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Role of nonlinearities in topological protection: Testing magnetically coupled fidget spinners
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We investigate and experimentally observe the existence of topologically protected interface modes in a
one-dimensional mechanical lattice and we report on the effect of nonlinearities on topological protection. The
lattice consists of a one-dimensional array of spinners with nearest-neighbor coupling resulting from magnetic
interactions. The distance between the spinners is spatially modulated to obtain a diatomic configuration, and
to produce a nontrivial interface by breaking spatial inversion symmetry. For small amplitudes of motion,
the interactions are approximately linear, and the system supports topologically protected interface modes at
frequencies inside the bulk band gap of the lattice. Nonlinearities induced by increasing amplitude of motion
cause the interface modes to shift and merge with the bulk bands. The resulting edge-to-bulk transition causes
the extinction of the topologically protected interface mode and extends it to the entire length of the chain.
Such transition is predicted by analytical calculations and verified by experimental observations. The paper thus
investigates topologically protected interface modes obtained through broken spatial inversion symmetry, and
documents the lack of robustness in the presence of nonlinearities.
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I. INTRODUCTION

Notable efforts have been devoted to the investigation of
topological protection in condensed matter [1,2], and in clas-
sical areas of wave physics such as acoustics [3], photonics
[4,5], as well as solid [6,7] and fluid mechanics [8]. The phe-
nomenon of topological protection consists in the existence of
wave modes that do not propagate into the bulk of the consid-
ered media, but are instead confined to a lower dimensional
region within it, either a boundary or an interface. Driven by
its topological nature, this effect is robust to the existence of
imperfections and defects, making it attractive for applications
where lossless wave propagation, immunity to backscattering
and mode localization are important objectives. Topological
protection can be achieved through time-reversal symmetry
breaking, which generally requires the employment of ac-
tive elements that effectively bias the interactions within the
media. Examples include circulators in optomechanics [9],
gyroscopic mechanical metamaterials [10], and the use of
active fluids characterized by a background flow [11] among
others. These systems mimic the quantum Hall effect whereby
a net “magnetic” flow breaks time-reversal symmetry. Two
superimposing effects lead to the emergence of topologically
protected (TP) modes. First, band gaps are opened at the oth-
erwise high-symmetry degeneracy points in reciprocal space
(e.g., Dirac cones). Second, the integral of the Berry curvature
of each band along the reciprocal space does not equal zero,
and the separated dispersion surfaces are linked only by one
lower dimensional band, which corresponds to the TP mode.
The eigenvector associated with this band is localized to a
lower dimensional region in space and propagation is uni-
directional [12]. Similar effects are achieved through solely
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passive elements that break spatial inversion symmetry (SIS)
[13,14]. Spatial inversion symmetry breaking also opens band
gaps at the high-symmetry points and couples the spins (or
polarities) of otherwise degenerate modes. In this case, the
integral of the Berry curvature is nonzero in the vicinity of
the opened Dirac cone, although it is zero over the entire
reciprocal space. Two lower dimensional bands are produced
and are associated with TP modes localized at the interface of
two lattices with inverted bands, i.e., bands that are character-
ized by opposite values of the relevant topological invariants,
and propagation of these associated modes occurs in opposite
directions [7].

In systems that involve active elements, topological protec-
tion may be tailored or removed by control of such elements.
In passive systems, the control of TP modes must instead
rely on the inherent dynamic behavior of the lattice. Thus,
nonlinearities appear as natural choices to pursue the objective
of controlling and tailoring TP modes. Indeed, the vast major-
ity of studies in the field of topological protection is limited
to linear systems. While some theoretical investigations in-
volving topological transitions have been recently presented
[15,16], the physical demonstration of how nonlinearities
affect TP modes remains mostly unexplored. Nonlinearities,
for example, enable uneven distributions of the wave energy,
which in turn may lead to nonreciprocal wave propagation
[17–21]. Another interesting nonlinear effect is the change in
the effective parameters governing wave motion, such as the
equivalent stiffness of elastic systems, which produces shifts
of dispersion branches and band gaps [22,23].

The theoretical analysis of nonlinearities and their effect
on a topologically nontrivial interface is presented in [16],
where results suggest lack of robustness of TP modes obtained
through SIS breaking in the presence of a nonlinear interface.
The present work sets the objective of observing this behavior
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experimentally. To this end, a nonlinear lattice consisting of
units that interact through permanent magnets is modeled,
assembled and then tested. Magnetic interactions provide the
means for modulating the strength of the lattice coupling
through proper adjustment of the interatomic spacing, and
naturally introduce nonlinearities as the amplitude of wave
motion increases. Topological protection is induced and sub-
sequently verified via SIS breaking at a selected location, and
is shown to undergo an interface-to-bulk transition for increas-
ing amplitude. This occurs solely as a result of amplitude-
dependent stiffness softening of the magnetic interaction,
without requiring changes in the physical topology of the
system.

Following this introduction (Sec. I), Sec. II is devoted to the
description of the considered lattice, its main physical param-
eters and the study of its corresponding analytical model, both
in linear and nonlinear regimes. The experimental investiga-
tions are described in Sec. III. Finally, Sec. IV summarizes the
key findings of the study and highlights potential extensions.
Three appendices supplement the work.

II. LATTICE CONFIGURATION AND
ANALYTICAL RESULTS

The investigations on TP and nonlinearities presented in
Ref. [16] have shown that localized modes arise at the inter-
face between two spring-mass chains that are inverted copies
of each other. In the presence of nonlinearities, amplitude-
dependent frequency shifts cause the localized TP mode to
migrate to the bulk spectrum. This behavior is further inves-
tigated in this paper through the physical implementation of
a 1D lattice consisting of a dimer chain of spinners [24],
see Fig. 1. Each spinner is bolted to a linear guide, which
fixes its position while letting it free to rotate about an axis
perpendicular to the page. The spinners are coupled through
permanent magnets in attraction that provide a force that tends
to maintain the spinners in the aligned position [Fig. 1(a)]. The
magnitude of magnetic interactions is strongly related to the
distance between the magnets, which is defined by the spacing
between the spinners. Such spacing is here modulated to im-
plement a dimer lattice configuration whereby the interaction
coefficients are defined by two distance values, namely Da and
Db (Fig. 1). An interface is created by joining the lattice with

its mirror copy at a defined location as a result of broken SIS
[Fig. 1(b)].

A. Analytical model

A simplified model is formulated according to the config-
uration of Fig. 2. The dynamic behavior of each spinner is
described by its rotation angle θ , and governed by the spinner
inertia I and by the interaction with its neighbors. Such
interaction is evaluated based on the model of the magnetic
force exchanged by the permanent magnets mounted on the
spinner’s pegs, which can be approximated to varying orders
in terms of the angular positions of the spinners. Details of
the evaluation of the magnetic interactions and their simplified
description can be found in Appendix A.

According to the approximations made and the derivations
reported in the Appendix A, the equations of motion for the
i-th unit cell can be expressed as follows:

I θ̈a,i + kθ θa,i + kt,a(θb,i + θa,i ) + kt,b(θa,i + θb,i−1)

+ γa(θb,i + θa,i )
3 + γb(θa,i + θb,i−1)3 = 0,

I θ̈b,i + kθ θb,i + kt,b(θa,i+1 + θb,i ) + kt,a(θb,i + θa,i )

+ γb(θa,i+1 + θb,i )
3 + γa(θb,i + θa,i )

3 = 0, (1)

where I is the inertia of each spinner, kθa , kθb , kta , ktb are the
linear interaction coefficients, while γa, γb define the nonlin-
ear interaction coefficients. The equations for the inverted unit
cell are formally identical, with the proper switching of the
subscripts, and are reported in Appendix A for brevity.

Analysis of the equations reveals that the motion of each
spinner is governed by its rotary inertia, and by the magnetic
interactions that in the linear regime manifest themselves as
a term that is proportional to the rotation of each individual
spinner. This effectively produces the effect of a torsional
spring connected to the ground. An additional term couples
neighboring spinners through a torque that is approximately
proportional to the relative displacement between neighboring
magnets in the direction transverse to the spinners chain, here
measured by the sum of their respective rotation angles. The
presence of the ground term, and the fact that nearest-neighbor
interactions are defined by the sum of the rotation angles,
instead of their difference, make the system slightly different
than a typical dimer chain of the kind investigated for example
in Ref. [16].

FIG. 1. One-dimensional spinner lattice. (a) Detail of two interacting spinners and (b) diatomic chain with interface generated through
spatial inversion symmetry (SIS).
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FIG. 2. Schematic of analytical model with key physical parameters.

B. Linear dispersion analysis and associated topology

We first investigate the underlying linear behavior of the
lattice, by considering small angular perturbations and ne-
glecting the nonlinear terms in Eq. (1). We evaluate the
dispersion properties for the infinite lattice by imposing a
plane wave solution in the form θp,i = θp,0ej(iμ−ωt), where i
is an integer defining the location of the unit cell, p = a, b,
j = √−1, while ω denotes the angular frequency and μ is the

dimensionless wave number. Substituting these expressions in
Eqs. (1), we obtain an eigenvalue problem that identifies the
following two dispersion branches:

ω2 = 1

I
(kθ + kt,a + kt,b) ± 1

I

√
k2

t,a + k2
t,b + 2kt,akt,b cos μ.

(2)

The branches are separated by one band gap [shaded blue
area in Fig. 3(a)]. In addition, a zero-frequency gap extending

FIG. 3. (a) Linear dispersion diagram for the periodic lattices. (b) Eigenvalues for a 20+20 spinners lattice with the nontrivial interface
showing the existence of two interface modes: one populates the band gap and is topologically protected (black solid dot), a second interface
mode appears above the second branch (green circle). (c) Corresponding eigenvectors illustrating the symmetric (even) and antisymmetric
(odd) spatial distributions of the interface modes. The TP mode corresponds to the thick black line with solid dots, while the other interface
mode is denoted by the thin green line and superimposed circles.
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up to a cut-off is produced by the grounding constants kθ .
Breaking of spatial inversion symmetry by inverting the or-
der of the distance modulations, produces dispersion curves
that differ in terms of the associated topological invariants.
Specifically, the topological properties of the second and third
band gaps can be switched by permutation of the intra-cell
and intercell connecting springs, i.e., inverting the unit cell,
or by considering kt,a > kt,b or vice versa, i.e., kt,b > kt,a.
The topological invariant, the Zak phase [25] in the case
of a 1D lattice, is evaluated through numerical integration
of the eigenvector change along each band as described in
Refs. [16,26,27]. It is found that the Zak phase is Z = π

for both dispersion bands when kt,a < kt,b, while it is Z = 0
otherwise. Hence, the interface of Fig. 1(b) connects two
lattices with same band gap, but inverted geometry and differ-
ent band topology. Thus the interface supports modes whose
frequency can be predicted from the solution of the eigenvalue
problem for a finite system. The eigenvalues obtained for two
reversed lattices with 20 spinners each confirm the existence
of the two branches separated by the gap, along with the
presence of two additional modes (black and green solid dots),
one of which appears inside the band gap (black solid dot).
Both modes are localized at the interface as illustrated by
the corresponding eigenvectors shown in Fig. 3(c). The two
interface modes are characterized by distinct spatial profiles,
whereby the lower frequency mode is odd relative to the
interface, while the higher frequency mode is symmetric, or
even, with respect to it. Of interest is the mode in the band gap,
which is topologically protected (TP) as a result of broken
SIS and according to Zak phase computations presented in
Ref. [16]. This TP mode is the focus of the investigations in
the remainder of the paper.

C. Effects of nonlinear interactions

We evaluate the effect of increasing amplitude on the
eigenvalues and associated eigenmodes of the system. To
this end, we consider the governing equations for the finite
N + N = 40 system with interface, which are obtained from
the assembly of equations in Eq. (1). Assuming harmonic
motion θne jωt and applying harmonic balance, we obtain the
general matrix form:

K(θ)θ = ω2Iθ, (3)

where θ = [θa,1, θb,1, . . . , θa,N , θb,N ]T is a vector including
the complex amplitudes of all angular degrees of freedom
of the lattice, K(θ) denotes the effective stiffness matrix and
θe jωt . For low amplitudes |θ| � 1, the stiffness matrix K is
independent of θ and the solution is straightforward. However,
when nonlinearities play a role the effective stiffness matrix
depends on the amplitudes of motion, which requires an itera-
tive analysis. Specifically, we use a Newton-Raphson scheme
[28].

To write the nonlinear governing equations in canonical
form, Eq. (3) is rearranged as

[K(θ) − ω2I]θ = 0. (4)

This system of 2N equations has 2N + 1 unknown variables
{θ, ω}, and therefore infinite solutions. To extract specific
{θ, ω} pairs, we impose particular values to the total amplitude

of the chain A, defined as the L2 norm of θ. Thus we add
the additional equation |θ|2 − A = 0, where A has a numeric
value. When A → 0 is imposed, the linear solution is recov-
ered.

We start by solving for a small value of A (e.g., A = 10−3),
and we use the linear eigenvector-eigenvalue pair {θl , ωl} as
initial guess. The linear eigenvector θl is simply scaled as
θg = θl/|θl |2A and the linear eigenvalue ωl is used as is. This
way we ensure that the initial guess θg is the eigenvector
of the linear problem and that its total amplitude |θg| is A.
The algorithm yields a new solution that is then used as the
initial guess for a slightly higher value of A, and so on. With
this procedure we calculate the evolution of the eigenvalue-
eigenvector pair for increasing values of total amplitude A.

Depicted in Figs. 4(a)–4(d) are results for the TP
mode for the values of γa(b) = −366(−188) N m rad−3 (see
Appendix B 1). Results show that the nonlinear “eigenfre-
quency” decreases with amplitude, along with an amplitude-
dependent transition whereby the frequency exits the band gap
[shaded blue area in Fig. 4(a)] and enters the bulk spectrum of
the linear system. This is consistent with the negative value
of γa(b) that defines a softening nonlinearity in the connect-
ing springs, by which their effective stiffness decreases for
increasing total amplitude A. When the nonlinear eigenvalue
abandons the band gap, the bulk attenuation of this otherwise
localized wave mode no longer holds, and the wave mode
extends to the bulk. This is illustrated in Fig. 4(b), which
presents the variation of the corresponding eigenvector for
increasing amplitude A. In the figure, the colors are associated
with the magnitude of each mode normalized to its maximum
value, i.e., θ(A)/|θ(A)|∞. Also, the markers correspond to the
normalized angular motion of the individual spinner, while the
continuous solid lines are spline interpolations that improve
visualization.

Both plots in Figs. 4(a) and 4(b) illustrate the occurrence
of an interface-to-bulk transition as the amplitude of wave
motion increases, and show the importance of nonlinearities.
The transition is denoted by the thick, solid red lines in both
figures at A ≈ 0.09 rad and is further illustrated in Fig. 4(c),
which compares the magnitude of the eigenvector at spinner
n = 22 close to the interface (solid blue line), and away from
the interface at n = 1 (dashed green line). For low amplitudes,
motion at n = 1 is very limited, and negligible compared to
the motion at the interface n = 22. As amplitude grows, there
is an evident increase in the motion at n = 1 as a result of the
mode becoming global in nature and no longer localized at the
interface. A thick red line at A ≈ 0.09 rad is added to the plot
for reference purposes.

III. EXPERIMENTS

We experimentally evaluate the existence of TP mode
and the influence of amplitude and associated nonlinearities
through the 40 spinner array shown in Fig. 5. The spinners
are bolted to a longitudinal aluminum beam at distances Da

and Db. The magnets employed are bonded to the pegs of
the spinners, with aligned magnetization vectors poled in
attraction. The method used to experimentally characterize
the magnetic interaction as a function of the distance be-
tween the magnets is described in Appendix B. The key
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FIG. 4. Effects of nonlinearities on the odd TP mode. (a) Variation of the eigenvalue versus amplitude (black dots); shaded blue area
outlines the linear band gap, while the vertical solid red line marks the amplitude corresponding to the interface-to-bulk transition at A ≈ 0.09
rad. (b) Variation of eigenmodes in terms of amplitude (colorbar is associated to the normalized magnitude of each mode). (c) Variation of
normalized magnitudes at locations n = 1 (red line with squares) and n = 22 (blue line with blue circles) and transition amplitude (solid red
line).

model parameters identified through the experiments are
listed in Table I. Additional details of geometric proper-
ties of the magnets, spinners and the chain are provided in
Appendix C.

In the experiments, excitation is provided by an electrody-
namic shaker controlled by a signal generator that provides the
desired input. Specifically the signals used in the experiments

are a white noise signal band-limited to the frequency range
of interest (0–80 Hz) and a sine wave at the target frequency
and amplitude. The response of the spinner array is recorded
by a single point laser Doppler vibrometer (LDV) pointed at
selected locations. Experiments are conducted for excitation
applied at spinner n = 1 at the left boundary of the array,
and at spinner n = 20 close to the interface (Fig. 5). The first

FIG. 5. Physical 40 spinner system with motion imposed to spinner 20.
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TABLE I. Experimental values of constants kθ and kt as a func-
tion of distance between magnets d0 = D − 2R − hm.

d0 (mm) 1 2 3 4 5 6 7

kθ (Nm/rad) 0.194 0.115 0.072 0.056 0.045 0.036 0.028
kt (Nm/rad) 2.385 1.224 0.720 0.406 0.282 0.178 0.127

configuration evaluates the transmissibility through the array,
while the excitation right at the interface (n = 22) directly
probes the TP modes and investigates changes as a function
of amplitude. Video recordings of the response of the spinner
arrays are also taken through a high speed camera, the results
of which are processed to provide the spatial distribution
of the response and show mode localization and to produce
the animations presented as part of Ref. [29]. In the videos
in Ref. [29], we show the spinners chain oscillating at the
nonlinear normal frequencies of three different values of the
amplitude denoted as low A = 0.002 rad, medium A = 0.070
rad, and high A = 0.179 rad. We superimpose a circle on top
of every spinner whose radius is proportional to the spinner
amplitude of motion |�n| for improved visualization. The
interiors of these circles are colored to indicate the instan-
taneous phase of each spinner measured as the argument of
the complex number θne jωt in absolute value, going from
cyan to magenta from lowest to highest value of the spinner
oscillation magnitude. A small oscillating white circle is also
attached to the perimeter of each circle to further highlight the
angular motion. For verification of the LDV measurements,
one point of each spinner, located next to the one of the
magnets, is tracked to extract the spinner motion θn from
the videos. The points are marked in the animations with a
blue dot surrounded by a red square. We track the motion by
comparing the relative position of the pixel set inside the red
square among subsequent frames.

As in the analytical investigations, we first probe the linear
behavior of the system by evaluating its dynamic behavior
at low amplitude. To this end, we measure the frequency re-
sponse at n = 22 for white noise excitation applied at spinner
n = 1 during 20 seconds, and averaged for 150 repetitions.
The results are presented in Fig. 6 (black solid line). For
reference the figure also reports the corresponding analytical
predictions (red solid line), along with the predicted eigenval-
ues (red circles), and the frequency band gaps (shaded beige,
cyan and purple regions). The results show a good match
between analytical and experimental results, and confirm the
overall behavior of the system, including the existence of band
gaps and of the two interface modes, both highlighted in the
figure, one being the TP mode of interest.

We investigate amplitude effects around the frequency of
the TP mode by imposing harmonic motion at n = 20 and
record the applied force through a load cell mounted on the
stinger connected to the shaker, and the velocity of spinner
n = 22. All results presented herein are at steady-state for
frequency varying between 35 and 55 Hz, and amplitude of
imposed motion θ20e jωt increasing approximately between
|θ20| = 0.001 and 0.07 rad. Since the shaker is controlled in
open-loop, we control the amplitude of the electronic signal
that excites it, and θ20 is evaluated as the magnitude of the

FIG. 6. Experimental frequency response at spinner n = 22 in
the linear regime for white noise excitation at n = 20. For reference,
the theoretical predictions are reported in the thin red line, along
with the theoretical eigenvalues (red and blue circles) and the fre-
quency corresponding to the interface modes (TP mode: black dot;
interface mode: green circle and vertical dashed line). The shaded
blue region denotes the analytical linear band gap.

motion of spinner n = 20, recorded by an accelerometer.
The amplitude θ22 of spinner n = 22 is also calculated as the
first harmonic of its motion θ22, measured with the LDV.
The amplitude of applied force f0 is calculated as the first
harmonic of the instantaneous force measured by the load cell.
Second and higher harmonics of all the measurements have
been found more than an order of magnitude lower than the
first harmonic.

Each experiment produces a triplet of values: the amplitude
of the response θ22, its frequency, and the amplitude of the ap-
plied force f0. Mapping these values through a series of exper-
iments leads to a surface that correlates frequency, amplitude
of response and amplitude of applied force. The surface can
be represented as contours that relate frequency and amplitude
of response at constant applied force. In this representation,
resonance frequencies are identified as points of minimum
required force, i.e., as the valley of this surface. The results in
Fig. 7(a) show the natural frequencies as the black dotted line.
The corresponding backbone curve presents a sharp change
in slope as the frequency leaves the band gap (shaded blue
region), which presumably indicates a transition in dynamic
behavior. In addition, we record the dynamic deformed shape
for excitation at the backbone frequencies. The measurements
are conducted by repeating LDV recordings at each spinner
location and then combining the corresponding amplitude and
phase to obtain each of the curves shown in Fig. 7(b). For
these, the LDV head is manually moved between locations
and the data acquisition device is programed to synchronize
the measurements by starting them always at the same time
interval after the excitation signal is triggered. The figure
presents the change in the dynamic deformed shapes as a func-
tion of total amplitude A = |θ|2, which clearly illustrates how
the lattice exhibits the predicted change in the linear-regime
TP mode, and documents its transition from being localized at
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FIG. 7. Experimentally observed effects of nonlinearities on the odd TP mode. (a) Amplitude |θ22| vs frequency relation for nonlinear
normal modes. Shaded blue area outlines the linear band gap, while the horizontal solid red line marks the amplitude corresponding to the
interface-to-bulk transition at |θ22| ≈ 0.035 rad. The contours represent the frequency-response correlation for oscillations excited at constant
force amplitude. (b) Variation of steady-state dynamic deformed shapes in terms of total amplitude A (the colorbar denotes the magnitude of
the applied force). The transition occurs at amplitude A ≈ 0.08 rad. (c) Variation of normalized magnitudes at locations n = 1 (dashed red line
and squares) and n = 22 (thick blue line and circles) and transition amplitude (solid red line).

small amplitudes, to bulk mode for higher values of A. As in
the analytical results, the amplitude of motion at spinner n = 1
is negligible in the linear regime, but grows for increasing
nonlinearities [Fig. 7(c)]. Evidence of a transition, although
not as sharp as the one predicted by the theoretical model (in
Fig. 4), is marked by the vertical solid red line at A = 0.08
rad. We note that Fig. 7(a) differs slightly from its analytical
counterpart in Fig. 4(b), possibly due to the presence of
dissipation in the physical system. Evidence of dissipation
can be observed in the spatially decaying amplitude from the
interface in Fig. 7(a), and in the significantly lower Q-factors
observed for the experimental lattice in the linear frequency
response function of Fig. 6. Also, dissipation could contribute
to the discrepancy between Figs. 4(c) and 7(c). While we
believe that the effect of dissipation is important and could
affect the robustness of TP modes, we do not specifically
investigate it in this work, and we limit to identifying it as
the object of future studies.

An alternative visualization of the transition is obtained by
recording the motion of the spinners through a high speed
camera. The experiments are conducted by repeating the mea-

surements over 15 separate portions of the lattice, as the entire
length exceeds the aperture of the camera. Measurements are
phase-matched and stitched to obtain a single recording for an
assigned amplitude of motion, snapshots of which for three
values of amplitude A are shown in Fig. 8. As the angular
rotation of the spinners in all cases remain relatively hard to
observe from the pictures, circles of radius proportional to the
amplitude of motion are superimposed to each spinner to
facilitate visualization and to better appreciate the extent of
the penetration of the mode into the bulk. Such penetration
is very limited for low amplitudes Fig. 8(a), as the mode is
strongly localized at the interface, and progressively increases
for higher values of amplitude to eventually reach the end of
the chain in the case shown in Fig. 8(c). Also for visualization
purposes, the interior of the circles indicating amplitude is
colored to indicate the instantaneous phase of each spinner
measured as the argument of the complex number θne jωt ,
where values according to a color scheme varying from cyan
for the lowest values to magenta for the highest ones. A small
white circle is also added to the perimeter of the circles to aid
visualization.
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FIG. 8. Experimentally measured snapshots of the chain motion for increasing values of amplitude: (a) low amplitude A = 0.002 rad;
(b) medium amplitude A = 0.070 rad, and (c) high amplitude A = 0.179 rad. Circles of radius proportional to the normalized angular motion
of each spinner are superimposed to the picture to aid visualization.

IV. CONCLUSIONS

The paper investigates the occurrence of topologically pro-
tected interface modes produced by broken spatial inversion
symmetry. Experimental observations are conducted on a
one dimensional dimer chain consisting of spinners coupled
through permanent magnets. Spatial modulation of the inter-

action strength relies on setting the distance between magnets
of neighboring spinners. Guided by a simplified analytical
model, dynamic measurements highlight the presence of fre-
quency band gaps and of a TP mode whose frequency lies
inside the band gap. The experiments also probe the behavior
of the chain when nonlinearities affect lattice interactions.
A softening-type nonlinearity cause the frequency of the
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topologically protected modes to progressively merge with
the linear bulk bands, causing an interface-to-bulk transition
of the corresponding mode. Such transition is first predicted
by the analytical model, and then confirmed by the measured
response of the chain. Laser vibrometry and full field optical
capture of the dynamic deformed configurations of the lat-
tice are employed to quantify and characterize the interface
localization of the topologically protected modes, and their
extinction as the amplitude of motion increases. A transi-
tion amplitude is predicted numerically and also observed
experimentally, with a good level of agreement. The study
paves a path towards the understanding of the robustness of
topologically protected modes and lack thereof in the presence
of the type of nonlinearities investigated as part of this study.
The results also suggest a potential mechanism for the control
of localization and the transition to bulk propagation that
exploits topological protection in conjunction with nonlinear
interactions.
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APPENDIX A: MODEL OF MAGNETIC INTERACTION

The magnetic force is evaluated by computing the interac-
tion between magnetically rigid dipole moments ma and mb,
which is given by [30]

f ba = − 3μ0

4πd5

(
d(ma · mb) + ma(d · mb) + mb(d · ma)

− 5d
d2

(d · ma)(d · mb)

)
, (A1)

where f ba is the force that magnetic dipole mb exerts over
dipole ma, d is the vector between magnet centers (d = |d|)
and μ0 is the value of the vacuum magnetic permeability.
Here, the magnitude of the magnetic dipoles are considered
equal, i.e., |ma| = |mb| = m.

According to the schematic of Fig. 9, the dipole moments
are expressed as

ma = m(i cos θa + j sin θa), mb = m(i cos θb + j sin θb),

while the relative distance vector is

d = i[D − R(cos θa + cos θb)] − j[R(sin θa + sin θb)].

FIG. 9. Sketch of two spinners interacting through permanent
magnets: degrees of freedom and relevant parameters.

The interaction force can be conveniently resolved in terms
of the unit vector pair i, j, i.e., f ab = fxi + fy j, where the
two force components can be approximated through a Taylor
series expansion about the equilibrium position θa, θb ≈ 0.
Truncation to the first order gives

fx = 3m2μ0

2π (D − 2R)4 + O
(
θ2

a , θ2
b , θaθb

)
,

fy = −3m2μ0(D + 2R)

4π (D − 2R)5
(θa + θb) + O

(
θ2

a , θ2
b , θaθb

)
. (A2)

The horizontal component is constant in linear regime, while
the vertical one is proportional to the angle sum (θa + θb),
i.e., to the relative displacement between neighboring mag-
nets in the vertical direction. The equation of motion for
spinner (a) is simply I θ̈a − Tba(θa, θb) = 0, and includes the
moment corresponding to the interaction force, which is given
by Tba = |ra × Fba|, where ra = R(i cos θa + j sin θa) is the
vector that goes from center of spinner a to the center of the
magnet ma. This gives

Tba = − 3m2μ0R

4π (D − 2R)5
(2(D − 2R)θa + (D + 2R)(θb + θa))

+ O
(
θa

3, θa
2θb, θaθb

2, θb
3). (A3)

The expression above include one term depending solely
on θa and another that is directly proportional to (θa + θb).
The first term is analogous to the torque exerted by a spring
connected to the ground, and is the result of the horizontal
attractive force component between the magnets. The second
term is proportional to the relative angular motion of neigh-
boring spinners and is associated with the vertical component
of the interaction force.

In order to account for nonlinearities in moderate rotation
regimes, we extend the Taylor series expansion of the torque
Tba up to order 3, which gives

Tba = − 3m2μ0R

4π (D − 2R)5
(2(D − 2R)θa + (D + 2R)(θb + θa))

+ m2μ0R

8π (D − 2R)7

(
(3D3 + 12D2R + 3DR2 + 16R3)

× (θb + θa)3 + (9D3 + 4D2R − 46DR2)θa
3

+ (3D3 − 6D2R + 42DR2 − 96R3)θa
2θb + (6DR2)θaθb

2

+ (−2D3 + 10D2R + 2DR2 − 32R3)θb
3
)

+ O
(
θa

4, . . .
)
. (A4)

The nonlinear part of the torque includes five terms whose
importance can be evaluated for the considered values of
D = 70.9 mm and R = 32.45 mm, which gives R/D ≈ 0.46.
Numerical estimation of the coefficients reveals that the term
for (θb + θa)3 is at least an order of magnitude larger than
all other nonlinear coefficients. Therefore the torque can be
further approximated as follows:

Tba ≈ −kθ θa − kt (θa + θb) − γ (θa + θb)3, (A5)
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where

kθ = 6m2μ0R

4π (D − 2R)5
(D − 2R)

kt = 3m2μ0R

4π (D − 2R)5
(D + 2R),

γ = − m2μ0R

8π (D − 2R)7
(3D3 + 12D2R + 3DR2 + 16R3).

(A6)

which leads to the following governing equation of motion for
the spinner:

I θ̈a + kθ,aθa + kt,a(θa + θb) + γa(θa + θb)3 = 0. (A7)

The negative sign in the nonlinear coefficient γ in Eq. (A6)
indicates that the cubic exponential term has a softening effect
on the dynamic behavior of the spinner.

Please note that kθ takes two different values in the chain
kθ,a and kθ,b depending if the distance between spinners is
Da or Db, respectively. However, they add up in each spinner,
since there is one spinner to the left and one to the right both
contributing with a constant restoring longitudinal force fl . As
a result, all of them are the same kθ,a + kθ,b = kθ,b + kθ,a =
kθ , except for three spinners: the left boundary n = 1 is kθ,b,
the right boundary n = 40 is kθ,a, and the interface n = 21

which is 2kθ,a. This is taken into account in the analytic
calculations.

Hence, the motion of regular ith unit cell is expressed
by Eq. (1) and the motion of the inverted ith unit cell is
formulated as

I θ̈b,i + kθ θb,i + kt,b(θa,i + θb,i ) + kt,a(θb,i + θa,i−1)

+ γb(θa,i + θb,i )
3 + γa(θb,i + θa,i−1)3 = 0,

I θ̈a,i + kθ θa,i + kt,a(θb,i+1 + θa,i ) + kt,b(θa,i + θb,i )

+ γa(θb,i+1 + θa,i )
3 + γb(θa,i + θb,i )

3 = 0. (A8)

APPENDIX B: EXPERIMENTAL EVALUATION OF
MAGNETIC INTERACTION COEFFICIENTS

1. Linear coefficients

The analytical model relies on the experimental estima-
tion of linear and nonlinear coefficients kθ , kt , and γ as
functions of the distance between neighboring magnets faces
d0 = D − 2R − hm, where hm = 5 mm is the height of the
magnets. To this end, we use a 3 spinner system which is
tested dynamically. First, low-amplitude (linear) white noise
excitation is applied to the left spinner n = 1 in Fig. 10(a).
The resonant frequencies of the resulting 2 degree of freedom
system are recorded based on the evaluation of the response

FIG. 10. (a) Setup for the characterization of linear constants kθ and kt . The magnet distance is set at d0 = 1 mm. (b) Frequency response
function of the system showing the occurrence of two resonance frequencies that are related to the constants kθ and kt and recorded for their
estimation, which is based on repeating the measurements for varying magnets distance d0. (c) Comparison of the longitudinal attraction force
fx evaluated on the basis of the estimated constants (black dots) and corresponding force provided in the technical specifications from the
retailer (red dashed line).
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FIG. 11. (a) Setup for measuring the nonlinear forced response
in a single dof system. Harmonic motion is imposed and the exerted
force is measured for different amplitudes and frequencies. (b) Then
the coefficient γ is fine-tuned so that the analytical solution of the
Duffing oscillator (dashed) matches the experimental results (solid)
for different amplitudes of the force f0.

peaks. Estimation of the linear coefficients is based on the
analytical expressions for these resonant frequencies, which
are

fr1,2
2 = 1

2π

(
3kθ + 3kt ±

√
kθ

2 + 2kθkt + 5kt
2
)
/2I

from which values of kθ (d0) and kt (d0) are inferred. Exem-
plary results are shown in Fig. 10(b), while the full set of
estimated coefficients are listed in Table I.

The estimated coefficients are subsequently used to eval-
uate the attractive horizontal component of the force fx(d0),
which is then compared with the data provided by the perma-
nent magnets manufacturer (D4H2 nickel plated neodymium
magnets by K&J Magnetics, Inc.). The comparison in
Fig. 10(c) shows a very good agreement and confirms the
accuracy of the estimated coefficients, which are then used
as inputs to the analytical model.

2. Nonlinear coefficients

Subsequently, we estimate the nonlinear coefficient γ us-
ing the two-spinner system shown in Fig. 11(a). In this setup,
the left spinner 1 is forced to oscillate harmonically at a par-
ticular amplitude and frequency, while spinner 2 is clamped

in the θ2 = 0 position. We run a set of dynamic nonlinear
steady-state experiments in which the exerted periodic force is
recorded with a load cell (model 208C01 by PCB Piezotronics
Inc.) from which the amplitude of its first harmonic f0 is
extracted.

Since the shaker is controlled in open-loop, we control the
amplitude and frequency of the harmonic electronic signal
sent to the shaker that imposes the motion θ1eiωt , and its
velocity is measured with the LDV, from which the ampli-
tude of its first harmonic θ1 is calculated. Then, for each
experiment, we get a triplet of values: the amplitude of the
response θ1, its frequency, and the amplitude of the applied
force f0. The experiment is repeated over a range of imposed
amplitudes from 0 to 0.04 rad and frequencies from 30 to
43 Hz. Mapping the results produces a surface that correlates
frequency, amplitude of response and amplitude of applied
force. The contours of this surface correlate frequency and
amplitude of response for constant amplitude of excitation
force f0.

For this range of amplitudes and based on the assumptions
described in Appendix A, the governing equation of the
forced response is equivalent to that of an undamped Duffing
oscillator

I θ̈1 + (kθ + kt )θ1 + γ θ3
1 = f (t ), (B1)

where f (t ) is the external force.
The response amplitude for harmonic excitation f (t ) =

f0 cos(ωt ) can be obtained analytically from [31]

(Iω2 − (kθ + kt ) − 3/4γ A2)2A2 = f 2
0 , (B2)

where A is the amplitude of the response in θ1eiωt , with
A = |θ1|. By comparing the measured response with the an-
alytical predictions according to the expression above, we
estimated a value for the nonlinear coefficient equal to γ =
−320 N m rad−3 for a distance between neighboring magnets
d0 = 1.2 mm. The comparison is shown in Fig. 11(d), which
illustrates the excellent match between analytical predictions
(dashed lines) and experimental results (solid lines) for the
estimated value of γ . In the figure, each color relates am-
plitude and frequency for a different value of excitation
force amplitude f0. Through the same process, we estimate
that γ (d0 = 1 mm) = −366 N m rad−3 and γ (d0 = 2 mm) =
−188 N m rad−3.

APPENDIX C: EXPERIMENTAL SETUP AND METHODS

The complete spinner chain is bolted to a straight slotted
beam, which allows adjusting the inter-magnetic distances
as needed by the experiments. The spinner radius is R =
32.45 mm, which leads to a rotary inertia value of I =
37.2 Kg mm2 including the magnets. We calculate the inertia
using meticulous measurements of the volumes and masses
of all the parts conforming each spinner. We measured all
the geometry parameters of the spinners: the main body, the
pegs, the bearings and the bearing balls. From a detailed
CAD model, a view of which is provided in Fig. 12, we
calculated the volumetric inertias (m5) of three different parts:
the spinner body and pegs, the bearing outer cylinder, and the
bearing balls. Those were obtained by numerical integration
about the axis of gyration IV = ∑

(r2
i δVi ), where ri is the
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FIG. 12. Solid model of a single spinner showing details of its
construction.

distance between the center of the ith differential volume δVi

and the axis of gyration. We also calculated the volumes and
weighted the parts separately. Assuming that the materials are
homogeneous, we estimate the density ρm of each part m.
We calculate the mass inertia by multiplying the volumetric
inertia by the density of each part I = ∑

IV,mρm. The bearing
balls contribute half because its motion is half of the rest of the
spinner. We neglected the spinning of the bearing balls in the
motion. The magnets, which are 5 mm tall and 6.35 mm di-
ameter, are placed at distances d0,a = 1 mm and d0,b = 2 mm
apart. The corresponding distances between the centers of the
spinners are respectively Da = 70.9 mm and Db = 71.9 mm.
Figure 13 shows a top view of the experimentally tested 40
spinner chain.

In the experiments we impose harmonic motion to the
spinner at the left boundary θ1 or the spinner next to the
interface θ20 depending on each experiment goal, with a
shaker controlled in open loop. The shaker, a model V201 by
LDS LTD., is excited with an electronic signal programed in
the PC and sent through the data acquisition system (DAQ),
(USB-6366 782263-01 by National Instruments TM). We
measure the acceleration of the excited spinner using the
accelerometer (model 352A24 by PCB Piezotronics Inc.) and
calculate its motion by integration. The motion of the other
spinners is calculated from integration of the velocities, which
in turn are measured by LDV using a PDV-100 scanning
head by Polytech GmbH. This is a single point LDV, so we
repeat the experiments 40 times and move the LDV device
manually between locations to measure the motion of all
the spinners. The DAQ is used to trigger the excitations and

measurements always with the same time interval between
them, which ensures that the steady-state is reached and that
phase is synchronized between experiments.

The signal imposed to the shaker is either white noise over
the frequency range of interest (0–80 Hz) to provide the re-
sponse of the system in the frequency domain, or harmonic for
steady-state measurements. The signal is properly amplified to
obtain the targeted amplitudes of displacement in the shaker.
These amplitudes are monotonically but not proportionally
related to the amplitude of the electronic signal that excites the
shaker. Therefore, we can increase and decrease the amplitude
of motion θ20 imposed to spinner n = 20 without knowing
its exact value a priori. The exact value of the motion is
calculated a posteriori from the accelerometer measurements.
At the same time, the force at the shaker tip is measured
using a force transducer model 208C01 by PCB Piezotronics
Inc. These signals are amplified for acquisition using a signal
conditioner model 482A21 by PCB Piezotronics Inc.

Finally, videos of the motion in the steady-state nonlinear
experiments are recorded using a high speed camera model
675K-M1 by Photron USA, Inc. placed right above the spin-
ners system (not shown in the figure). Due to the length of the
chain, all the 40 spinners do not fit in the camera frame if we
want to maintain a good level of resolution. Therefore we use
15 different camera positions, recording two or three spinners
at a time. We use the DAQ to control and coordinate the
excitation, the measurements and the camera trigger, so that
we ensure phase synchronization between the videos. These
were later post-processed and stitched together using MATLAB

software.
The snapshots of the deformed configurations of the chain

shown in Fig. 8 are extracted from the movies provided as
supplementary material [29]. In the snapshots and in the
movies, visualization of the angular rotation of the spin-
ners is aided by superimposing to each spinner a colored
circle of radius proportional to the amplitude of motion.
Also, the rotation angle is extracted from the video by em-
ploying in-house Digitial Image Correlation software. The
lengthwise variation of the rotation angle of the spinners
is shown in the graphs accompanying each of the response
movie, which helps visualizing the spatial extent of motion
and differentiating localized modes versus bulk-propagating
modes.

In detail, we provide the following movies in Ref. [29].
(1) SM1. Description of the experimental setup and

animation explaining the spinner lattice visualization in
Fig. 8. The experiments are conducted by repeating the

FIG. 13. Physical 40 spinner system mounted on a beam. Distances between magnets are d0,a = 1 mm and d0,b = 2 mm. Transducers and
data acquisition devices are also shown.
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measurements over 15 separate portions of the lattice, as
the entire length exceeds the aperture of the camera. Upon
recording, the measurements are phase-matched and stitched
to obtain a single recording for an assigned amplitude of
motion.

(2) SM2. Experimental results recorded for low amplitude
excitation, and corresponding to the still picture of Fig. 8(a).
The recorded video data are used to extract angular infor-
mation about the rotation of the spinners, which is plotted
as a function of the spinner number in the bottom graph.
This visualization helps observing the localized nature of the

dynamic deformed lattice response at low amplitude excita-
tion corresponding to the TP mode.

(3) SM3. Experimental results recorded for medium am-
plitude excitation, and corresponding to the still picture in
Fig. 8(b). The plot of the angular motion of the spinners shows
the increase in penetration of the dynamic response which
extends away from the interface as amplitude increases.

(4) SM4. Experimental results recorded for high amplitude
excitation, and corresponding to the still picture of Fig. 8(c).
The plot of angular motion of the spinners clearly shows that
the mode now extends to the entire length of the chain.
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