an elastic solid Ω ∈ Rd with ∂Ω being its boundary and d being the problem dimension (d = 2 for 2D
problems and d = 3 for 3D problems). A solid is subjected to an applied traction (t) on part of its boundary (∂Ωt),
and an applied displacement field (u0) on the other part (Ωu), such that ∂Ωt ∪∂Ωu = ∂Ω and ∂Ωt ∩∂Ωu = ∅. Based
on the principle of virtual work, the weak form of the governing equation for elastodynamic problems is given by∫

Ω

v · ρ0üdx +

∫
Ω

ϵ (v) : σ (u) dx =

∫
∂Ωt

v · tdx ∀v ∈ K0 (1)

where u and ü are the displacement and acceleration vectors, and ρ0 is the material density. Additionally, v is a
virtual displacement field that vanishes on ∂Ωu and K0 is a subset of the space of admissible displacements (K).
To compute the stress tensor (σ ), the linear isotropic elasticity tensor (C) is employed with the linearized strain
tensor (ϵ), i.e., σ (u) = Cϵ (u) as usual.

Then, a solid (Ω ) is discretized into generic elements (E), i.e., non-overlapping polygons or polyhedra (with
planar faces only), which leads to a discretized solid (Ωh). A generic polyhedron (P) consists of four or more
polygonal faces (F), while a generic polygon (F) consists of three or more edges (e). Notice that whenever we have
definitions that are independent of dimension (d), we use E to denote a generic element in the mesh. Additionally,
polyhedral meshes with planar faces may be generated using a few approaches [34–36], while polyhedral elements
with non-planar faces can be handled by, for example, a subtriangulation technique [21].

To consistently handle arbitrarily nonconvex elements, e.g., the ones shown in Fig. 1, in the following subsections,
the global and local virtual displacement spaces are first defined in conjunction with local projection operators.
Based on those definitions, the stiffness and mass matrices of an element are then constructed, which includes the
consistency and the stability terms.



K. Park, H. Chi and G.H. Paulino / Computer Methods in Applied Mechanics and Engineering 356 (2019) 669–684 671

Fig. 1. Example of nonconvex polygonal and polyhedral elements: (a) bird polygon with nnel = 50, where nnel denotes the number of
nodes per element, (b) matrix polygon where edges are non-simply connected, (c) “V” letter polyhedron with nnel = 16, and (d) pegasus
polyhedron with nnel = 132.

2.1. Virtual element spaces in 2D and 3D

The global displacement space (Kh) on Ωh is defined as

Kh =
{
vh ∈ K : vh |E ∈ [Vk (E)]d , ∀E ∈ Ωh

}
. (2)

The definition suggests that, within an element E , any admissible displacement field vh in Kh belongs to a local
virtual space [Vk (E)]d , which is assumed to contain all the polynomials of order k and whose definition is the
focus of the remaining subsection. Following the technique proposed in [37], we first introduce the local virtual
space Vk (F) in 2D and, building upon Vk(F), we then provide the definition of Vk(P) in 3D.

To define the 2D local virtual space, we first introduce a preliminary local virtual space within a polygon (F)
as

Ṽk(F) =
{
vh ∈ H1 (F) : ∆vh ∈ Pk(F) in F, vh|e ∈ Pk(e) ∀e ∈ ∂ F

}
, (3)

where Pk(·) is the space of polynomial functions of order k and ∆ stands for the Laplacian operator. By definition,
the preliminary space Ṽk(F) contains functions that have kth order variations on the boundary of F and kth order
Laplacians in the interior of F . Because Pk (F) ⊂ Ṽk(F), one can define a projection operator of functions in Ṽk(F)
onto Pk (F), i.e., Π ∇

k vh ∈ Pk (F), such that∫
F

∇
(
Π ∇

k vh
)
· ∇ pkdx =

∫
F

∇vh · ∇ pkdx ∀pk ∈ Pk (F) (4)

and ∑
xv∈F

Π ∇

k vh (xv) =

∑
xv∈F

vh (xv) if k = 1∫
F
Π ∇

k vhdx =

∫
F

vhdx if k ≥ 2
(5)

where pk is a polynomial function of order k, and xv is the position vector of vertex v of F . The projection Π ∇

k vh

is uniquely determined using integration by parts of Eq. (4),∫
F

∇
(
Π ∇

k vh
)
· ∇ pkdx =

∫
∂ F

vh∇ pk · nedx −

∫
F

vh∆pkdx (6)

where ne is an outward normal vector on the element boundary, and the following three pieces of information are
used:

values of vh (xv) ∀xv ∈ F (7)

values of vh
(
xi

e

)
∀e ∈ ∂ F, i = {1, 2, . . . , k − 1} (8)
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moment of vh,

∫
F

vh pk−2dx ∀pk−2 ∈ Pk−2 (F) (9)

where xi
e is the ith integration point of the Gauss–Lobatto rule on the edge. In fact, the first term on the right hand

side of Eq. (6) is determined using vh
(
xi

e

)
with the Gauss–Lobatto rule [Eq. (8)], and the second term is evaluated

using the moments of vh [Eq. (9)]. We note that the detailed calculation procedures of the projection operator can
be found in the literature [13,38]. Finally, the local virtual space [Vk(F)] is defined as

Vk(F) =

{
vh ∈ Ṽk(F) :

∫
E

(
Π ∇

k vh − vh
)

qdx = 0 ∀q ∈ (Pk/Pk−2)
}

(10)

where Pk/Pk−2 indicates the polynomial space Pk (F) that is L2 orthogonal to Pk−2 (F). With the definition in
Eq. (10), one can show that the pieces of information in Eqs. (7)–(9) constitute a complete set of degrees of
freedom (DOFs) of Vk(F) [37].

The local virtual space Vk(P) in 3D can be constructed by assuming that the functions on every face F ∈ ∂ P
belong to the local space Vk(F) defined in Eq. (10). Similarly, we first introduce a preliminary local virtual space
Ṽk(P) as

Ṽk (P) =
{
vh ∈ H1 (P) : ∆vh ∈ Pk (P) in P, vh |F ∈ Vk (F) ∀F ∈ ∂ P

}
. (11)

Then, the projection operator Π ∇

k from Ṽk (P) on to Pk (P) is defined in the same way as in the 2D case [17],
i.e., Eqs. (4)–(6), and can be uniquely determined using the following four pieces of information: the three pieces
of information, which are the same as those for the 2D case, i.e., Eqs. (7)–(9), plus another piece of information
given by

moment of vh,

∫
P

vh pk−2dx ∀pk−2 ∈ Pk−2 (P) (12)

Finally, the local virtual space in 3D Vk(P) can be formally defined by Eq. (10) by replacing F with P , and one
can show that the aforementioned four pieces of information [Eqs. (7)–(9) plus Eq. (12)] constitute a complete set
of degrees of freedom (DOFs) of Vk(P) [37].

2.2. L2 Projection operators

For the discretization of the weak form of the governing equation, associated with the bilinear form, two L2

projection operators are utilized. From now on, we will not distinguish between F and P , and will use E instead
to denote a generic element in both 2D and 3D. For an arbitrary function vh ∈ Vk (E), the first projection operator,
Π 0

k : Vk (E) → Pk (E), is defined as∫
E

(
Π 0

k vh
)

pkdx =

∫
E

vh pkdx ∀pk ∈ Pk(E) (13)

The projection Π 0
k vh can be exactly computed using the degrees of freedom of vh for k ≤ 2 because the projection

operator of Π 0
k is the same as the projection operator of Π ∇

k when the polynomial order is less than or equal to
2 [37]. For cases of k > 2, the projection operator Π 0

k will be different from Π ∇

k , but can be exactly computed
using the DOFs of vh and Π ∇

k vh [37]. Next, for the second projection operator, the gradient of vh is projected to
[Pk−1(E)]d , i.e., Π 0

k−1 : [Vk (E)]d
→ [Pk−1(E)]d , and then the projection Π 0

k−1∇vh is defined as∫
E

(
Π 0

k−1∇vh
)
· pk−1dx =

∫
E

∇vh · pk−1dx ∀pk−1 ∈ [Pk−1(E)]d (14)

where pk−1 is a vector of k − 1 order polynomials, which consist of scaled monomial functions of order k − 1. The
projection Π 0

k−1∇vh is evaluated by applying integration by parts, which results in∫
E

(
Π 0

k−1∇vh
)
· pk−1dx =

∫
∂ E

vhpk−1dx −

∫
E

vhdiv (pk−1) dx (15)

The first and second terms on the right hand side of Eq. (15) are exactly computable using the set of DOFs and an
integration rule for polynomials on E .
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2.3. Mass and stiffness matrices

From the virtual kinetic energy term in Eq. (1), the local consistent mass matrix is first constructed. Assuming
element E has n nodes, we write the consistent mass matrix of E as

ME = ME ⊗ Id (16)

where Id ∈ Rd×d is the identity matrix. The Kronecker product (⊗) of two matrices (A ∈ Ri× j , B ∈ Rk×l) is
defined as

A ⊗ B =

⎡⎢⎣a11B · · · a1 j B
...

. . .
...

ai1B · · · ai j B

⎤⎥⎦ ∈ Rik× jl (17)

Then, ME is expressed as

ME =

∫
E

ρ0φ
T φdx =

∫
E

ρ0
(
Π 0

k φ
)T

(Π 0
k φ)dx +

∫
E

ρ0
(
φ − Π 0

k φ
)T

(φ − Π 0
k φ)dx (18)

where φ = [φ1, . . . , φn] and Π 0
k φ = [Π 0

k φ1, . . . ,Π
0
k φn] are row vectors of the shape functions (φi ) and their

projections. Employing the VEM, we approximate Eq. (18) as

ME ≈ ME,c + ME,s (19)

where ME,c and ME,s are approximations of the first and second terms on the right-hand-side of Eq. (18),
respectively. The first term on the right hand side of Eq. (18) is the consistency term (ME,c) of the element mass
matrix where the (i, j)th component of ME,c can be evaluated exactly as:

[
ME,c

]
i j =

∫
E

ρ0
(
Π 0

k φi
)

(Π 0
k φ j )dx =

n pk∑
α=1

n pk∑
β=1

[(
P0

k

)T
]

iα

∫
E

mαmβdx
[
P0

k

]
β j (20)

where mα are scaled monomial functions and n pk is the number of scaled monomials of degree k. Additionally, P0
k

is the matrix representation of the projection operator Π 0
k . Additionally, in this study, a linear polynomial space is

used on the element boundary, i.e., k = 1, and thus the scaled monomials are

m1 = 1, m2 =
x − xc

hE
, m3 =

y − yc

hE
for d = 2

m1 = 1, m2 =
x − xc

hE
, m3 =

y − yc

hE
, m4 =

z − zc

hE
for d = 3

(21)

where (xc, yc, zc) is the position of the centroid of element E , and hE is a characteristic size of E . The second term
on the right hand side of Eq. (18) is the stability term (ME,s), which can be approximated as

ME,s = ρ0 |E |
(
In − P0

k

)T (
In − P0

k

)
(22)

in which |E | is the element volume, and In ∈ Rn×n is the identity matrix. Notice that a numerical integration
of polynomials over an element is needed for the construction of the consistent mass matrix. To exactly integrate
polynomials over a nonconvex domain, Green’s integral formula [39] is utilized for 2D, and thus no sub-triangulation
within an element is needed in this study. For the 3D case, the sub-tetrahedralization within an element is used to
integrate polynomial functions while more general integration rules, such as the one by Chin et al. [40], could
also be adopted. However, if one employs a lumped mass matrix with a row-sum technique [41], the numerical
integration can be avoided for linear virtual elements in both 2D and 3D.

Next, based on the virtual strain energy term in Eq. (1), we construct the local stiffness matrix. Similarly to the
local consistent mass matrix case, the local stiffness matrix of an element E also consists of a consistency term
(KE,c) and a stability term (KE,s), i.e., KE ≈ KE,c + KE,s [23]. The consistency term, KE,c is

KE,c =

∫
E

BT CBdx (23)
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Fig. 2. Illustration of nonconvex meshes for the critical time step approximations: (a) pegasus mesh, (b) bird mesh, (c) particle mesh in
which the reference particle is shaded dark blue and is surrounded by the matrix (shaded light blue), and (d) “VEM” mesh — there are 7
colors (or shades in B&W) which correspond to each element in the patch (7 elements per VEM patch) . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where C is a matrix representation of C, and B provides the relation between displacement and strain, i.e.,

B =

d∑
α=1

[
Π 0

k−1∇φ
]
α

⊗ Bα (24)

in which the (i, j)th component of ∇φ is the partial derivative of the jth implicit shape function with respect to the

ith coordinate, i.e., [∇φ]i j = ∂φ j/∂xi . Then, Π 0
k−1∇φ is the projection of each component of ∇φ, and

[
Π 0

k−1∇φ
]
α
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Fig. 3. Illustration of element patches: (a) Particle patch composed of 2 elements (i.e., matrix and particle elements), and (b) “VEM” patch
displaying 7 elements (i.e., 4 background elements and 3 letter elements).

Fig. 4. Geometry and boundary conditions for the elastodynamic analysis.

denotes the αth row vector of Π 0
k−1∇φ, which corresponds to the gradient direction. Matrices Bα are

B1 =

⎡⎣1 0
0 0
0 1

⎤⎦ , B2 =

⎡⎣0 0
0 1
1 0

⎤⎦ for d = 2

B1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , B2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0
1 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , B3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 1
0 0 0
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ for d = 3

(25)
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Fig. 5. Nonconvex meshes for the elastodynamic analysis: (a) pegasus mesh, (b) bird mesh, (c) particle mesh, and (d) “VEM” mesh.

The stability term of the element stiffness matrix is constructed as

KE,s = KE,s ⊗ Id (26)

where KE,s is given as

KE,s = αE
(
Id − P0

k

)T (
In − P0

k

)
(27)

Previously, the stability term was scaled using a scalar value (αE ) such as the trace of the elasticity tensor [21,22].
Dassi and Mascotto [42] utilized the diagonal term of the consistency matrix to construct the stability term. In this
study, to further improve the accuracy of computational results, a diagonal matrix (Λ) is defined as

KE,s =
(
In − P0

k

)T
Λ

(
In − P0

k

)
(28)

The components of the diagonal matrix are given as

Λi i = max
([

KE,c
]

i i , α0
tr (C)

nC

)
(29)

where nC is the size of the elasticity matrix, and α0 is a non-dimensional parameter associated with a lower bound of
the diagonal terms of KE,s . A lower bound of stiffness is specified using the elasticity matrix (C) because stiffness
obtained from

[
KE,c

]
i i can be very small for a highly non-convex element with a larger number of nodes. In this

study, α0 is selected as 1/3 and 1/9 for 2D and 3D, respectively. We note that alternative selections of the stability
term can be found in the literature [21,42].

3. Critical time steps

We discuss the estimation of the critical time step with respect to the efficiency of the resulting VEM framework.
The critical time steps are estimated using the maximum eigenvalues of the global and local systems. Because
solving an eigenvalue problem with a large system is computationally expensive, we explore the the use of the
maximum eigenvalue of the local system to approximate the critical time step for explicit time integration with
nonconvex meshes. A few examples illustrate the discussion.



K. Park, H. Chi and G.H. Paulino / Computer Methods in Applied Mechanics and Engineering 356 (2019) 669–684 677

Fig. 6. Convergence for the nonconvex meshes using VEM with the diagonal matrix-based stabilization: (a) Pegasus mesh, (b) bird mesh,
(c) particle mesh, and (d) “VEM” mesh.

3.1. Estimation of critical time steps

A critical time step is essential to achieve a stable solution in explicit time integration. For the estimation of a
critical time step, the maximum eigenfrequency (ωmax) of a system is utilized, and thus a critical time step (∆tcr )
for linear elastic problems is given as [41],

∆tcr =
2

ωmax
(30)

For an accurate approximation of a critical time step, a global system of stiffness and mass matrices is used. Then,
an eigenvalue problem of a global system is solved, i.e.,

det
(
−ω2M + K

)
= 0 (31)
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Fig. 7. Convergence for the nonconvex meshes using VEM with the scalar-based stabilization: (a) pegasus mesh, (b) bird mesh, (c) particle
mesh, and (d) “VEM” mesh.

where K and M are the global stiffness and mass matrices, respectively, and ω is an eigenvalue of the system.
Alternatively, because the calculation of the maximum eigenvalues for a large global system (ωG

max) is computa-
tionally expensive, a critical time step is approximated by the maximum eigenvalue of a local system (ωL

max) of
an element stiffness matrix (KE ) and an element mass matrix (ME ), i.e., det

(
−ω2ME + KE

)
= 0. Because the

maximum eigenvalue of a local system is greater than the maximum eigenvalue of a global system, a critical time
obtained from a local system is more conservative than a critical time step resulted from a global system [43,44].

3.2. Examples

For the estimation of the critical time steps, four types of nonconvex meshes are utilized, i.e., pegasus, bird,
particle and “VEM” meshes, as shown in Fig. 2. Six by six repetitive patterns are placed within a unit square
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Fig. 8. Verification of the critical time step.

Table 1
Mesh statistics and estimated critical time steps for the pegasus, bird, particle and “VEM” meshes.

Pegasus mesh Bird mesh Particle mesh “VEM” mesh

Number of elements 36 48 72 252
Number of nodes 986 877 193 1399
2/ωG

max 0.7823 × 10−3 0.6705 × 10−3 2.3557 × 10−3 0.4329 × 10−3

2/ max(ωL
max) 0.7333 × 10−3 0.4051 × 10−3 1.0104 × 10−3 0.3936 × 10−3

domain. The repetitive patterns of the pegasus and bird meshes are generated using Escher’s tessellation1 [45], and
the patterns on the square boundary are cropped to fit with the square domain. For the particle mesh [Fig. 2(c)], a
pattern consists of two elements, i.e., a square element with a rectangular hole and a rectangular element to fill the
rectangular hole [see Fig. 3(a)]. Then, a rectangular hole and a rectangular element are rotated form 0o to 180o

along the horizontal direction. For the “VEM” mesh [Fig. 2(d)], one patch consists of seven elements, i.e., three
elements of letters and four elements of background, as shown in Fig. 3(b). The elastic modulus and the Poisson’s
ratio are assumed as 1000 and 0.25, respectively, with the density being unit. Additionally, the consistent mass
matrix is diagonalized by scaling the diagonal terms of the consistent mass matrix, named as a special lumping
technique [41], which provides a positive nodal mass for nonconvex elements.

The critical time steps are estimated using the maximum eigenvalues of the global and local systems, and the
corresponding results are summarized in Table 1. The critical time steps obtained from the maximum eigenvalue
of the local system are about 43∼94% of those obtained from the global system. Because solving an eigenvalue
problem with a large system is computationally intensive, the use of the maximum eigenvalue of the local system
can be a good candidate to approximate the critical time step of nonconvex meshes in the explicit time integration.

4. Elasto-dynamic examples

The use of nonconvex meshes for elastodynamics is verified using the presented VEM framework. For a
representative elastodynamic example, the geometry and boundary conditions are illustrated in Fig. 4. The cantilever
has a length (L) of 2 with the rectangular cross section of 0.1 by 0.1. A concentrated force, P (t) = P0 sin(π t),
is applied at the tip of the cantilever for 0 ≤ t ≤ 1, and then the force is set to zero for t > 1. The amplitude of

1 The reader is referred to the official website of the great artist M.C. Escher: http://www.mcescher.com/.
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Fig. 9. (a) Variation of elastic modulus of particles, and (b) computational result with inclusions.

the sinusoidal force (P0) is 1, and the elastic modulus (E) and Poisson’s ratio (ν) are 1000 and 0.25, respectively,
with the density of 0.016308. Additionally, the time step is estimated on the basis of the maximum eigenvalue of
a local system, and the central difference method is utilized for the explicit time integration.

4.1. Two-dimensional example

Four types of nonconvex meshes are generated within the rectangular domain (e.g., Fig. 5). For each mesh type,
four virtual element meshes are generated while increasing the number of the mesh patterns. For the pegasus, bird,
and particle meshes, 40 × 2, 60 × 3, 80 × 4, and 120 × 6 patterns are generated, while 10 × 2, 20 × 4, 30×6,
and 40 × 8 patterns are generated for the “VEM” meshes.
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Fig. 10. Extruded nonconvex meshes for three-dimensional analysis: (a) pegasus mesh, and (b) “VEM” mesh.

The convergence of the computational results for the nonconvex meshes is demonstrated in Fig. 6. The
displacement (u p) and time (t) are nondimensionalized as u p E I/P0L3 and t/T , respectively, where I is the second
moment of area and T is the natural period of the cantilever. For the pegasus, “VEM” and particle meshes [Fig. 6(a),
(c) and (d)], the computational results show monotonic convergence to the analytical solution. However, the bird
mesh [Fig. 6(b)] does not display monotonic convergence, which may result from an error cancellation in the coarse
discretization. For instance, when the stability term is underestimated, the corresponding solution becomes flexible
while the discrete solution is generally stiffer than analytical solution. Thus, an error cancellation is expected. One
should note that the contribution of the stability term is relatively large for a large element size, while vanishing
under mesh refinement. Therefore, if one further refines the bird mesh, then monotonic convergence is expected.

Additionally, the computational results with the scalar-based stabilization scheme [Eq. (27)] are illustrated in
Fig. 7 for comparison. Fig. 7 demonstrates monotonic convergence of the computational results to the analytical
solution for all meshes, while the differences between the computational results and the analytical solution are
quite large, especially for the pegasus and bird meshes. In summary, the diagonal matrix-based stabilization scheme
[Eqs. (28)–(29)] significantly improves the solution quality of the VEM for nonconvex meshes while a monotonic
convergence is not guaranteed because of error cancellation.

The critical time step is computationally verified using the pegasus mesh with the 60 × 3 grid. The maximum
eigenvalues of the global system and the local system are 93079.6 and 107696.4, respectively, which leads to the
corresponding critical time step of 2.1487 × 10−5 and 1.8571 × 10−5. Then, three computational simulations are
performed with ∆t of 1.857 × 10−5, 2.1486 × 10−5 and 2.1488 × 10−5. Fig. 8 shows that the computational result
diverges when the time step is slightly larger than the critical time step obtained from the maximum eigenvalue
of the global system, which confirms the validity of the critical time step estimation for nonconvex meshes using
VEM.

Additionally, the cantilever example with inclusions is solved using the particle mesh of 10×2 patterns. The
matrix material is described by elements with a hole, and the elastic modulus of the matrix is 1000. Each particle
is represented by an element to fill the hole, and three cases of the elastic modulus of particles (Ep) are employed,
i.e., one constant case, and two graded cases. For the constant case, the elastic modulus of particle is the same as
the elastic modulus of the matrix, which leads to a homogeneous material. For the graded cases, the elastic modulus
varies linearly from 0 at one end to 2000 at the other end, which results in the stronger or weaker elastic modulus
of particles at the support, as shown in Fig. 9(a). Fig. 9(b) illustrates the computational results of the three cases.
When the weaker elastic modulus of particles is introduced at the support region, the corresponding displacement
increases, as expected. The displacement of the homogeneous case is in between the two graded cases in this study.
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Fig. 11. Convergence of the three-dimensional elastodynamic analysis with the diagonal matrix-based stabilization: (a) pegasus mesh, and
(b) “VEM” mesh.

Fig. 12. Convergence of the three-dimensional elastodynamic analysis with the scalar-based stabilization: (a) pegasus mesh, and (b) “VEM”
mesh.

4.2. Three-dimensional example

For the three-dimensional analysis, the pegasus and “VEM” meshes are extruded along the out-of-plane direction,
as shown in Fig. 10. The number of layers along the out-of-plane direction is fixed as four, while the number of
patterns increases as in the 2D case. The computational results with the diagonal matrix-based stabilization and
the scalar-based stabilization are plotted in Figs. 11 and 12, respectively. Both results display convergence to the
analytical solution, while the diagonal matrix-based stabilization provides more accurate results than the scalar-based
stabilization, as in the 2D example.
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5. Concluding remarks

This paper shows the relevance of arbitrarily-shaped polygons/polyhedra for the elastodynamic VEM with explicit
time integration. A diagonal matrix-based stabilization scheme is proposed using the consistency part of the stiffness
matrix and the constitutive matrix, which is shown to improve the computational results for both 2D and 3D
cases. In the present VEM formulation, while no numerical integration is needed to construct the stiffness matrix
for nonconvex meshes with first-order approximations (i.e. linear elements); numerical integration of polynomial
functions is needed for the construction of the consistent mass matrix, which is performed using Green’s integral
formula. A lumped mass matrix is obtained by scaling the diagonal terms of the consistent mass matrix, which leads
to positive nodal masses for nonconvex elements. To estimate the critical time steps for the VEM with nonconvex
meshes, the maximum eigenvalues are utilized. For instance, the maximum eigenvalue of the global system results
in an accurate approximation of the critical time step, while the maximum eigenvalue of the local system provides
a conservative estimation of the critical time step and an efficient solution scheme.
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