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Summary

This paper addresses material nonlinear topology optimization considering the
von Mises criterion by means of an asymptotic analysis using a fictitious nonlin-
ear elastic model. In this context, we consider the topology optimization problem
subjected to prescribed energy, which leads to robust convergence in nonlinear
problems. Two nested formulations are considered. In the first, the objective is
to maximize the strain energy of the system in equilibrium, and in the second,
the objective is to maximize the load factor. In both cases, a volume constraint is
imposed. The sensitivity analysis is quite effective and efficient in the sense that
there is no extra adjoint equation. In addition, the nonlinear structural equilib-
rium problem is solved using direct minimization of the structural strain energy
using Newton's method with an inexact line-search strategy. Four numerical
examples demonstrate the features of the proposed material nonlinear topology
optimization framework for approximating standard von Mises plasticity.
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1 INTRODUCTION

Topology optimization has been widely used in different industrial/academic problems in the last few decades. Despite
its level of maturity, most previous studies focused on linear materials and omitted the nonlinearity of real-life mate-
rials. Plastic material models addressed in topology optimization problems include the works of Yuge and Kikuchi,1

Swan and Kosaka,2 Maute et al,3 Schwarz et al,4 Yoon and Kim,5 Bogomolny and Amir,6 James and Waisman,7

Kato et al,8 Nakshatrala and Tortorelli,9 Wallin et al,10 Xia et al,11 and Alberdi and Khandelwal,12 which is just a small sam-
ple of references in the field. Due to material path dependence, the sensitivity will also be path dependent. In this paper,
we propose a topology optimization approach that indirectly takes into account plastic material behavior by means of a

Nomenclature: 𝜏y, shear yield stress; 𝜎y, uniaxial yield stress; 𝝈, stress tensor; 𝝈d, deviatoric stress tensor; K, material bulk modulus; 𝜇, material shear
modulus; 𝜺, strain tensor; 𝜺d, deviatoric strain tensor; 𝜀v, volumetric strain; 𝜀ref, small reference strain; 𝜑, strain energy density; 𝜑e, specific strain energy
density function of element e; U, strain energy; C0, prescribed energy; f0, vector of given applied forces; u, nodal displacement vector; 𝝆, vector of
element density variables; 𝝆, elements' physical densities; rmin, filter radius; q, order of filter; p, constant penalty; n, number of elements discretizing the
design domain; ve, volume of element e; Vmax, maximum material volume; T, internal force vector; 𝜆, reaction load factor; KT, tangent stiffness matrix;
D, consistent tangent matrix;Δu, Newton step; 𝛼, step size by backtracking line search; J, objective function;, Lagrangian function; plim, limit pressure;
w, magnitude of distributed load; 𝛽, Tikhonov regularization parameter.
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fictitious nonlinear elastic constitutive model, shown as the red curve in Figure 1. Pasquali13 used this nonlinear elastic
model for simulating the elastic-plastic behavior of structures through limit analysis. His nonlinear elastic constitutive
model is inspired by the deformation theory of plasticity.14 The numerical tests show that, at the limit state, the nonlinear
elastic solution is equivalent to the plastic solution.

This study proposes two nested formulations. In the first formulation, the objective function of the optimization
problem consists of maximizing the strain energy of the system in equilibrium. In the second formulation, the objective
function consists of maximizing the load factor of the system in equilibrium. Both formulations limit the total volume
of the structure and lead to optimal designs in terms of stiffness. The sensitivity analysis using the proposed nonlinear
elastic model does not require an extra adjoint equation.

In order to solve the nonlinear state equations, we use an energy control approach, which is illustrated in Figure 2. This
approach prescribes a certain value of energy, C0, for all design cycles until the optimal design is obtained. Choosing an
appropriate value of C0 is possible if the designer has some knowledge regarding the expected nonlinear material behavior.
Alternatively, the designer can select C0 to ensure that the material reaches the von Mises limit stage. For plastic material
models, the energy control approach has better convergence behavior than the load control method. Crisfield15 pointed
out that load control is not preferable when a small addition to the load causes a relatively large additional displacement
or when limit points are encountered. The energy control approach overcomes this difficulty in regions where the stress
state tends to go beyond the yielding limit. The numerical results show that the energy control approach leads to robust
convergence in solving nonlinear state equations.

This paper first discusses the nonlinear constitutive model in Section 2. The optimization formulations and the related
sensitivity analysis are presented in Section 3. Section 4 discusses the finite element method (FEM) in terms of solv-
ing nonlinear state equations. The energy control approach is discussed in detail in this section. Section 5 discusses a
verification of the present FEM approach. Four numerical examples are illustrated in Section 6—it includes an inves-
tigation of the structural performance for three optimized structures considering either classical Mises plasticity or the
nonlinear elastic model. Conclusions are presented in Section 7. Finally, six appendices complement the manuscript. In
particular, Appendix A presents the plane strain nonlinear elastic constitutive model; Appendix B states the lower-bound

FIGURE 1 Illustration of the nonlinear elastic material constitutive model compared with the von Mises perfect elastoplastic model.
Notice that in the limit, both models converge to x∗E = x∗p
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FIGURE 2 Illustration of the proposed energy control approach. The approach prescribes a certain value of energy C0 for all design cycles
until the optimal design is obtained. In this illustration, we assume that the load factor at the kth design cycle 𝜆k > 1 and the load reference f0

is a single applied load. For further details, see Appendices E and F [Colour figure can be viewed at wileyonlinelibrary.com]
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theorem; Appendix C presents the failure mechanism of the optimized clamped beam structure from one of the examples
in the paper; Appendix D addresses the filter continuation scheme; and finally, Appendices E and F present the choice of
the prescribed energy parameter C0 and a related one-bar truss example, respectively.

2 EQUIVALENT NONLINEAR ELASTIC CONSTITUTIVE MODEL

We consider nonlinear material behavior by means of an asymptotic analysis using a fictitious nonlinear elastic model.
The material nonlinear elastic model is governed by the von Mises criterion.16 The yield function is defined as

𝑓 (𝝈) = ‖𝝈d‖ −√
2 𝜏𝑦 ≤ 0, (1)

where 𝜏y is the shear yield stress, the tensor 𝝈d is the deviatoric component of the stress tensor 𝝈, and the norm of 𝝈d is
written as ‖𝝈d‖ =

√
𝝈d ∶ 𝝈d.

We use the nonlinear elastic constitutive relationship13 in the following form:

𝝈 = K𝜀vI + 2𝜇 (‖𝜺d‖) 𝜺d, (2)

where the constant K is the material bulk modulus and the scalar 𝜀v = tr(𝛆) is the volumetric strain. The tensor 𝜺d is the
deviatoric component of the strain tensor 𝜺, and the norm of 𝜺d is written as ‖𝜺d‖ =

√
𝜺d ∶ 𝜺d. The shear modulus 𝜇(||𝜺d||)

is a function of ||𝜺d||.
The nonlinear constitutive relation is defined such that the stress 𝝈 defined in Equation (2) asymptotically satisfies

Equation (1). For relatively large values of ||𝜺d||, condition (1) is considered to be active, ie,

lim(𝜀d∕𝜀ref)→∞𝑓 (K𝜀vI + 2𝜇 (‖𝜺d‖) 𝜺d) = 0, (3)

where the reference strain 𝜀ref is a small value that is a fraction of the strain that at the end of the elastic region. Equation (3)
implies that the shear modulus 𝜇(||𝜺d||) satisfies

𝜇 (‖𝜺d‖) ≈ √
2𝜏𝑦

2 ‖𝜺d‖ if
‖𝜺d‖
𝜀ref

>> 1. (4)

We adopt the following form of 𝜇(||𝜺d||) to simulate the asymptotic behavior of the nonlinear elastic constitutive model
in Equation (2):

𝜇 (‖𝜺d‖) = √
2𝜏𝑦
2

1
𝜀ref + ‖𝜺d‖ . (5)

Figure 3 illustrates the nonlinear elastic model in Equation (2) with different choices of 𝜀ref. Notice that as 𝜀ref decreases,
a rigid plastic behavior is approached. From Equation (5), we note that shear modulus 𝜇 tends to zero for relatively large
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FIGURE 3 Behavior of the proposed nonlinear elastic constitutive model with different choices of reference strain 𝜀ref. The material
properties considered are the following: E = 71 × 106 kPa, 𝜏y = 2.02 × 105 kPa, and 𝜐 = 0.33 [Colour figure can be viewed at
wileyonlinelibrary.com]
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||𝜺d||. The bulk modulus K remains constant. Thus, we have

lim
(𝜀d∕𝜀ref)→∞

𝜇 (‖𝜺d‖)
K

= 0, (6)

which implies that the nonlinear elastic model behaves as an incompressible material in the asymptotic region (ie, yield
region).

The nonlinear elastic constitutive model in Equation (2) can be characterized by the strain energy density 𝜑(𝜀v, ||𝜺d||)
such that the stress tensor is given by

𝝈 = 𝜕𝜑 (𝜀v, ‖𝜺d‖)
𝜕𝜺

= 𝜕𝜑

𝜕𝜀v

𝜕𝜀v

𝜕𝜺
+ 𝜕𝜑

𝜕 ‖𝜺d‖ 𝜕 ‖𝜺d‖
𝜕𝜺

= 𝜕𝜑

𝜕𝜀v
I + 𝜕𝜑

𝜕 ‖𝜺d‖ 1‖𝜺d‖𝜺d. (7)

From Equations (2) and (7), we obtain

𝜕𝜑 (𝜀v, ‖𝜺d‖)
𝜕𝜀v

= K𝜀v and
𝜕𝜑 (𝜀v, ‖𝜺d‖)

𝜕 ‖𝜺d‖ = 2𝜇 (‖𝜺d‖) ‖𝜺d‖ . (8)

By solving the differential equation in (7), we obtain the explicit expression of 𝜑(𝜀v, ||𝜺d||) as

𝜑 (𝜀v, ‖𝜺d‖) = 1
2

K𝜀v
2 +

√
2𝜏𝑦

(
ln
((

𝜀ref‖𝜺d‖ + 𝜀ref

)𝜀ref
)
+ ‖𝜺d‖) . (9)

3 OPTIMIZATION FORMULATIONS AND SENSITIVITY ANALYSES

We propose two nested formulations17 with different objectives. In the first formulation, the objective function of the opti-
mization problem consists of maximizing the strain energy of the system in equilibrium subjected to a volume constraint.
In the second formulation, the objective function of the optimization problem consists of maximizing the reaction load
factor of the system in equilibrium subjected to a volume constraint. In both formulations, we consider the nonlinear
state problem subjected to prescribed energy.

3.1 Nested formulation: maximizing structural strain energy
We consider the following nested formulation for the optimization problem of maximizing structural strain energy with
prescribed energy in the state equations:

max
𝝆

JU (𝝆) ≔ U (𝝆,u (𝝆))

s.t.
⎧⎪⎨⎪⎩

n∑
e=1

𝜌eve ≤ Vmax

0 < 𝜌min ≤ 𝜌e ≤ 1

with{T (𝝆,u (𝝆)) = 𝜆 (𝝆,u (𝝆)) f 0

f T
0 u (𝝆) = 2C0.

(10)

The objective function U(𝝆, u(𝝆)) is the structural strain energy. The design variable 𝝆 is a vector of element material
densities. The parameter n represents the number of elements used to discretize the design domain, ve is the volume of
element e, Vmax is the maximum material volume, and 𝜌min denotes the lower bound of the design variable, which is
introduced to prevent numerical singularity in the design domain.18 Here, T(𝝆, u(𝝆)) is the internal force vector, 𝜆(𝝆, u(𝝆))
is the load factor, f0 is the vector of given external forces, and C0 is the prescribed energy in the structural system.

For structures subjected to prescribed energy and given fixed supports, maximizing the structural strain energy is equiv-
alent to maximizing structural stiffness,19,20 ie, in the case of linear elasticity, the results obtained using the proposed
formulation will be identical to those of the minimum compliance problem. This aspect is illustrated through a simple
example in Appendix F.
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3.2 Sensitivity analysis for max strain energy
We derive the sensitivities of the objective function and constraints for the optimization problem of Equation (10). We
can easily obtain the sensitivity of the constraints that are linear with respect to design variables 𝝆. Differentiating the
objective function and using the chain rule, we obtain the following equality:

dJU (𝝆)
d𝜌e

=
𝜕U (𝝆,u (𝝆))

𝜕𝜌e
+
[
𝜕U (𝝆,u (𝝆))

𝜕u (𝝆)

]T
𝜕u (𝝆)
𝜕𝜌e

=
𝜕U (𝝆,u (𝝆))

𝜕𝜌e
+ [T (𝝆,u (𝝆))]T 𝜕u (𝝆)

𝜕𝜌e
. (11)

In (11), the term 𝜕U(𝝆, u(𝝆))/𝜕𝜌e can be evaluated explicitly. In order to evaluate the remaining term, we substitute one
of the state equations T (𝝆, u (𝝆)) = 𝜆(𝝆, u (𝝆)) f0 into (11) to obtain the expression

dJU (𝝆)
d𝜌e

=
𝜕U (𝝆,u (𝝆))

𝜕𝜌e
+ 𝜆 (𝝆,u (𝝆)) f T

0
𝜕u (𝝆)
𝜕𝜌e

. (12)

In order to evaluate 𝜕u(𝝆)/𝜕𝜌e in (11), we differentiate the other state equation f T
0 u (𝝆) = 2C0 with respect to 𝜌e, ie,

f T
0
𝜕u (𝝆)
𝜕𝜌e

= 𝜕2C0

𝜕𝜌e
= 0. (13)

By substituting (13) into (12), we obtain the final expression of the sensitivity of the objective function as follows:
dJU (𝝆)

d𝜌e
=

𝜕U (𝝆,u (𝝆))
𝜕𝜌e

, (14)

which is elegant in the sense that there is no need for introducing an extra adjoint problem since the formulation of
maximizing structural strain energy is self-adjoint. Compared to other formulations (see, for example, the work of Alberdi
and Khandelwal12), the sensitivity analysis is simple and efficient.

3.3 Alternative nested formulation: maximizing load factor
We consider the following nested formulation for the optimization problem of maximizing the load factor with prescribed
energy in the system:

max
𝝆

J𝜆 (𝝆) ≔ 𝜆 (𝝆,u (𝝆))

s.t.
⎧⎪⎨⎪⎩

n∑
e=1

𝜌eve ≤ Vmax

0 < 𝜌min ≤ 𝜌e ≤ 1

with{
T (𝝆,u (𝝆)) = 𝜆 (𝝆,u (𝝆)) f 0

f T
0 u (𝝆) = 2C0.

(15)

3.4 Sensitivity analysis for max load factor
We derive the sensitivities of the objective function and constraints for the optimization problem of Equation (15). We
can easily obtain the sensitivity of the constraints that are linear with respect to design variables 𝜌. In order to evaluate
the sensitivity of the objective function 𝜆(𝝆, u(𝝆)), we differentiate one of the state equations T (𝝆, u (𝝆)) = 𝜆(𝝆, u (𝝆)) f0
with respect to 𝜌e, ie,

𝜕T (𝝆,u (𝝆))
𝜕𝜌e

+
[
𝜕T (𝝆,u (𝝆))

𝜕u

]T
𝜕u (𝝆)
𝜕𝜌e

=
𝑑𝜆 (𝝆,u (𝝆))

d𝜌e
f 0, (16)

where 𝜕T (𝝆, u(𝝆))/𝜕u(𝝆) = KT (𝝆, u(𝝆)), which is the tangent stiffness matrix. From (16), we compute
𝜕u (𝝆)
𝜕𝜌e

= [KT (𝝆,u (𝝆))]−T 𝑑𝜆 (𝝆,u (𝝆))
d𝜌e

f 0 − [KT (𝝆,u (𝝆))]−T 𝜕T (𝝆,u (𝝆))
𝜕𝜌e

. (17)

By multiplying f T
0 on both sides of Equation (17), we arrive at

f T
0
𝜕u
𝜕𝜌e

= f T
0 (KT)−T 𝑑𝜆

d𝜌e
f 0 − f T

0 (KT)−T 𝜕T
𝜕𝜌e

. (18)
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According to Equation (13), f T
0 (𝜕u∕𝜕𝜌e) = 0, and thus, we obtain

𝑑𝜆

d𝜌e
=

f 0
T(KT)−T 𝜕T

𝜕𝜌e

f 0
T(KT)−Tf 0

=

(
𝜕T
𝜕𝜌e

)T
(KT)−Tf 0

f 0
T(KT)−Tf 0

=

(
𝜕T
𝜕𝜌e

)T
u0

f 0
Tu0

, (19)

where u0 = (KT)−Tf0. Since there is no need for the adjoint problem, the sensitivity analysis is again simple, effective, and
efficient.

4 SOLVING THE NONLINEAR STATE EQUATIONS: NEWTON'S METHOD
WITH LINE SEARCH

The two optimization formulations (10) and (15) have the same state equations as follows:{
T (u) = 𝜆 f 0

f T
0 u = 2C0.

(20)

Finding a solution of the state equations (20) is equivalent to solving the equality-constrained minimization problem as
follows: {

min
u

U (u)

s.t. f T
0 u = 2C0.

(21)

We solve (21) using Newton's method with a backtracking line search strategy. We start with the Lagrangian function

 (u, 𝜆) = U (u) + 𝜆
(
2C0 − f T

0 u
)
, (22)

where 𝜆 is the Lagrangian multiplier, which is also the load factor in Equation (20). According to the Karush-Kuhn-Tucker
optimality conditions, we obtain ⎧⎪⎨⎪⎩

𝜕

𝜕u
(u∗, 𝜆∗) = 𝛁U (u∗) − 𝜆∗f 0 = 0

𝜕

𝜕𝜆
(u∗, 𝜆∗) = 2C0 − f T

0 u∗ = 0.
(23)

4.1 Newton's method
At iteration k, we interpret the Newton step Δuk, and the associated multiplier 𝜆k + 1, as the solutions of a linearized
approximation of the optimality conditions in (23). We substitute uk + Δuk for u* and 𝜆k + 1 for 𝜆* and replace the gradient
by its linearized approximation near uk, to obtain the equations{

𝛁U (uk + Δuk) − 𝜆k+1 f 0 ≈ 𝛁U (uk) + 𝛁𝛁TU (uk) Δuk − 𝜆k+1 f 0 = 0
2C0 − f T

0 (uk + Δuk) = 0.
(24)

Since 𝛁𝛁TU(uk) = KT (uk) and 𝛁U(uk) = T (uk), then (24) becomes{
T (uk) + KT (uk) Δuk − 𝜆k+1 f 0 = 0
2C0 − f T

0 (uk + Δuk) = 0.
(25)

Solving for Δuk using the first equation in system (25), we obtain

Δuk = KT
−1 (uk)

[
−T (uk) + 𝜆k+1 f 0

]
. (26)

By means of the equality f T
0 uk = 2C0, the second equation in system (25) becomes

f T
0 Δuk = 0. (27)

Substituting Equation (26) into (27) and solving for 𝜆k + 1, we obtain

𝜆k+1 =
f T

0Δu′
k

f T
0Δu′′

k

,Δu′
k = KT

−1 (uk)T (uk) ,Δu′′
k = KT

−1 (uk) f 0. (28)
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TABLE 1 Newton's algorithm for solving nonlinear state equations

Algorithm 1 Newton's method for solving the nonlinear equations
Input: 𝝆, C0, f0, tol.
Output: Solution 𝜆 and u;
1: u′

0 ≔ zeros (size(f0)); K0 ← Global stiffness matrix [𝝆, u′
0]; u′′

0 ≔ K0∖ f 0;
2: u0 ≔

2C0u′′
0

f 0
T u′′

0

3: for k = 0, 1,… , until convergence
4: Tk← Internal force vector [𝝆, uk];
5: Kk← Global stiffness matrix [𝝆, uk]; 𝛽 ≔ 10−8 × mean(diag(Kk));
6: Kk ≔ Kk + 𝛽 × sparse(identity(size(Kk));
7: Δu′

k ≔ Kk∖Tk; Δu′′
k ≔ Kk∖ f 0;

8: 𝜆k+1 ≔
f 0

TΔu′
k

f 0
TΔu′′

k
;

9: Δuk ≔ −Δu′
k + 𝜆k+1Δu′′

k ;
10: Find step size 𝛼k by an inexact line-search strategy (see Algorithm 2);
11: uk + 1 ≔ uk + 𝛼kΔuk;
12: if ||Δuk||

1+||uk+𝟏|| < tol or ||Tk−𝜆k f 0|||| f 0|| < tol then break;

13: end if
14: end for
15: 𝜆≔ 𝜆k + 1; u ≔ uk + 1;

By substituting the expression of 𝜆k + 1in Equation (28) into (26), we finally obtain the expression of the Newton step
Δuk as

Δuk = −Δu′
k + 𝜆k+1Δu′′

k . (29)

The detailed algorithm for Newton's method, as employed in the present work, is provided in Table 1. Based on the limit
load concept, the stiffness matrix might become singular near the limit state, which can cause numerical difficulties. To
prevent the possibility of a singular stiffness matrix, we add a Tikhonov regularization21,22 parameter 𝛽 into the tangent
stiffness matrix, as shown in lines 4 and 5 of Table 1. Through the numerical examples, we verify that the Tikhonov
regularization technique is effective.

4.2 Inexact line-search approach
We utilize a mixed inexact line-search approach within Newton's method to improve the convergence of solving the non-
linear state equations. At iteration k, we obtain the Newton step Δuk (ie, the descent direction) from (29). The technique
of line search addresses the selection of the step size 𝛼k for the iteration update

uk+1 = uk + 𝛼kΔuk. (30)

Given uk and a descent direction Δuk, we choose the step size 𝛼k such that

U (uk+1) = U (uk + 𝛼kΔuk)≤U (uk) + 𝜂𝛼k𝛁U(uk)TΔuk, (31)

where 𝜂 is a guard constant, eg, 𝜂 = 10−4. In general, we start with ∼
𝛼k = 1 and decrease it by a scale 𝜅, ie, 𝛼k = 𝜅

∼
𝛼k

(0 < 𝜅 < 1), until (31) is satisfied. In this study, we adopt an inexact line-search approach.23 Let us define the function Φ
in terms of 𝛼k alone as

Φ (𝛼) = U (uk + 𝛼kΔuk) . (32)

Since we know Φ(0) = U(uk), Φ′(0) = 𝛁U(uk)TΔuk, and Φ
(∼
𝛼k
)

= U
(

uk + ∼
𝛼kΔuk

)
, where ∼

𝛼k is the current and
unsatisfactory step size, we can build a quadratic polynomial using these three data points as follows:

Φ (𝛼) = Φ (0) + Φ′ (0) 𝛼 +
(
Φ
(∼
𝛼k
)
− Φ (0) − Φ′ (0) ∼𝛼k

)
∼
𝛼k

2 𝛼2. (33)
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TABLE 2 Algorithm of a mixed inexact line-search algorithm23

Algorithm 2 Inexact line-search approach
Input: uk, Δuk
Output: step length 𝛼k

1: 𝛼max ≔ 1; 𝛼min ≔ 10−9; 𝜂 = 10−4;
2: 𝛼k ≔ 𝛼max; uk + 1 ≔ uk + 𝛼kΔuk;
3: while U(uk + 1) > U(uk) + 𝜂𝛼k 𝛁U(uk)TΔuk and 𝛼k > 𝛼min do
4: 𝜅 ≔ − 𝛁U(uk)TΔuk𝛼k

2
(

U(uk+∼𝛼kΔuk)−U(uk)−𝛁U(uk)TΔuk𝛼k

)
5: if 𝜅 < 0.1 then
6: 𝜅 ≔ 0.5← Do not use quadratic interpolation
7: end if
8: 𝛼k ≔ 𝜅 × 𝛼k;
9: uk + 1 ≔ uk + 𝛼kΔuk;

10: end while
11: Return 𝛼k

By minimizing the quadratic interpolant (33) with respect to 𝛼, we obtain

dΦ (𝛼)
𝑑𝛼

= Φ′ (0) +
2
(
Φ
(∼
𝛼k

)
− Φ (0) − Φ′ (0) ∼𝛼k

)
∼
𝛼k

2 𝛼 = 0. (34)

From (34), we obtain the step size 𝛼k as follows:

𝛼k = − Φ′ (0) ∼𝛼k
2

2
(
Φ
(∼
𝛼k
)
− Φ (0) − Φ′ (0) ∼𝛼k

)
= − 𝛁U(uk)TΔuk

∼
𝛼k

2
(

U
(

uk + ∼
𝛼kΔuk

)
−U (uk)−𝛁U(uk)TΔuk

∼
𝛼k
) ∼
𝛼k = 𝜅

∼
𝛼k.

(35)

If the obtained factor 𝜅 is relatively small, eg, 𝜅 < 0.1, then we do not employ the quadratic interpolation in (33), and
we simply choose 𝜅 = 0.5. The detailed algorithm for a mixed inexact line-search approach is provided in Table 2.

5 VERIFICATION: INTERNALLY PRESSURIZED CYLINDER

The FEM approach (in terms of solving the nonlinear state equations) is verified in this section. The verification addresses
the mechanical behavior of a long thick-walled cylinder subjected to internal pressure. This problem is one of the standard
benchmark examples of elastic-plastic behavior and has been discussed extensively by Hill24 and Prager and Hodge.25 The
accuracy and the robustness of the proposed approach are assessed by comparing the numerical results and the analytical
solution.

The problem, shown in Figure 4, consists of a cylinder of inner radius, a, and outer radius, b, that is subjected to inter-
nal pressure, p, which increases gradually until a limit load (ie, collapse load) is reached. The cylinder is made of an
elastic-perfectly plastic material that can be modeled using a von Mises criterion. Plane strain conditions are considered.
Hill24 derived the analytical solution of this problem to be

plim =
2𝜎𝑦√

3
ln
(

b
a

)
, (36)

where plim is the limit pressure and 𝜎y is the uniaxial yield stress.
In the numerical simulation, the nonlinear elastic constitutive model proposed in Section 2 is used to define the

material. Due to symmetry, only a quarter of the cylinder cross section is considered with symmetry boundary conditions.
Aside from the reference strain, the material properties listed in Table 3 are from the book by de Souza Neto et al.27

Figure 5 shows the internal pressure versus the prescribed energy obtained from the present finite element simulation
together with the analytical solution. A comparison between numerical and analytical results is presented in Table 4,
which shows that both results are in excellent agreement with error magnitude less than 0.3%.
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FIGURE 4 A, Geometry, boundary conditions, and mesh discretization of the internally pressurized cylinder problem; B, A quarter of the
domain is discretized by 1200 polygonal finite elements under plane strain conditions26; C, Composition of the polygonal mesh [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Material properties and dimension used in the
internally pressurized cylinder problem

Property Symbol Magnitude
(de Souza Neto et al27)

Young's modulus E 2.1 × 105 MPa
Poisson's ratio 𝜐 0.3
Uniaxial yield stress 𝜎y 240 MPa
Reference strain 𝜀ref 0.0001
Inner radius a 100 mm
Outer radius b 200 mm

Prescribed energy [kJ]
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FIGURE 5 Internally pressurized cylinder problem. Comparison between the present numerical solution and the analytical solution.
FEM, finite element method [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Comparison between the numerical and analytical solutions for the internally
pressurized cylinder problem

Reference Strain 𝜀ref Numerical (MPa) Analytical (MPa) Equation (36) Error %

0.0001 191.5980 192.0906 −0.26
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TABLE 5 Influence of the inexact line-search approach
Newton's Method With Line Search Newton's Method Without Line Search
FEM iter. Step Size ‖𝚫u‖

𝟏+‖u‖
1 1.00 3.99 × 10−1

2 6.35 × 10−2 1.22 × 10−1

3 6.91 × 10−2 9.84 × 10−2

4 8.43 × 10−2 8.37 × 10−2

5 1.26 × 10−1 7.89 × 10−2

6 1.13 × 10−1 3.56 × 10−2

7 1.96 × 10−1 3.86 × 10−2 No convergence
8 1.00 9.04 × 10−2

9 1.00 3.08 × 10−2

10 1.00 5.40 × 10−3

11 1.00 4.60 × 10−3

12 1.00 1.47 × 10−3

13 1.00 4.32 × 10−4

14 9.31 × 10−10 2.38 × 10−14

Abbreviation: FEM, finite element method.

In order to demonstrate the influence of the line search method (described in Section 4.2), we solve the cylinder problem
using Newton's method with and without line search. The nonlinear FEM iterations are shown in Table 5. The case with
the line search approach converges within 14 FEM iterations, whereas the case without the line search fails to converge.
Thus, this example highlights the relevance of the line search method.

6 NUMERICAL EXAMPLES

Four numerical examples demonstrate the key features of the present formulations for material nonlinear topology
optimization considering the von Mises criterion. A summary of the examples is provided in Table 6.

TABLE 6 Brief description of the numerical examples

Example Description Remarks
• Optimized topologies agree with those

Three-supports beam from the literature
1 (Maute et al3) • Results obtained from max strain energy are

similar to those from max load factor
• Poisson's ratio, 𝜐 = 0 (from Maute et al3)
• Assuming small strain, we obtain the topology

that was obtained considering finite
2 Clamped beam strain plasticity by Wallin et al10

• Convergence plot for max U formulation
exhibits smooth behavior

• Poisson's ratio, 𝜐 = 0
• Verification of topologically optimized structures

using commercial FEA software
Structural • Comparison of structural performance using Mises

3 performance of the optimized clamped beams plasticity and those considering the nonlinear elastic model
• Poisson's ratio, 𝜐 = 0

Three fixed-sides • Nonzero Poisson's ratio, 𝜐 = 0.26
4 beam • Investigation of the nonlinear solutions considering two

reference strains (ie, 𝜀ref = 0.002 and 𝜀ref = 0.0004)

Abbreviation: FEA, finite element analysis.
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6.1 Three-support beam
We first present the three-support beam example to illustrate the behavior of the proposed nonlinear topology optimiza-
tion framework for approximating plasticity. In order to compare the present numerical simulation with the results in the
literature, we use the same geometry, boundary conditions, material properties, and volume fraction used by Maute et al.3

Figure 6 shows the geometry and dimensions of the three-support beam problem. A distributed load with magnitude of
w = 6 kN/m is applied on a 4-m portion of the top of the beam. The material properties are listed in Table 7. In the present
numerical simulation, we use the proposed nonlinear elastic material constitutive model, as illustrated in Figure 7. We
choose the reference strain as 0.0005. The domain is discretized with 7200 quadrilateral elements under plane strain con-
ditions. We use the solid isotropic material with penalization (SIMP) model28-30 with the constant penalty parameter as
3. As usual, the SIMP design problem is solved by the optimality criteria approach, together with the density filter31,32

strategy. The linear density filter radius used in this example is equal to 0.4167.
Figure 8 shows the optimized topologies and the related von Mises stress distribution plots obtained using the formu-

lation for maximizing the strain energy (max U). The scale of the stress contour is between 0 and 1, with 1 representing
the stress state reaching the von Mises yielding limit. When the prescribed energy C0 is 10−4 kJ, the optimized topology
and the related von Mises stress distribution contour are shown in Figure 8A. The stress contour shows that when the
prescribed energy is relatively small, the entire structure is in the linear elastic range. When the prescribed energy C0

20 m

10 m

2 m m 2m 2

4 m

FIGURE 6 Geometry, loading, and support conditions of the three-support beam problem [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 7 Material properties used in the three-support beam
problem

Property Symbol Magnitude(Maute et al3)

Young's modulus E 3 × 104 kPa
Poisson's ratio 𝜐 0
Uniaxial yield stress 𝜎y 240 kPa
Volume fraction v 30%
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0

50

100

150

200

250

d 

[kPa]

d 

 von Mises limit

ref = 0.0005

FIGURE 7 Illustration of the nonlinear elastic material constitutive model used in the three-support beam problem [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 8 Results of the three-support beam problem obtained from the max U formulation. The optimized topology and the related
von Mises stress distribution considering (A) C0 = 10−4 kJ and (B) C0 = 3 kJ. The scale of the von Mises stress contour is between 0 and 1,
with 1 representing the stress state reaching the von Mises yielding limit

is 3 kJ, the optimized topology and the related von Mises stress distribution contour are shown in Figure 8B. The con-
tour plot shows that when the prescribed energy is relatively high, the entire structure is almost plastified. The optimized
topology of Figure 8B agrees with the result by Maute et al.3 If the prescribed energy is more than 3 kJ, we obtain the same
optimized topology as the one shown in Figure 8B.

Figure 9 shows the optimized topologies and the related von Mises stress distribution plots obtained using the formu-
lation of maximizing the load factor (max 𝜆), which has a similar behavior to the max U results described in the previous
paragraph. Notice that since the max 𝜆 formulation is not self-adjoint, the sign of sensitivities in Equation (19) can be
negative. In this three-support beam problem, the maximal order of magnitude of negative sensitivities is −4.

Table 8 lists the quantitative comparison of results obtained from the two formulations in the three-support beam
problem. When the prescribed energy is relatively small (ie, the structure is in the linear elastic range), the strain energy
and reaction load factor obtained from both formulations are exactly the same. When the prescribed energy is relatively
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FIGURE 9 Results of the three-support beam problem obtained from the max 𝜆 formulation. The optimized topology and the related
von Mises stress distribution considering (A) C0 = 10−4 kJ and (B) C0 = 3 kJ. The scale of the von Mises stress contour is between 0 and 1,
with 1 representing the stress state reaching the von Mises yielding limit
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TABLE 8 Quantitative comparison of results obtained from the
two formulations (ie, max strain energy and max load factor) in the
three-support beam problem

C0(kJ) Formulation
max U max 𝝀

U (kJ) 𝝀 U (kJ) 𝝀

10−4 3.7057 × 10−6 0.0370 3.7057 × 10−6 0.0370
3 242.3085 48.2739 240.3609 48.6612

large (ie, the structure is in the nonlinear range), the two formulations give very similar results. The strain energy obtained
from the max U formulation is only slightly larger than that obtained from the max 𝜆 formulation. The reaction load factor
obtained from the max 𝜆 formulation is slightly larger than that obtained from the max U.

6.2 Clamped beam
The clamped beam example is a benchmark problem used to illustrate the behavior of the proposed nonlinear topol-
ogy optimization framework considering the von Mises criterion. In order to compare the present numerical simulation
with the results in the literature, we use the same geometry, boundary conditions, and material properties proposed by
Maute et al.3 Figure 10 shows the geometry and dimensions of the clamped beam problem. The beam is fixed at both left
and right ends. A distributed load with magnitude of w = 100 kN/m is applied on a 2.5-m portion of the top of the beam.
The material properties are listed in Table 9. In the present numerical simulation, we use the nonlinear elastic material
constitutive model illustrated in Figure 11. We choose the small reference strain as 0.0005. The domain is discretized with
6400 quadrilateral elements under plane strain conditions. The linear filter radius used in this example is equal to 0.16.
We use the SIMP model with the constant penalty parameter as 3.

Figure 12 shows the optimized topologies and the related von Mises stress distribution plots obtained using the formu-
lation for maximizing the strain energy. When the prescribed energy C0 = 10−3 kJ, the optimized topology and related von
Mises stress distribution contours are shown in Figure 12A. The contour shows that the entire structure is in the linear
elastic range. When the prescribed energy C0 = 35 kJ, the optimized topology and the related von Mises stress distribution
contour are shown in Figure 12B. The contour plot in Figure 12B shows that the entire structure is almost plastified. The
topology shown in Figure 12B agrees with the result by Maute et al.3 When the prescribed energy C0 = 63 kJ, we obtain
another optimized topology as shown in Figure 12C. The contour plot in Figure 12C shows that almost the entire struc-
ture reaches the limit of von Mises stress. Although the numerical simulations are performed under a small-deformation

20 m

5 m 2.5 m

FIGURE 10 Geometry, loading, and support conditions of the clamped beam problem [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 9 Material properties used in the
clamped beam problem

Property Symbol Magnitude
(Maute et al3)

Young's modulus E 1.8 × 105 kPa
Poisson's ratio 𝜐 0
Uniaxial yield stress 𝜎y 360 kPa
Volume fraction v 25%



ZHAO ET AL. 817

0 0.01 0.02 0.03 0.04 0.05
0

100

200

300

400

d 
[kPa]

d 

 von Mises limit

ref = 0.0005

FIGURE 11 Illustration of the nonlinear elastic material constitutive model utilized in the clamped beam problem [Colour figure can be
viewed at wileyonlinelibrary.com]

0.7

0.8

0.9

1

(B)

(A)

(C)

0

1

2
10-3

0.7

0.8

0.9

1

FIGURE 12 Results of the clamped beam problem obtained from the max U formulation. The optimized topologies and related von Mises
stress distributions considering (A) C0 = 10−3 kJ, (B) C0 = 35 kJ, and (C) C0 = 63 kJ. The scale of the von Mises stress contour is between 0
and 1, with 1 representing the stress state reaching the von Mises yielding limit

TABLE 10 Clamped beam problem.
Results obtained from the max U
formulation using different prescribed
energy values C0

C0 (kJ) U (kJ) 𝝀

10−3 4.4694 × 10−7 4.4702 × 10−4

35 69.1166 1.1607
63 135.3912 1.1901

assumption, the topologies obtained using different prescribed energies are drastically distinct, as shown in Figure 12.
The topology in Figure 12C is similar to the one obtained by Wallin et al10 considering finite strain plasticity. Table 10 lists
the results obtained from the max U formulations in the clamped beam problem. Similar results are obtained with the
max 𝜆 formulation.

The proposed topology optimization framework considering the von Mises criterion has good convergence behavior.
For example, Figure 13 illustrates the convergence history of the clamped beam problem using the max U formulation
with the prescribed energy C0 = 35 kJ. The intermediate topologies at iterations #15, #50, and #100 and the final optimized
topology are shown in Figure 13. It is clear that the convergence curve is quite smooth. As stated earlier, path-dependent
models often tend to display difficulty in convergence. Utilizing the present nonlinear elastic constitutive model, we can
achieve optimization with promising convergence characteristics.
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FIGURE 13 Convergence study of the clamped beam problem using the max U formulation with the prescribed energy C0 = 35 kJ [Colour
figure can be viewed at wileyonlinelibrary.com]

6.3 Structural performance of three topology-optimized clamped beams
In this section, we verify the structural performance of the three topology-optimized clamped beam structures in ABAQUS
composed of two different types of material constitutive models, namely, the built-in isotropic Mises plasticity model and
the present asymptotic nonlinear elastic model (the UMAT file is provided in the work of Pasquali13).

At first, three optimized clamped beam structures are digitized and converted into CAD models in ABAQUS. To dig-
itize the previously obtained beam structures into CAD models, we need high-resolution and clear boundaries of the
optimized structures. Therefore, relatively fine meshes are used in solving the clamped beam problems in this section.
Figure 14A-C shows the three topology-optimized structures with relatively high resolution. Due to symmetry, only half
of the optimized structure is considered for analysis with symmetry boundary conditions. The optimized structure in
Figure 14A is modeled with linear elastic material, whereas the other two optimized structures in Figure 14B,C use von
Mises plastic material. The clear solid boundaries are defined by a cutoff (or threshold) value. Densities (ie, design vari-
ables) 𝜌 > cutoff = 0.5 are considered to be solid.33 This approach allows us to represent the boundaries of the optimized
structures by contour lines while preserving the volume constraint. By generating contour lines with density cutoff = 0.5,

sym. sym. sym.

(A) (B) (C)

FIGURE 14 An optimized clamped beam structure considering (A) linear elastic material, (B) von Mises plastic material at stage 1, and
(C) von Mises plastic material at stage 2. The first row shows the density field obtained from topology optimization. The second row shows
contour lines using the density cutoff 𝜌 = 0.5. The third row shows the digitized structures that are converted into a CAD model in ABAQUS.
The corresponding topologies on the third row are named topologies I, II, and III, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]
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the boundaries of the three optimized structures are clearly defined, as shown in Figure 14. Finally, the obtained contour
lines are imported into AutoCAD as polylines and then exported as a standard ACIS file, which later can be imported into
ABAQUS. Figure 14 shows the CAD model in ABAQUS, named as topologies I, II, and III. The volume values of topolo-
gies I, II, and III are 12.40, 12.46, and 12.39, respectively. Notice that the volume fraction is 25% (ie, the upper-bound
volume is 5 × 10 × 25% = 12.5) in this optimization of the clamped beam problem. In ABAQUS, topologies I, II, and III
are discretized by 67 414, 68 065, and 66 708 linear triangular elements of type CPE3, respectively, and analyzed under
plane strain conditions. The material properties are defined as Young's modulus E = 180 000 kPa, Poisson's ratio 𝜐= 0, and
uniaxial yield stress 𝜎y = 360 kPa. The general static algorithm is used for solution under the prescribed pressure load.

Next, increasing pressure is applied on these beam structures until the magnitude of vertical displacement at point A
(see Figure 15) reaches 0.1835 m. The structural performance of the three topologies is investigated with two different
material constitutive models. In the first case, an elastic–perfectly plastic Mises model is used to define the material.
Considering this classical Mises plasticity model, we obtain the behavior of the three topologies, shown as solid curves in
Figure 15. Each curve represents the applied pressure versus the vertical displacement at point A of the clamped beam. A
failure mechanism of those structures is discussed in Appendix C. In the second case, the present asymptotic nonlinear
elastic model is used to define the material. When the reference strain (𝜀ref) is 0.0005, the behavior of the three topologies is
obtained, as shown by the dashed curves in Figure 15. In addition, the three dotted lines in Figure 15 present the behavior
of the topologies considering 𝜀ref = 0.0016, where the consistent tangent matrix at the origin coincides with the linear
elastic material model (see detailed derivation in Appendix A). The limit pressures for topologies I, II, and III considering
different material constitutive models are listed in Table 11. We notice that the limit pressure obtained using the nonlinear
elastic model is always lower than that obtained using the classical Mises plasticity model.

Lastly, the stress contours obtained using classical Mises plasticity are compared with those obtained using the nonlin-
ear elastic model. Under limit pressures, the von Mises stress contours of topologies I, II, and III are shown in Figure 16.
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FIGURE 15 Structural performance of the three optimized topologies. The structures are loaded until the magnitude of vertical
displacement at point A reaches 0.1835 m. Solid lines represent the structural behavior using the classical Mises plasticity. Dashed lines and
dotted lines represent the structural behavior embedded with the user-defined nonlinear elastic model using 𝜀ref = 0.0005 and 𝜀ref = 0.0016,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 11 The limit load (wlim) for topologies I, II, and III considering different
material constitutive models

Classical Mises Nonlinear Elastic Nonlinear Elastic
Plasticity, kN/m (𝜺ref = 0.0005), kN/m (𝜺ref = 0.0016), kN/m

Topology I 101.3250 96.7641 93.4500
Topology II 135.0309 129.0600 120.9600
Topology III 137.8888 132.0000 123.0000
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    Classical Mises Plasticity     Nonlinear Elasticity

(A) (B)

FIGURE 16 Under the limit pressure, von Mises stress contours of topologies I, II, and III obtained considering (A) the classical Mises
plastic model and (B) the nonlinear elastic model (𝜀ref = 0.0005)

The three contours in Figure 16A are obtained using classical Mises plasticity, and the contours in Figure 16B are obtained
considering the nonlinear elastic model (𝜀ref = 0.0005). From a qualitative point of view, the area of the red region (ie, plas-
tified region) on the contour using the nonlinear elastic model is less than that on the contour considering the classical
Mises plasticity model. Quantitatively, the stress state of the analysis using the nonlinear elastic model is always below the
yielding surface (ie, at any point on the contours considering nonlinear elastic, the von Mises stress is less than the yield
stress 𝜎y = 360 kPa). On the basis of the lower-bound theorem14 in Appendix B, we conclude that the analysis considering
the nonlinear elastic asymptotic material model provides a more conservative (ie, safer) design in terms of limit analysis.

6.4 Three fixed-edges beam
In order to investigate how materials with realistic properties impact optimal designs, we present a beam problem with
fixed boundary on three sides and distributed load (w = 100 MN/m) on the top. Two beams with different dimensions,
as shown in Figure 17A,B, are investigated in this section. We consider a commonly used A36 steel with the material

(A) (B)

FIGURE 17 Two types of geometries for the beam problem with fixed boundary on three sides and distributed load on the top.
A, 2 m × 1 m design domain; B, 1 m × 1 m design domain [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 12 Material properties (ie, A36 steel)
used in the beam problem with three fixed edges

Property Symbol Magnitude

Young's modulus E 2 × 105 MPa
Poisson's ratio 𝜐 0.26
Uniaxial yield stress 𝜎y 380 MPa
Reference strain 𝜀ref 0.002 or 0.0004

properties shown in Table 12. We consider two small reference strains (𝜀ref) 0.0004 and 0.002. For 𝜀ref = 0.002, the consis-
tent tangent matrix is the same as the linear elastic case at the origin (see detailed derivation in Appendix A). Figure 18
illustrates the nonlinear elastic model considering 𝜀ref = 0.002 and 𝜀ref = 0.0004. Plane strain conditions are adopted.

We use quadrilateral elements to discretize the 2 m × 1 m and 1 m × 1 m design domains shown in Figure 17. Table 13
provides information such as the number of elements, volume fraction, linear density filter radius, and penalty parameter
used in the numerical simulation for this problem. The max U formulation is used in the present study.

For the 2 m × 1 m design domain, the optimized topologies are shown in Figure 19. Figure 19A presents the optimized
result considering the reference strain (𝜀ref) as 0.002 and the small prescribed energy C0 = 10−6 MJ. This topology is iden-
tical to the linear elastic result obtained using the educational code PolyTop.34 When the prescribed energy C0 = 0.4 MJ,
Figures 19B and 19C show the nonlinear solutions considering 𝜀ref = 0.002 and 𝜀ref = 0.0004, respectively. The topolo-
gies of the two nonlinear solutions are the same. The objectives (ie, strain energy U) of those solutions are compared in
Table 14.

For the 1 m × 1 m design domain, Figure 20 presents the optimized solutions. The topology shown in Figure 20A is
the same as the one obtained using PolyTop34 considering a linear elastic material. Figure 20B,C illustrates the nonlinear
solutions considering the same prescribed energy (C0) but different reference strains (𝜀ref). The topologies of the two
nonlinear solutions are quite different. Table 14 includes the comparison of the objectives (U) for those solutions. Note
that we use a filter-order continuation scheme to improve the quality of the nonlinear solution in Figure 20B. More details
about the filter scheme is illustrated in Appendix D.
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FIGURE 18 Illustration of the nonlinear elastic material constitutive model (with 𝜀ref = 0.002 and 𝜀ref = 0.0004) used in the beam problem
with three fixed sides [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 13 Parameters used in the optimization of the three
fixed-edges beam with two types of geometries (2 m × 1 m and
1m × 1m)

2 m × 1 m Beam 1 m × 1 m Beam

No. of elements 20 000 22 500
Volume fraction 35% 20%
Filter radius 0.035 0.02
Constant penalty (p) 3 3
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FIGURE 19 Results of the 2 m × 1 m, three fixed-edges beam obtained from the max U formulation. The optimized topologies considering
(A) 𝜀ref = 0.002 and C0 = 10−6 MJ, (B) 𝜀ref = 0.002 and C0 = 0.4 MJ, and (C) 𝜀ref = 0.0004 and C0 = 0.4 MJ

TABLE 14 Results obtained from the max U formulation for the three fixed-edges beam problem

Design Domain Case 1 Case 2 Case 3
𝜺ref C0 [MJ] U [MJ] 𝜺ref C0 [MJ] U [MJ] 𝜺ref C0 [MJ] U [MJ]

2 m × 1 m 0.002 10−6 5 × 10−10 0.002 0.4 6.7347 0.0004 0.4 7.4436
1 m × 1 m 0.002 10−6 2 × 10−9 0.002 0.1 1.8721 0.0004 0.1 1.9921

C
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= 10-6 MJ C
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= 0.1 MJ C
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FIGURE 20 Results of the 1 m × 1 m, three fixed-edges beam obtained from the max U formulation. The optimized topologies considering
(A) 𝜀ref = 0.002 and C0 = 10−6 MJ, (B) 𝜀ref = 0.002 and C0 = 0.1 MJ, and (C) 𝜀ref = 0.0004 and C0 = 0.1 MJ

7 CONCLUSION

This paper addresses material nonlinear topology optimization problems considering the von Mises criterion by means of
an asymptotic analysis using a fictitious nonlinear elastic model. With this asymptotic nonlinear elastic model, the sensi-
tivity analysis is quite effective and efficient in the sense that there is no extra adjoint equation. The internally pressurized
cylinder example illustrates that the plastic solution is equivalent to the nonlinear elastic solution in the limit stage. Two
equivalent optimization formulations are presented: maximizing the structural strain energy (max U) and maximizing
the load factor (max 𝜆). We consider the topology optimization problem subjected to a certain prescribed energy—we
prescribe the energy C0 for all design cycles until an optimal design is reached. This prescribed energy approach leads
to robust convergence in nonlinear problems. The nonlinear state equations are solved using direct minimization of the
structural strain energy employing Newton's method with an inexact line-search strategy, which improves the conver-
gence of the nonlinear FEM. Four numerical examples demonstrate the features of the approach. The results are compared
with those in the literature considering plasticity, in which very similar topologies are obtained. In addition, we are able
to obtain the optimized clamped beam structure (Figure 12), which can be found in the literature considering finite
deformation.10 We show that the material nonlinear topology optimization problem accounting for the von Mises crite-
rion in numerical examples has smooth convergence when considering the nonlinear elastic formulation. Additionally,
we obtain new nonlinear solutions (Figures 19 and 20) accounting for realistic plastic material properties (with nonzero
Poisson's ratio), which can serve as benchmark problems.
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APPENDIX A

PLANE STRAIN NONLINEAR ELASTIC CONSTITUTIVE MODEL

Consider the strain tensor 𝜺 for plane strain problems. The matrix representative of 𝜺 is given by

[𝜺] =
⎡⎢⎢⎣
𝜀11 𝜀12 0
𝜀12 𝜀22 0
0 0 0

⎤⎥⎥⎦ . (A1)

The deviatoric strain tensor 𝜺d is defined as
𝜺d ≡ 𝜺 − 1

3
(tr𝜺) I (A2)

with norm ‖𝜺d‖ =
√
𝜺d ∶ 𝜺d. (A3)

The nonlinear elastic constitutive relationship can be written in the following form:

𝝈 = K𝜀vI + 2𝜇 (‖𝜺d‖) 𝜺d, (A4)

where the expression for 𝜇(||𝜺d||) in (A4) is

𝜇 (‖𝜺d‖) = √
2𝜏𝑦
2

1
𝜀ref + ‖𝜺d‖ , (A5)

in which 𝜀ref is a small reference strain.
The consistent tangent matrix D is

D = 𝜕𝝈

𝜕𝜺
= Dv + Dd1 + Dd2, (A6)

where

Dv = K
⎡⎢⎢⎣
1 1 0
1 1 0
0 0 0

⎤⎥⎥⎦ , Dd1 = 𝜇 (‖𝜺d‖) ⎡⎢⎢⎢⎣
4
3

− 2
3

0

− 2
3

4
3

0
0 0 1

⎤⎥⎥⎥⎦ , (A7)

and
Dd2 = 2‖𝜺d‖ 𝑑𝜇 (‖𝜺d‖)‖𝜺d‖ 𝜺 𝜺

T
, (A7)

with 𝜺
T =

[
𝜀11 − 1

3
(𝜀11 + 𝜀22) , 𝜀22 − 1

3
(𝜀11 + 𝜀22) , 𝜀12

]
. At the origin, ie, 𝜀11 = 𝜀22 = 𝜀12 = 0, the consistent tangent matrix

D0 becomes
D0 = Dv + Dd1. (A8)
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For 𝜀ref = 𝜏𝑦

√
2 (1+𝜐)

E
, the consistent tangent matrix can be conveniently written as

D0 = E
(1 − 2𝜐) (1 + 𝜐)

⎡⎢⎢⎢⎣
1 − 𝜐 𝜐 0
𝜐 1 − 𝜐 0
0 0 (1−2𝜐)

2

⎤⎥⎥⎥⎦ , (A9)

which, as expected, is the same as the linear elastic case.35

APPENDIX B

LOWER-BOUND THEOREM

Chen and Han14 stated the lower-bound theorem as follows:
“If an equilibrium distribution of stress 𝜎E

i𝑗 can be found which balances the body force Fi in V and the applied loads Ti on
the stress boundary AT and is everywhere below yield, 𝑓 (𝜎E

i𝑗) < 0, then the body at the loads Ti, Fi will not collapse.”
In the analysis of the optimized clamped beam topologies considering the nonlinear elastic model, every stress state

is below the von Mises yielding limit, as shown in Figure 16B. Therefore, on the basis of the lower-bound theorem, we
conclude that the asymptotic nonlinear elastic analysis leads to a more conservative (ie, safer) design.

APPENDIX C

FAILURE MECHANISM OF THE OPTIMIZED CLAMPED BEAM STRUCTURE

As part of the verification of the optimized clamped beam structures in Section 6.3, we investigated the failure mechanism
of the optimized structures under limit pressures considering classical Mises plasticity. Figure C1 shows the contours of
equivalent plastic strain (PEEQ) for the three optimized beam structures. In each of the three contours, development of
plastic yielding is observed near the supports. In Figure C1.A, plastic yielding in Zone 1 develops more obviously than that
in Zone 2. However, the development of plastic yielding in Zones 1 and 2 is similar in Figure C1.B and C1.C. Qualitatively,
the optimized clamped beam structure with a higher limit pressure tends to have similar development of plastic yielding
at supports. This observation can inform engineering intuition on optimal plastic material designs.

(A)

(B) (C)

Zone 1

Zone 2

Zone 1

Zone 2

Zone 1

Zone 2

FIGURE C1 Contour plots of equivalent plastic strain for (A) topology I under its limit pressure w = 101.325 kPa, (B) topology II under its
limit pressure w = 134.993 kPa, and (C) topology III under its limit pressure w = 137.801 kPa
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APPENDIX D

A CONTINUATION SCHEME OF FILTER ORDER (q)

For removing the unnatural slender members in the optimized structures, we use a filter-order continuation scheme so
that the quality of the nonlinear result can be improved. The filter-order continuation scheme is based on the density
filter. The relationship between filtered densities 𝝆 and density variables 𝝆 can be written as33

𝝆 = H𝝆, (D1)

where H is the filter matrix, which is defined as

H𝑖𝑗 =
h (i, 𝑗) v𝑗∑n
k h (i, k) vk

, h (i, 𝑗) = max
{

0, [rmin − dist (i𝑗)]q}
, (D2)

where ve is the volume of the eth element, n is the number of elements in the discretization, rmin is the filter radius,
dist(i, j) is the operator defining the distance 𝝆 and 𝝆, and the exponent q is the order of the filter.

The idea of the continuation scheme is to start the optimization iteration with a linear (q = 1) filter and then apply a
higher-order (q = 2 or 3) filter after the solution converges. For example, Figure D1 illustrates the convergence history of
the 1 m × 1 m, three fixed-sides beam problem solved in Section 6.4. A linear filter (q = 1) is used starting from iteration
#1 until the solution converges at iteration #423. At the next iteration #424, we use a quadratic (q = 2) filter only for this
single optimization step. From iteration #425 to iteration #824, the linear filter (q = 1) is used again until convergence of
the solution. At iteration #825, we repeat the strategy described above. Comparing the topologies at iterations #423, #824,
and #1150, we verify that the slender members on the top portion of the structure are removed. In addition, the objective
(U) is slightly improved, as shown in Table D1.

0 200 400 600 800 1000 1200
Iterations

-2

-1.5

-1

-0.5

0

O
bj

ec
tiv

e 
(-

U
)

Ite. #423
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Ite. #824 Ite. #1150

Ite. #824

Ite. #1150

FIGURE D1 Convergence history for the 1 m × 1 m beam of Figure 17B, illustrating the filter-order continuation scheme [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE D1 Comparison of the objective (U) obtained with the
filter-order continuation scheme

Ite. #423, MJ Ite. #824, MJ Ite. #1150, MJ

Objective (U) 1.8289 1.8570 1.8721
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APPENDIX E

THE CHOICE OF THE PRESCRIBED ENERGY C0

For illustrative purposes, let us consider the particular case of linear elasticity, in which Equation (20) can be written as{
K u = 𝜆 f 0

f 0
T u = 2C0,

(E1)

where K is the stiffness matrix, u is the displacement vector, f0 is the external force vector, and 𝜆 is the Lagrange multiplier,
which is also the load factor associated with the reaction forces. We verify that Equation (E1) is mathematically equivalent
to the state equation proposed by Klarbring and Strömberg20 as{

K u = f 0 + 𝜆 e
eT u = 𝛿,

(E2)

where e is a prescribed column vector and 𝛿 is a prescribed displacement. In Klarbring and Strömberg's state equation (E2),
the displacement 𝛿 is prescribed as the kinematic constraint, and the Lagrange multiplier 𝜆 has the unit of force. By
comparison, we prescribe the energy C0 in our approach, and thus, the Lagrange multiplier 𝜆 in Equation (E1) is
adimensional.

In the following, we use a simple three-bar truss example to (i) explain how to estimate a value for C0 and
(ii) demonstrate how to solve the structural problem with the state equation (E1).

The three bars, as shown in Figure E1, have the same circular cross section with diameter d = 0.005 m, and they are
made of a linear elastic material with Young's modulus E = 108 kPa. Two external forces are applied at node 2 (vertical)
and at node 3 (horizontal), respectively. The magnitude of the external load P is 10 kN.

Let us assume that the designer suggests to prescribe a vertical displacement u2y = −0.012 m at node 2 and a horizontal
displacement u3x = 0.015 m at node 3, respectively. On the basis of the designer's request, we can estimate C0 as

C0 = 1
2
(
−Pu2𝑦 + 1.5Pu3x

)
= 0.1725 kN · m. (E3)

To solve this structural problem, the state equations (E1) can be written in matrix form as[ K −f 0

−f T
0 0

]{
u
𝜆

}
=
{

𝟎
−2C0

}
. (E4)

From Equation (E4), u and 𝜆 can be solved numerically as

{
u
𝜆

}
=
⎡⎢⎢⎢⎣

522.59 −4.14 −175.58 0
−4.14 1049.32 351.15 10
−175.58 351.15 829.91 −15

0 10 −15 0

⎤⎥⎥⎥⎦
−1 ⎧⎪⎨⎪⎩

0
0
0

−0.345

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0.0052
−0.0107
0.0159
0.5665

⎫⎪⎬⎪⎭ . (E5)

FIGURE E1 The three-bar truss example [Colour figure can be viewed at wileyonlinelibrary.com]
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Therefore, we obtain u and 𝜆 as

u =
[
0.0052 −0.0107 0.0159

]Tm 𝜆 = 0.5665. (E6)

From the Equation (E6), we can verify that C0 = 1∕2(−Pu2y + 1.5Pu3x) = 0.1725 kN·m, which is identical to the energy
we estimated in Equation (E3).

APPENDIX F

ONE-BAR TRUSS EXAMPLE

We use a simple one-bar truss example to (i) illustrate that both formulations (ie, max U and max 𝜆) lead to optimal designs
in terms of stiffness and (ii) demonstrate the relationship between the strain energy (U) and the prescribed energy (C0).
The one-bar truss structure, as shown in Figure F1, is fixed at the left end, and it is made of linear elastic material with
Young's modulus E. The length and the cross-sectional area of the truss are L and A, respectively. An external force f0 is
applied at the right end, and the displacement of this end is u.

For this one-dimensional case, the state equation (20) in the linear elastic case becomes{
K u = 𝜆 𝑓0

𝑓0 u = 2C0,
(F1)

where K = AE/L is the stiffness of the truss. By solving Equation (F1), we can obtain 𝜆 as

𝜆 = 2
(AE

L

) C0

𝑓 2
0
. (F2)

Equation (F2) shows that maximizing the load factor 𝜆 is equivalent to maximizing the stiffness of the truss structure. In
addition, the strain energy of the truss can be written as

U = 1
2

(AE
L

)
u2 = 1

2

(AE
L

)(2C0

𝑓0

)2

= 2
(AE

L

) C0
2

𝑓0
2 . (F3)

Similarly, from Equation (F3), we find that maximizing the strain energy U is equivalent to maximizing the stiffness of
the truss. By comparing Equations (F2) and (F3), we obtain that

C0 = U
𝜆
. (F4)

Therefore, Equation (F4) demonstrates the linear relationship between the prescribed energy C0 and the strain energy
U considering the linear elastic case. This conclusion is verified numerically by the three-support beam example in
Section 6.1. In this example, the equality C0 = U/𝜆 holds when we consider C0 = 10−4 kJ, which represents the linear
elastic case (see Table 8).

f

E, A, L

FIGURE F1 The one-bar truss example [Colour figure can be viewed at wileyonlinelibrary.com]


