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I. GEOMETRY AND CONFIGURATION SPACE OF THE MORPH PATTERN

The unit cell geometry of the Morph pattern, shown in Fig. S1(a) is characterized by the

shape of the panels and the angles between them that define the folded state. The panel

shapes are given by the angles α, β and edge lengths a, b, c. The nine vertices of the unit

cell are numbered from O1 to O9.

Without loss of generality, we assume α > β, which makes the
−−−→
O5O6 crease to be the one

that switches between mountain/valley, as indicated by the red line shown in Fig. S1(a). As

shown in Figs. S1(b),(c),(d), to protect the orthorhombic nature of the unit cell, the edge

lengths of adjacent panels need to be unequal (but related) except when they have the same

panel angles. Hence, the edge lengths |
−−−→
O1O4| and |

−−−→
O7O4| are equal to c as they belong to

panels with the same angle α. On the other hand, |
−−−→
O7O8| and |

−−−→
O9O8| cannot be equal when

α 6= β. As a consequence of this, the Morph pattern has only one plane of symmetry (unlike

the two-fold symmetric nature of the standard eggbox).

The relation between the unequal edge lengths a, b can be obtained as follows. Consider

Figs. S1(b),(c) which show the side views of the unit cell. When h1(= a| cosφ1|) and h2(=

b| cosφ2|) are equal,
−−−→
O7O9 is normal to the planes (O1O4O7) and (O3O6O9) which ensures

that the unit cell is orthorhombic. However, this is not true when h1 6= h2. Hence, for

h1 = h2, we have,

a

b
=

∣∣∣∣cosφ2

cosφ1

∣∣∣∣ . (S1)

Using spherical trigonometry of vertex O5 (see Fig. S2(a)), we have,

cosα = cos
ψ

2
cosφ1 , (S2)

cos β = cos
ψ

2
cosφ2 . (S3)

This is true due to the plane of symmetry that bisects the dihedral angles γ1, γ3 and therefore

angle ψ. Combining the above two equations, we get,

cosφ2

cosφ1

=
cos β

cosα
. (S4)

Finally, from Eqns. S1 and S4, we get,

a

b
=

∣∣∣∣cos β

cosα

∣∣∣∣ . (S5)
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FIG. S1. (a) Geometry of the Morph unit cell. (b), (c), (d) Side views of the unit cell. (b)
−−−→
O7O9

is normal to the plane (O1O4O7) as h1 = h2, i.e., a cosφ1 = b cosφ2. (c)
−−−→
O7O9 is not normal to

the plane (O1O4O7) as h1 6= h2 (since φ1 6= φ2 for α 6= β). We avoid this case to maintain the

orthorhombic nature of the unit cell by making |
−−−→
O7O8| 6= |

−−−→
O9O8|. (d)

−−−→
O1O7 is normal to the plane

(O1O2O3) as h∗1 = h∗2 = c cos(ψ/2).

Therefore, in order to ensure that the triangular faces (O1O2O3), (O3O6O9), (O1O4O7),

(O7O8O9) are all orthogonal to the base of the unit cell (O1O7O9O3), we only consider

geometries with b| cos β| = a| cosα| so that,

b = a

∣∣∣∣cosα

cos β

∣∣∣∣ . (S6)

The length L and width W of the unit cell are given by,

W = 2c sin
ψ

2
, (S7)

L =
√
a2 + b2 − 2ab cosφ , (S8)

where, φ, ψ are the angles between the opposite crease lines. The folded state of the system

is given by any of φ, ψ or the dihedral angles γ1, γ2, γ3, γ4 all of which can be related to

one another through the following equations obtained using the spherical law of cosines at

vertex O5 (see Fig. S2(b)):

cosψ = cos2 α + sin2 α cos γ1 , (S9)

cosψ = cos2 β + sin2 β cos γ3 , (S10)

cosφ = cosα cos β + sinα sin β cos γ2 , (S11)

cosφ = cosα cos β + sinα sin β cos γ4 . (S12)

The configuration space that describes the morphing between eggbox and Miura modes

is understood in terms of the relation between φ and ψ, which can be derived as follows.
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FIG. S2. The spherical trigonometric representation of the vertex O5 formed by the: (a) Intersec-

tion of planes (O4O5O6), (O4O5O8) and (O8O5O6). The plane (O2O5O8) ‖ (O1O4O7) in which ψ is

measured is orthogonal to the plane (O4O5O6) in which φ1 and φ2 are measured. (b) Intersection

of planes (O4O5O8), (O4O5O2), (O2O5O6) and (O8O5O6). The planes (O4O5O6) and (O2O5O8) in

which φ and ψ are respectively measured are orthogonal to each other. (c) Intersection of planes

(O4O5O6), (O4O5O8) and (O8O5O6).

From Eqns. S11 and S12, we have γ2 = γ4 indicating the presence of a plane of symmetry

(O4O5O6) which bisects the dihedral angles γ1 and γ3. Using spherical trigonometry at

vertex O5 (see Fig. S2(c)), the spherical law of cosines gives,

cos β = cosα cosφ+ sinα sinφ cos

(
γ1
2

)
, (S13)

cosα = cos β cosφ+ sin β sinφ cos

(
γ3
2

)
. (S14)

Let us define two intermediate variables:

ξ = cos β − cosα cosφ = sinα sinφ cos(γ1/2), (S15)

ζ = cosα− cos β cosφ = sin β sinφ cos(γ3/2). (S16)

This gives us,

cos γ1 =

(
2ξ2

sin2 α sin2 φ
− 1

)
. (S17)

Combing the above equation with Eqn. S9, we get,

cosψ = cos 2α +
2ξ2

sin2 φ
. (S18)

Therefore, we can also derive,

dψ

dφ
= −4(cos β − cosα cosφ)(cosα− cos β cosφ)

sinψ sin3 φ
= − 4ξζ

sinψ sin3 φ
. (S19)
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From Eqn. S15, ξ > 0 since, γ1 < π throughout the configurational space. Hence, the sign of

the above derivative depends only on the sign of ζ. For γ3 > π (Miura mode), ζ < 0, making

dψ/dφ > 0. This derivative is used in the derivation of the Poisson’s ratio in stretch, νsWL,

which is defined as:

νsWL = −εW
εL

= −dW/W

dL/L
= − L

W

dW

dL
= − L

W

(
dW/dψ

dL/dφ

)
dψ

dφ
=

4c2L2

a2W 2

∣∣∣∣cos β

cosα

∣∣∣∣ ξζ

sin4 φ
. (S20)

The experimental verification of the Poisson’s ratio is demonstrated indirectly by measuring

the unit cell dimensions as shown in Fig. S3.
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FIG. S3. Comparison between the theoretical description and experimental measurements of the

Morph unit cell geometry. The slope of the L vs.W curve describes the Poisson effects since,

νsWL = −(L/W )(dW/dL). The slope in the Miura mode is positive and that in the eggbox mode

is negative which leads to the Poisson’s ratios that are negative and positive respectively. The

panel dimensions were chosen to be a = c = 5mm with panel angles α = 60◦ and β = 40◦ for the

prototype.

II. IN-PLANE STIFFNESS OF THE MORPH PATTERN

Folding of the Morph results in planar kinematics that keeps the global configuration of

an assemblage staying flat. If we assign elasticity to the folding hinges, we can obtained

the in-plane stiffness of the assemblage. We look at the stiffness of a single unit cell here
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(essentially one vertex with 4 folding hinges). Let the energy per unit length in the rotational

hinges be given by E(γi) = 1
2
kf (γi − γi,0)2 for i = 1, 2, 3, 4, where, γi,0 denotes the neutral

angles in the undeformed configuration and kf is the folding stiffness constant per unit

length associated with the rotational hinges. Due to symmetry, γ2 = γ4, and we have the

total energy of the unit cell in stretch given by,

Us = aE(γ1) + bE(γ3) + 2cE(γ2)

=
kf
2

[
a(γ1 − γ1,0)2 + b(γ3 − γ3,0)2 + 2c(γ2 − γ2,0)2

]
. (S21)

As the in-plane deformation of the unit cell can be described using a single degree of freedom,

γ3 and γ2 can be expressed in terms of γ1 and we can evaluate the derivatives of the energy

as:

d2Us
dW 2

=
d2Us
dγ21

(
dW

dγ1

)−2
− dUs

dγ1

d2W

dγ21

(
dW

dγ1

)−3
, (S22)

d2Us
dL2

=
d2Us
dγ21

(
dL

dγ1

)−2
− dUs

dγ1

d2L

dγ21

(
dL

dγ1

)−3
. (S23)

We can derive that,

dUs
dγ1

= aE ′(γ1) + bE ′(γ3)
(

dγ3
dγ1

)
+ 2cE ′(γ2)

(
dγ2
dγ1

)
, (S24)

d2Us
dγ21

= aE ′′(γ1) + bE ′′(γ3)
(

dγ3
dγ1

)2

+ 2cE ′′(γ2)
(

dγ2
dγ1

)2

+ bE ′(γ3)
(

d2γ3
dγ21

)
+ 2cE ′(γ2)

(
d2γ2
dγ21

)
,

(S25)

where, E ′(γi) = kf (γi − γi,0) and E ′′(γi) = kf . Noting that, dUs
dγ1

∣∣
γ1=γ1,0

= 0, we define the

stiffness along W and L directions as follows:

KW =
d2Us
dW 2

∣∣∣∣
γ1=γ1,0

=
d2Us
dγ21

∣∣∣∣
γ1=γ1,0

(
dW

dγ1

∣∣∣∣
γ1=γ1,0

)−2
, (S26)

KL =
d2Us
dL2

∣∣∣∣
γ1=γ1,0

=
d2Us
dγ21

∣∣∣∣
γ1=γ1,0

(
dL

dγ1

∣∣∣∣
γ1=γ1,0

)−2
. (S27)

We have,

d2Us
dγ21

∣∣∣∣
γ1=γ1,0

= akf + bkf

(
dγ3
dγ1

∣∣∣∣
γ1=γ1,0

)2

+ 2ckf

(
dγ2
dγ1

∣∣∣∣
γ1=γ1,0

)2

. (S28)

7



One can derive,

dγ3
dγ1

∣∣∣∣
γ1=γ1,0

=
cos β − cosα cosφ0

cosα− cos β cosφ0

, (S29)

dγ2
dγ1

∣∣∣∣
γ1=γ1,0

=
− sin2 φ0

2(cosα− cos β cosφ0)
, (S30)

dW

dγ1

∣∣∣∣
γ1=γ1,0

=
c(cos β − cosα cosφ0)

sinφ0

, (S31)

dL

dγ1

∣∣∣∣
γ1=γ1,0

=
−ab sinα sin β sin γ2,0 sin2 φ0

2L0(cosα− cos β cosφ0)
, (S32)

where φ0, L0 correspond to φ and L respectively when γi = γi,0. By combining Eqn. S28

with Eqns. S26 and S27, we have,

KW = akf

(
dγ1
dW

∣∣∣∣
γ1=γ1,0

)2

+ bkf

(
dγ3
dW

∣∣∣∣
γ1=γ1,0

)2

+ 2ckf

(
dγ2
dW

∣∣∣∣
γ1=γ1,0

)2

, (S33)

KL = akf

(
dγ1
dL

∣∣∣∣
γ1=γ1,0

)2

+ bkf

(
dγ3
dL

∣∣∣∣
γ1=γ1,0

)2

+ 2ckf

(
dγ2
dL

∣∣∣∣
γ1=γ1,0

)2

. (S34)

The normalized stiffnesses are obtained as KW/kf and KL/kf .

Below, we present the analytical expressions for the in-plane stiffnesses of standard eggbox

and Miura-ori, obtained as particular cases from the above results.

A. Reduction to standard eggbox

For standard eggbox, by using, a = b = c and β = α in Eqns. S33, S34, we get:

KW =
2kf
a

(
cos2(φ/2) + cos2(ψ/2)

sin2(φ/2) cos4(ψ/2)

)
, (S35)

KL =
2kf
a

(
cos2(φ/2) + cos2(ψ/2)

sin2(ψ/2) cos4(φ/2)

)
. (S36)

B. Reduction to standard Miura-ori

For standard Miura-ori, by using, a = b = c and β = π − α in Eqns. S33, S34, we get:

KW =
2kf
a

(
sin2(φ/2) + cos2(ψ/2)

cos2(φ/2) cos4(ψ/2)

)
, (S37)

KL =
2kf
a

(
sin2(φ/2) + cos2(ψ/2)

cos2(φ/2) sin2(ψ/2) sin2(φ/2)

)
. (S38)
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III. OUT-OF-PLANE BENDING OF STANDARD EGGBOX

Before we discuss the out-of-plane bending of the Morph pattern, we derive bending

Poisson’s ratio of the standard eggbox tessellation and show that it depends only on the

bending of the panels. This observation allows for a simplified treatment of bending in the

generalized case leading to the Morph pattern. The following derivation is inspired from

the bending curvature calculations for Miura-ori tessellation [1]. In this context, bending of

the origami unit cell is enabled by applying infinitesimal rotations about the fold lines and

diagonals of the panels.

A. Coordinate system and infinitesimal rotations

O3

O1

O2 O6

O7

O9

a

ψ

y
O5

x

z

α 2
ϕ 2

ϕ
O8O4

a

c
c

a

c

δ1
O3

O2 O6

O5

O8O1

O7

O4
O9

y

x

z

δ1
δ7

2δ8

2δ2

δ4 δ7

δ4

(a) (b)

FIG. S4. Standard eggbox unit cell. (a) Undeformed configuration and the xz-plane of symmetry

of the unit cell. (b) Infinitesimal rotations and the deformed configuration (wire-frame) under

bending. The rotations about the panel diagonals (dashed lines) are shown in red and those about

the fold lines are shown in green.

The schematic of a standard eggbox unit cell with and without infinitesimal rotations is

shown in Fig. S4. The geometry of the undeformed unit cell is dictated by the panel angle

α, the edge lengths a, c, and any of the folding angles φ or ψ. We assume a coordinate
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system with origin at O5 as shown in the figure. We fix the vertices O5 and O8 to avoid any

rigid body motions while applying bending deformations. Further, we note that there exists

a plane of symmetry formed by the vectors
−−−→
O5O8 and

−−−→
O5O2. The coordinates of the fixed

vertices O5 and O8 are:

(O5x, O5y, O5z) = (0, 0, 0) ,

(O8x, O8y, O8z) = (c sin
ψ

2
, 0,−c cos

ψ

2
) .

The coordinates of the other vertices in the undeformed configuration are:

(O7x, O7y, O7z) = (c sin
ψ

2
,−a sin

φ

2
,−c cos

ψ

2
− a cos

φ

2
) ,

(O4x, O4y, O4z) = (0,−a sin
φ

2
,−a cos

φ

2
) ,

(O1x, O1y, O1z) = (−c sin
ψ

2
,−a sin

φ

2
,−c cos

ψ

2
− a cos

φ

2
) ,

(O2x, O2y, O2z) = (−c sin
ψ

2
, 0,−c cos

ψ

2
) ,

The coordinates of the remaining vertices O3, O6, O9 can be obtained through symmetry.

In order to find out the coordinates of the vertices after the infinitesimal rotations are

applied, we use the Rodrigues’ rotational formula for small rotations [1]:

x′ = x+ [m(z − w)− n(y − v)] δ ,

y′ = y − [l(z − w)− n(x− u)] δ ,

z′ = z + [l(y − v)−m(x− u)] δ , (S39)

where, (x′, y′, z′) are the coordinates of a point (x, y, z) after an infinitesimal rotation of δ

(δ � 1) about an axis with direction cosines [l,m, n] and passing through a point (u, v, w).

It is sufficient to calculate the effect of rotations δ8, δ7, δ4 and δ1 on one side of the sym-

metry plane. Additionally, δ2 is compatible with the rest of the rotations, i.e. the rotations

δ8, δ7, δ4 and δ1 will result in an effective rotation of δ2 about
−−−→
O2O5 on one side of the

symmetry plane. Using the above Rodrigues’ formula, the coordinates of the vertices after

applying the bending inducing rotations are obtained as:

O′4x = −(a sin
φ

2
cos

ψ

2
)δ8 ,

O′4y = −a sin
φ

2
+ (a sin

ψ

2
cos

φ

2
)δ8 ,

O′4z = −a cos
φ

2
− (a sin

φ

2
sin

ψ

2
)δ8 , (S40)
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O′2x = −c sin
ψ

2
+ (c sin

φ

2
cos

ψ

2
)δ4 ,

O′2y = (2c sin
ψ

2
cos

ψ

2
)δ8 + (c sin

ψ

2
cos

φ

2
)δ4 ,

O′2z = −a cos
ψ

2
− (c sin

ψ

2
sin

φ

2
)δ4 , (S41)

O′7x = c sin
ψ

2
− (a sin

φ

2
cos

ψ

2
)δ8 − (ac sin

φ

2
cos

ψ

2
)(δ7/`) ,

O′7y = −a sin
φ

2
+ (a sin

ψ

2
cos

φ

2
)δ8 + (ac sin

ψ

2
cos

φ

2
)(δ7/`) ,

O′7z = −(a cos
φ

2
+ c cos

ψ

2
)− (a sin

φ

2
sin

ψ

2
)δ8 − (ac sin

φ

2
sin

ψ

2
)(δ7/`) , (S42)

O′1x = −c sin
ψ

2
− (a sin

φ

2
cos

ψ

2
)δ8 + (c sin

φ

2
cos

ψ

2
)δ4 + (ac sin

φ

2
cos

ψ

2
)(δ1/`) ,

O′1y = −a sin
φ

2
+ (a sin

ψ

2
cos

φ

2
+ 2c sin

ψ

2
cos

ψ

2
)δ8 + (c sin

ψ

2
cos

φ

2
)δ4 + (ac sin

ψ

2
cos

φ

2
)(δ1/`) ,

O′1z = −(a cos
φ

2
+ c cos

ψ

2
)− (a sin

φ

2
sin

ψ

2
)δ8 − (c sin

ψ

2
sin

φ

2
)δ4 − (ac sin

φ

2
sin

ψ

2
)(δ1/`) ,

(S43)

where, ` =
√
a2 + c2 − 2ac cosα is the length of the panel’s shorter diagonal.

Using symmetry in the standard eggbox unit cell, we have the following two conditions:

O′2y = 0 =⇒ δ4 = −2 cos(ψ/2)

cos(φ/2)
δ8 , (S44)

O′7y = O′1y =⇒ δ7 = δ1 . (S45)

B. Curvatures and Poisson’s ratio in bending

The curvature in the x or y direction is defined by the change in the dihedral angle

between the opposing triangular faces divided by the length of the unit cell. The curvature

in the x direction is calculated as,

κx =
∆Dihedral

∆x
=− 1

W

[(
O8x −

(O′
9x+O

′
7x

2

)
O8z −

(O′
9z+O

′
7z

2

))− (O′2x − (O′
3x+O

′
1x

2

)
O′2z −

(O′
3z+O

′
1z

2

)))]
=− 1

2c sin(ψ/2)

[(
O8x −O′7x
O8z −O′7z

)
−
(
O′2x −O′1x
O′2z −O′1z

))]
. (S46)
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The curvature in the y direction is calculated as,

κy =
∆Dihedral

∆y
=− 1

L

[(
O′6y −

(O′
3y+O

′
9y

2

)
O′6z −

(O′
3z+O

′
9z

2

))− (O′4y − (O′
7y+O

′
1y

2

)
O′4z −

(O′
7z+O

′
1z

2

)))]
=− 1

2a sin(φ/2)

[(
− 2

(
O′4y −O′7y
O′4z −O′7z

))]
. (S47)

Using Eqns. S44 and S45 and evaluating the above expressions, we get,

κx =− tan(φ/2)

tan(ψ/2)

δ1
`
, (S48)

κy =− tan(ψ/2)

tan(φ/2)

δ1
`
. (S49)

The Poisson’s ratio of the standard eggbox cell in bending (defined as the ratio of curvatures

[1, 2]) can be obtained as,

νbWL = −κx
κy

= − tan2(φ/2)

tan2(ψ/2)
. (S50)

This result is in agreement with that obtained by [3]. We note that the curvatures are

independent of the infinitesimal rotations δ4, δ8 across the fold lines. They only depend on

δ1 (or δ7) about the panel diagonals. Also, from Eqns. S44 and S45, δ1 and δ7 are independent

of δ4 and δ8. This indicates that it is sufficient to consider infinitesimal rotations causing

panel bending to calculate curvatures and bending Poisson’s ratio of eggbox type cells. A

similar observation also applies to standard Miura-ori pattern.

In reference [1], infinitesimal rotations are applied about the fold lines and diagonals

of the panels. However, from the aforementioned discussion, it is sufficient to consider

only infinitesimal rotations along the panel diagonals. This is the approach followed in the

remainder of this paper.

IV. OUT-OF-PLANE BENDING OF THE MORPH PATTERN

The procedure described above for standard eggbox is too specific and cannot be readily

applied to systems which do not share so many symmetries as standard eggbox or Miura-ori.

Hence, in this section, we develop a general approach for representing the coordinates of the

vertices and calculation of curvatures and apply the concept to the case of the Morph unit

cell.
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1/κL
L

Bending

W 1/κW

FIG. S5. Bending of Morph in eggbox mode. Curvatures along both W and L directions are of

the same sign.

1/κLBending

L

W 1/κW

FIG. S6. Bending of Morph in Miura mode. Curvatures along W and L directions are of opposite

sign.

The schematic of the curvatures induced along the W and L directions due to bending

of the Morph pattern are shown in Figs. S5 and S6. As shown in the previous section, it

is sufficient to consider infinitesimal rotations along the diagonals of the panels to describe

the bending of eggbox cell. Hence, for the Morph unit cell, we fix the positions of vertices

O2, O4, O5, O6, and O8 while applying panel bending through rotations δ1, δ2, δ3 and δ4

across diagonals
−−−→
O2O4,

−−−→
O6O2,

−−−→
O8O6, and

−−−→
O4O8 respectively, (see Fig. S7(a)). Accordingly,

the vertices O1, O3, O9 and O7 are displaced to O′1, O
′
3, O

′
9 and O′7 respectively.

13



A. Coordinate system, vertices and normals

As shown in Fig. S7(b), we assume a coordinate system with origin at vertex O5 and x-

axis along the fold line
−−−→
O2O5. The xy-plane is assumed to coincide with panel (O1O2O5O4)

and z-axis is obtained by the right hand rule. The coordinates of all the vertices in this

system can be obtained in terms of the panel edge lengths (a, b, c), the panel angles (α, β)

and the dihedral angles (γi, i = 1, 2, 3, 4) using the Rodrigues’ rotation formula for finite

rotations [4]:

−→v rot = −→v cos η + (p̂×−→v ) sin η + p̂(p̂ · −→v )(1− cos η) , (S51)

where, −→v rot is obtained by rotating a vector −→v about axis of rotation p̂ by an angle η using

the right hand rule. We note that the above formula reduces to Eqn. S39 for small rotations

when η = δ → 0. Using this formula, the coordinates of vertices on the triangular face

(O1O2O3) are obtained as:

O2 = (−c, 0, 0) ,

O1 = (−c− a cosα,−a sinα, 0) ,

O3 = (−c− b cos β,−b cos γ2 sin β,−b sin γ2 sin β) .

The coordinates of O1 and O3 after applying the infinitesimal rotations δ1 (about
−−−→
O2O4) and

δ2 (about
−−−→
O6O2) are obtained using Eqn. S39 as,

O′1 = (−c− a cosα,−a sinα,−(ac sinα)
δ1
`1

) ,

O′3 = (−c− b cos β,−b cos γ2 sin β − (cb sin γ2 sin β)
δ2
`2
,−b sin γ2 sin β + (cb cos γ2 sin β)

δ2
`2

) .

The normals of the triangular face (O1O2O3) before and after bending are calculated as

N123 =
−−−→
O2O3 ×

−−−→
O2O1

= −ab
[

sinα sin γ2 sin β

]̂
i + ab

[
cosα sin γ2 sin β

]
ĵ− ab

[
cosα cos γ2 sin β − sinα cos β

]
k̂ ,

N′123 =
−−−→
O2O

′
3 ×
−−−→
O2O

′
1

= −ab
[

sinα sin γ2 sin β − (c sinα cos γ2 sin β)(
δ2
`2

+
δ1
`1

)

]̂
i

+ ab

[
cosα sin γ2 sin β − (c cosα cos γ2 sin β)

δ2
`2
− (c sinα cos β)

δ1
`1

]
ĵ

− ab
[

cosα cos γ2 sin β − sinα cos β + (c cosα sin γ2 sin β)
δ2
`2

]
k̂ ,

14
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ϕ

N123

α
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(a) (b)

FIG. S7. (a) Infinitesimal rotations about panel diagonals to model bending. (b) Local coordinate

system used to calculate the normals and the angle change for the triangular face (O1O2O3).

where, î, ĵ, k̂ are the unit vectors along the x, y, z axes.

B. Constraints on bending rotations

The bending of the tessellation preserves the orthogonality of the unit cell (i.e.L ·W =

0). Hence, we enforce the constraint that the normals of the triangular faces (O1O2O3),

(O3O6O9), (O1O4O7), (O7O8O9) before and after panel bending are orthogonal to their

respective base edges. We impose,

(N′123 −N123) ·
−−−→
O1O3 = ∆N123 ·

−−−→
O1O3 = 0 , (S52)

since, N123 ⊥
−−−→
O1O3. After evaluating the above constraint, we arrive at a relation between

the panel bending rotations δ1 and δ2 (since, N′123 only depends on the rotations δ1, δ2. ):

δ2
`2
bζ =

δ1
`1
aξ . (S53)
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Using the above mentioned procedure for the other triangular faces and the relation between

a and b (Eqn. S6), we have the following constraints on the bending rotations:

δ2
`2
| cosα|ζ =

δ1
`1
| cos β|ξ , (S54)

δ4
`4
| cos β|ξ =

δ3
`3
| cosα|ζ , (S55)

δ1
`1

=
δ4
`4
, (S56)

δ3
`3

=
δ2
`2
. (S57)

It can be easily verified that the above rotations are a compatible set with a single degree of

freedom associated with bending of the panels i.e. choosing any one rotation independently

will define a unique bending configuration of the unit cell. Additionally, it can be also be

verified that these rotations satisfy the tessellation boundary conditions, i.e. ∠O′1O2O
′
3 =

∠O′7O8O
′
9 and ∠O′1O4O

′
7 = ∠O′3O6O

′
9.

C. Bending curvatures

We define the curvatures along each of the orthogonal directions L =
−−−→
O1O3 and W =

−−−→
O1O7 as the relative tilt of the triangular faces across the unit cell length in the respective

directions. The curvature along L direction is given by,

κL =
sgn [(n× L) · (N′369 ×N369)]|θ369| − sgn [(n× L) · (N′147 ×N147)]|θ147|

L
. (S58)

The curvature along W direction is given by,

κW =
sgn [(n×W) · (N′789 ×N789)]|θ789| − sgn [(n×W) · (N′123 ×N123)]|θ123|

W
, (S59)

where, n = W × L, |θ123|, |θ789|, |θ147|, and |θ369| are the respective angles between the

normals N123, N789, N147, and N369 and N′123, N
′
789, N

′
147, and N′369 . The angle between

the face normals before and after bending represents the slope (or angle change) of each of

the curves formed by the unit cells along the tessellation directions.

The angle change between the above normals can be calculated through their vector cross
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product. We have,

(N′123 ×N123)
cos2 β

ca4 cos2 α
=

[
cosαζ(

δ2
`2

) + cos β(cosα cosφ− cos β)(
δ1
`1

)

]̂
i

+

[
sinαζ(

δ2
`2

)

+
(cosφ− cosα cos β)(cosα cosφ− cos β)

sinα
(
δ1
`1

)

]
ĵ

+

[
sin γ2 sin β(cosα cosφ− cos β)(

δ1
`1

)

]
k̂ .

This gives us,

|N′123 ×N123|2
[

cos2 β

ca4 cos2 α

]2
= (

δ2
`2

)2ζ2 + (
δ1
`1

)2ξ2 − 2(
δ2
`2

)(
δ1
`1

)ζξ cosφ .

Using the constraint on bending rotations that relates δ2 and δ1 (Eqn. S54), the above

expression can be simplified as,

|N′123 ×N123|2
[

cos2 β

ca4 cos2 α

]2
= (

δ1
`1

)2ξ2
[

cos2 β

cos2 α
+ 1− 2

cos β

cosα
cosφ

]
= (

δ1
`1

)2ξ2
L2

b2
(Using Eqns. S6, S8) .

This gives us,

|N′123 ×N123| = a2b2c
|δ1|
`1
|ξ|L
b
.

Finally, noting that |N123| = ab sinφ, the angle change for the triangular face (O1O2O3) is

given by

|θ123| ≈
|N123 ×N′123|
|N123|2

=
cL|ξ|
b sin2 φ

|δ1|
`1

.

In order to obtain the angle changes for each of the other triangular faces after bending,

we conveniently choose a coordinate system that is oriented such that the x-axis is along the

fold line that is connected to the triangular face and passing through O5 and the xy-plane

to coincide with one of the panels connected to the triangular face. This will allow us to
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perform a similar calculation as above and produce the following result:

[
|N′789 ×N789|

a2b2c

]2
= (

δ3
`3

)2ζ2 + (
δ4
`4

)2ξ2 − 2(
δ3
`3

)(
δ4
`4

)ζξ cosφ ,[
|N′147 ×N147|

c4a

]2
= (

δ1
`1

)2 cos2 α(1− cosψ)2 + (
δ4
`4

)2 cos2 α(1− cosψ)2

− 2(
δ1
`1

)(
δ4
`4

) cos2 α(1− cosψ)2 cosψ ,[
|N′369 ×N369|

c4b

]2
= (

δ3
`3

)2 cos2 β(1− cosψ)2 + (
δ2
`2

)2 cos2 β(1− cosψ)2

− 2(
δ3
`3

)(
δ2
`2

) cos2 β(1− cosψ)2 cosψ .

Simplying the above expressions using constraint Eqns. S54, S55, S56, S57 and noting that

|N789| = ab sinφ, |N147| = c2 sinψ, |N369| = c2 sinψ, we can derive the following expressions

for the angle changes

|θ123| ≈
|N123 ×N′123|
|N123|2

=
cLξ

b sin2 φ

|δ1|
`1

, (S60)

|θ789| ≈
|N789 ×N′789|
|N789|2

=
cLξ

b sin2 φ

|δ1|
`1

, (S61)

|θ147| ≈
|N147 ×N′147|
|N147|2

=
aW cosα(1− cosψ)

c sin2 ψ

|δ1|
`1

, (S62)

|θ369| ≈
|N369 ×N′369|
|N369|2

=
aW cos β(1− cosψ)

c sin2 ψ

ξ

|ζ|
|δ1|
`1

. (S63)

The above expressions indicate that |θ123| = |θ789| which is consistent with the presence

of the plane of symmetry (O4O5O6). The symmetry also makes the expression for κW to be

independent of whether the system is in eggbox or Miura mode. However, that is not the

case for the curvature κL. The normals N′147, N
′
369 depend only on rotations δ1, δ4 and δ2, δ3

respectively. From Eqn. S55 (or S54), δ4 (or δ1) and δ3 (or δ2) have the same sign for eggbox

mode and opposite sign for Miura mode. This is because, as noted before, from Eqn. S15,

ξ ≥ 0 (since γ1 ≤ π) throughout the configurational space and from Eqn. S16 ζ < 0 when

γ3 > π. This makes the angle changes for faces (O1O4O7) and (O3O6O9) to have opposite

sign for eggbox mode and same sign for Miura mode.

To calculate the curvatures, we consider the two cases depending on whether γ3 < π

(eggbox mode) or γ3 > π (Miura mode), as outlined below.
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Case-1: γ3 < π =⇒ ζ > 0 (eggbox mode)

κL = −|θ369|+ |θ147|
L

sgn (δ1) = −aW (1− cosψ)

cL sin2 ψ

(cos2 α + cos2 β − 2 cosα cos β cosφ)

ζ

|δ1|
`1

sgn (δ1) ,

(S64)

κW = −|θ789|+ |θ123|
W

sgn (δ1) = − 2cLξ

bW sin2 φ

|δ1|
`1

sgn (δ1) . (S65)

Case-2: γ3 > π =⇒ ζ < 0 (Miura mode)

κL =
|θ369| − |θ147|

L
sgn (δ1) = −aW (1− cosψ)

cL sin2 ψ

(cos2 α + cos2 β − 2 cosα cos β cosφ)

ζ

|δ1|
`1

sgn (δ1) ,

(S66)

κW = −|θ789|+ |θ123|
W

sgn (δ1) = − 2cLξ

bW sin2 φ

|δ1|
`1

sgn (δ1) . (S67)

We note that the curvatures κL in both the cases are of opposite sign due to the change in

sign of ζ. However, the analytical expressions for the curvatures in both the cases are the

same irrespective of the configuration change from eggbox to Miura mode.

D. Poisson’s ratio in bending for the Morph pattern

The Poisson’s ratio in bending νbWL is defined as the ratio of curvatures in W and L

directions [1, 2]. Using Eqns. S6 and S18 to simplify the above expressions of the curvatures,

we can calculate the bending Poisson’s ratio as,

νbWL = −κW/κL (S68)

= − 2cLξ

aW (1− cosψ)

ζ

(cos2 α + cos2 β − 2 cosα cos β cosφ)

cL sin2 ψ

bW sin2 φ

= − 2c2L2ξ

a2W 2(1− cosψ)

ζ

(cos2 ψ
2

sin2 φ)

∣∣∣∣cos β

cosα

∣∣∣∣ sin2 ψ

sin2 φ

= −4c2L2

a2W 2

∣∣∣∣cos β

cosα

∣∣∣∣ ξζ

sin4 φ
. (S69)

By comparing with Eqn. S20, for the Morph pattern, we reach the elegant result,

νsWL = −νbWL , (S70)

i.e., the Poisson’s ratios in stretching and bending are equal in magnitude and opposite in

sign (see Fig. S8(a)), which is a remarkable property. This geometric property holds in
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both the eggbox mode and the Miura mode and is independent of the material properties

and length scale of the system. In sections V and VI, we show that our results generalize

the previous results of the literature. In particular, we show that the expressions for the

Poisson’s ratio in stretch and bending for the standard eggbox and standard Miura-ori can

be obtained as particular cases of our general derivation.

E. Out-of-plane bending stiffness for the Morph pattern

The bending energy per unit cell is given by,

Ub =
1

2
WLBWκ

2
W =

1

2
WLBLκ

2
L , (S71)

where, BW and BL are the bending stiffness of the tessellation per unit width in W and L

directions respectively. But, as discussed before, the bending is assumed to be solely due to

the bending of the four panels. Hence, we can also write,

Ub = `1F(δ1) + `2F(δ2) + `3F(δ3) + `4F(δ4) , (S72)

where, F(δi) = 1
2
kbδ

2
i is the energy per unit length along the bending lines which are modeled

as bending rotational hinges across panel diagonals and kb is the stiffness constant associated

with those hinges. Since, `1 = `4, `3 = `2 for Morph, we have, δ1 = δ4, δ3 = δ2 using

Eqns. S56, S57. So,

Ub = kb(`1δ
2
1 + `3δ

2
3) . (S73)

Now, using Eqn. S54, we have,

Ub = kb
δ21
`21

[
`31 cos2 αζ2 + `33 cos2 βξ2

cos2 αζ2

]
. (S74)

Comparing Eqns. S71 and S74 and using the expressions for curvatures from previous sub-

section, we get the analytical expressions for the bending stiffnesses as given below,

BW =
kbb

2W sin4 φ

2c2L3 cos2 α

[
`31 cos2 αζ2 + `33 cos2 βξ2

ξ2ζ2

]
, (S75)

BL =
2kba

2c2(1 + cosψ)2

W 3L3 cos2 β

[
`31 cos2 αζ2 + `33 cos2 βξ2

cos2 α cos2 β

]
. (S76)

The bending stiffnesses are related to bending Poisson’s ratio as (νbWL)2 = BL/BW . This

can be easily observed by comparing Eqns. S71 and S68. The above analytical expressions
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are plotted in Fig. S8(b). For numerical simulation of bending, we consider a pattern with

21 × 21 cells and calculate curvatures from unit cells at the center of the system. The

moments are applied in a way similar to reference [1].

(a) (b)
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FIG. S8. (a) Comparison of Poisson’s ratio in bending and stretching. (b) Normalized out-of-plane

bending stiffness of Morph unit cell. BW and BL represent the bending stiffnesses per unit width

along W and L directions respectively. In both the figures, α = 60◦ and β = 40◦. The dashed

lines represent the results in the Miura mode and the solid lines represent the results in the eggbox

mode. The circle and square markers show the numerical results obtained using the bar and hinge

model.

V. RECOVERY OF STANDARD EGGBOX RELATIONSHIPS FROM MORPH

In this section, we show that, all the results derived for Morph can be reduced to the

special case of standard eggbox that has been well studied in the literature, by setting β = α

and a = b. From Eqn. S18, the relation between φ and ψ becomes:

cos2
ψ

2
=

cos2 α + cos2 β − 2 cosα cos β cosφ

sin2 φ

= 2 cos2 α
(1− cosφ)

1− cos2 φ

=
cos2 α

cos2 φ
2

,

=⇒ cos
φ

2
cos

ψ

2
= cosα . (S77)
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Since, for standard eggbox, L = 2a sin φ
2

and W = 2c sin ψ
2
, we have,

νsWL =
4c2L2

a2W 2

∣∣∣∣cos β

cosα

∣∣∣∣ ξζ

sin4 φ

=
sin2 φ

2

sin2 ψ
2

4 cos2 α(1− cosφ)2

(1− cos2 φ)2

=
sin2 φ

2

sin2 ψ
2

cos2 φ
2

cos2 ψ
2

cos4 φ
2

=
tan2 φ

2

tan2 ψ
2

,

=⇒ νsWL =
tan2 φ

2

tan2 ψ
2

. (S78)

which is in agreement with the expression previously derived by [2, 3].

Next, we obtain the expressions for bending curvatures from Eqns. S64, S65.

κL = −aW (1− cosψ)

cL sin2 ψ

(cos2 α + cos2 β − 2 cosα cos β cosφ)

ζ

|δ1|
`1

sgn (δ1)

= −
sin ψ

2

sin φ
2

2 cosα(1− cosφ)

(1 + cosψ)(1− cosφ)

|δ1|
`1

sgn (δ1)

= −
tan ψ

2

tan φ
2

|δ1|
`1

sgn (δ1) , (S79)

κW = − 2cLξ

bW sin2 φ

|δ1|
`1

sgn (δ1)

= −
2 sin φ

2

sin ψ
2

2 cosα

(1 + cosφ)

|δ1|
`1

sgn (δ1)

= −
tan φ

2

tan ψ
2

|δ1|
`1

sgn (δ1) . (S80)

The bending Poisson’s ratio is now obtained as,

νbWL = −κW/κL = −
tan2 φ

2

tan2 ψ
2

. (S81)

These results are in agreement with Eqns. S48, S49 and S50 that we derived previously for

bending of the standard eggbox, and with reference [3].

VI. RECOVERY OF STANDARD MIURA-ORI RELATIONSHIPS FROM MORPH

In this section, we show that, all the results derived for Morph can be reduced to the

special case of standard Miura-ori that has been well studied in the literature, by setting
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β = π − α and a = b. From Eqn. S18, the relation between φ and ψ becomes:

cos2
ψ

2
=

cos2 α + cos2 β − 2 cosα cos β cosφ

sin2 φ

= 2 cos2 α
(1 + cosφ)

1− cos2 φ

=
cos2 α

sin2 φ
2

,

=⇒ sin
φ

2
cos

ψ

2
= | cosα| . (S82)

Since, for standard Miura-ori, L = 2a sin φ
2

and W = 2c sin ψ
2
, we have,

νsWL =
4c2L2

a2W 2

∣∣∣∣cos β

cosα

∣∣∣∣ ξζ

sin4 φ

= −
sin2 φ

2

sin2 ψ
2

4 cos2 α(1 + cosφ)2

(1− cos2 φ)2

= −
sin2 φ

2

sin2 ψ
2

sin2 φ
2

cos2 ψ
2

sin4 φ
2

= − cot2
ψ

2
,

=⇒ νsWL = − cot2
ψ

2
. (S83)

which is in agreement with the expression previously derived by [1, 2].

Next, we obtain the expressions for bending curvatures from Eqns. S64, S65.

κL = −aW (1− cosψ)

cL sin2 ψ

(cos2 α + cos2 β − 2 cosα cos β cosφ)

ζ

|δ1|
`1

sgn (δ1)

= −
sin ψ

2

sin φ
2

2 cosα(1 + cosφ)

(1 + cosψ)(1 + cosφ)

|δ1|
`1

sgn (δ1)

= −
sin ψ

2

sin φ
2

2 cosα

(1 + cosψ)

|δ1|
`1

sgn (δ1) , (S84)

κW = − 2cLξ

bW sin2 φ

|δ1|
`1

sgn (δ1)

=
sin φ

2

sin ψ
2

2 cosα

(1− cosφ)

|δ1|
`1

sgn (δ1) . (S85)

The bending Poisson’s ratio is now obtained as,

νbWL = −κW/κL = cot2
ψ

2
. (S86)

These results are in agreement with that obtained by [1] for bending of standard Miura-ori.
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VII. HYBRID PATTERNS

The configuration space of a Morph pattern is described in terms of the angles φ and ψ.

Similarly, we use the angles φe, ψe and φm, ψm (see Fig. S11) to describe the configuration

space of the hybrid patterns in terms of the unit cells in eggbox and Miura modes respectively.

In this section, we derive the relation between these angles and also derive an analytical

expression for the global in-plane Poisson’s ratio of a general hybrid pattern. We then

discuss the phenomenon of mode locking in hybrid patterns.

A. Configuration space of hybrid patterns

The rigid foldability between various hybrid patterns is only possible when all unit cells

are first brought to the transition state (see Fig. S9). From Fig. S10, we can see that a

horizontal line intersects the configuration path at two points say (φe, ψe = ψ) and (φm, ψm =

ψ). Any unit cell of a given hybrid pattern should conform to one or the other of these two

points depending on whether the unit is in eggbox or Miura mode. From this hybrid state

if ψ of all the unit cells is increased by folding simultaneously (such that ψe = ψm = ψ

still holds), then, based on Fig. S10, φe starts decreasing and φm starts increasing until

φe = φm = φT , where, φT (φm ≤ φT ≤ φe) is the angle φ when the unit cells reach the

transition point. This shows that it is kinematically possible to take any hybrid pattern into

a state where all unit cells are in transition mode. From the transition state, by following

a reverse process but with different rows of unit cells triggered to go into Miura/eggbox

modes, various other hybrid configurations can be obtained from the same pattern.

Below, we quantify the geometries during the hybrid transformations. From Fig. S11,

we can see that φe = φ1 + φ2 and φm = φ1 − φ2. In order to place the eggbox and Miura

mode unit cells adjacent to each other, they should meet the compatibility condition that

ψe = ψm = ψ. From the orthogonality of the unit cell (see Eqns. S1 and S4) we have,

b

a
=

cosα

cos β
=

cosφ1

cosφ2

(S87)

where, φ1 → α and φ2 → β in the limit of approaching the flat-folded states. Also, from

Eqns. S8 and S18, we have,

cos
ψ

2
=
L cosα

b sinφ
=
L cos β

a sinφ
(S88)
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FIG. S9. The Morph pattern transforms into various hybrid patterns via the transition state. The

hybrid pattern is a composite metamaterial system that can morph into any combination of Miura

(denoted by M, shown in green color) and eggbox (denoted by E, shown in yellow color) modes,

which have contrasting mechanical properties. This leads to a reprogrammable and in-situ tunable

metamaterial.

Noting that, L = a sinφ1±b sinφ2, we can also show that, sinφ = sin(φ1±φ2) = L cosφ1/b =

L cosφ2/a. Using these relations, we can calculate φ1 and φ2 for a given ψ as,

cosφ1 =
cosα

cos ψ
2

(S89)

cosφ2 =
cos β

cos ψ
2

(S90)

from which φe = φ1 + φ2 and φm = φ1 − φ2 can be calculated as,

φe = cos−1
(

cosα

cos ψ
2

)
+ cos−1

(
cos β

cos ψ
2

)
(S91)

φm = cos−1
(

cosα

cos ψ
2

)
− cos−1

(
cos β

cos ψ
2

)
(S92)
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FIG. S10. Configuration space of a Morph unit cell with α = 60◦ and β = 40◦. As a line of

constant ψ moves upwards towards transition point, φm and φe converge towards φT .

As the system folds into hybrid modes from the transition point, the above two equations

dictate the angles φe and φm of the eggbox and Miura mode unit cells respectively, for a

given ψ that is equal across all the unit cells.

β

ϕ1

βα α

Le

ba
ϕ2

ψe ψmϕe ϕm

Lm

ϕ1ϕ2

a

FIG. S11. Unit cells of hybrid patterns in the eggbox and Miura modes. For compatibility,

ψe = ψm = ψ with φe = φ1 + φ2 and φm = φ1 − φ2.
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B. Stretch Poisson’s ratio of hybrid patterns

We define the length and width of the pattern of n×n unit cells as, L′ = neLe+nmLm and

W ′ = nW respectively, where, n = ne +nm with ne denoting number of eggbox mode strips

and nm denoting the number of Miura mode strips (see Fig. S12). The unit cell lengths in

the two modes are given by,

L2
e = a2 + b2 − 2ab cosφe , (S93)

L2
m = a2 + b2 − 2ab cosφm . (S94)

nm=0 nm=3 nm=6

FIG. S12. Hybrid patterns with varying number of Miura strips, nm, for n = 6.

The Poisson’s ratio in stretch of the hybrid pattern is then defined as,

νsWL,h = − dL′/L′

dW ′/W ′ = −W
′

L′
dL′

dψ

dψ

dW ′ . (S95)

In the above notation for the Poisson’s ratio, the “h” in the subscript indicates the “hybrid”

pattern. The derivatives are obtained as,

dL′

dψ
= ne

dLe
dψ

+ nm
dLm
dψ

, (S96)

dW ′

dψ
= n

dW

dψ
= nc cos

ψ

2
. (S97)

Using Eqns. S89 and S90 and noting that φe = φ1 + φ2, φm = φ1 − φ2, we can derive the

following analytical expression for in-plane Poisson’s ratio of hybrid patterns:

νsWL,h =
ab sin2 ψ

2

L′ cos3 ψ
2

[
cosα

sinφ1

(
ne sinφe
Le

+
nm sinφm

Lm

)
+

cos β

sinφ2

(
ne sinφe
Le

− nm sinφm
Lm

)]
.

(S98)
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It is easy to show that when νs
WL,h = 0, the ratio nm/ne depends only on the folded state of

the system given by ψ and α, β. Therefore, it is possible to tune the switching of Poisson’s

ratio to occur at different folded states by appropriately choosing the ratio nm/ne.

C. Mode locking during in-plane deformation

A Morph pattern can be transformed into various hybrid patterns through smooth kine-

matics of the system. In practice, this could be achieved by applying in-plane rigid origami

deformations (stretching) to the hybrid system. The ability of a hybrid pattern to trans-

form into a different hybrid pattern depends on whether the applied deformations allow the

individual unit cells to move away from or towards the transition point. When the global

stretching (either extension or contraction) of the system causes the unit cells to move away

from the transition (i.e. both ψe and ψm decrease), the unit cells are locked to remain in

the existing eggbox and Miura modes without any further scope for mode morphing (see

Figs. S13(a),(b)). On the other hand, when the global stretching of the system causes the

unit cells to move towards the transition (i.e. both ψe and ψm increase), it is possible for the

eggbox and the Miura modes to interchange (see Figs. S13(c),(d)). As shown in Fig. S13,

it is possible to obtain either mode locking or mode morphing by appropriately applying

extension or contraction on hybrid patterns that have positive or negative global Poisson’s

ratio.

ϕe↑
ϕe

ψϕm↓
ψ↓

L

ϕe↓
ϕe

ψϕm↑
ψ↑

L

EME MEM

ϕe

L

ϕe↑ ϕm↓
ψ↓

MEM

ϕe

L

ϕe↓ ϕm↑
ψ↑

EME

Locked modes Morphable modes
M→M
E→E

M→E
E→M

(a) (b) (c) (d)

νWL,h>0
s νWL,h<0

s νWL,h>0
s νWL,h<0

s

FIG. S13. In-plane stretching of hybrid patterns. (a), (b) Mode locking phenomenon in which

the Miura (M) and eggbox (E) mode cells cannot change their mode as the deformation takes

them away from transition. (c), (d) Deformations that take the Miura and eggbox mode unit cells

towards transition enabling morphability of hybrid patterns.
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VIII. VIDEO CAPTIONS

Video 1 Origami modes and locking

A paper based Morph origami model is used to demonstrate the modes in its configu-

rational space and the corresponding flat-folded states. Further, it is transformed into a

hybrid pattern (with one strip of cells in Miura mode and all others in eggbox mode) to

demonstrate tensile mode locking.

Video 2 Morphing of Morph pattern

Traversal of the configuration space of a Morph pattern where it can smoothly transi-

tion between eggbox, Miura and Hybrid modes as a rigid origami is demonstrated through

simulation.

Video 3 Hybrid origami patterns

A large paper based model of Morph pattern with 10 × 10 cells is used to demonstrate

deformation shapes under bending in eggbox and Miura modes as well as for the hybrid

patterns.

Video 4 Rigid morphing into hybrid

A paper/plastic based Morph model with three unit cells connected along the L direction

is used to demonstrate the transformation from an all eggbox mode to a hybrid mode through

rigid kinematics i.e. without any panel deformation. The Morph model is fabricated using

extremely compliant hinges and relatively very stiff panels in order to approximate rigid

origami behavior .

NOMENCLATURE

α, β panel angles

γi, i = 1 to 4 dihedral angles between panels

φ, ψ angles between opposite crease lines

a, b, c edge lengths of panels

Oi, i = 1 to 9 vertices of a unit cell

L, W length and width of a unit cell

L, W vectors denoting
−−−→
O1O3 (length) and

−−−→
O1O7 (width)

νsWL Poisson’s ratio in stretching
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E energy stored per unit length in the folding rotational hinges

kf stiffness constant per unit length of folding rotational hinges

γi,0, i = 1 to 4 dihedral angles between panels in the undeformed configuration

Us total energy in the unit cell due to in-plane stretching

KW , KL stretching stiffnesses of the unit cell along W, L directions

δi, i = 1, 2, 3, 4, 7, 8 infinitesimal rotations about panel diagonals to model bending

O′i, i = 1 to 9 vertices of a unit cell after bending deformation

Ni, i = 123, 369, 147, 789 normals of triangular faces before bending deformation

N′i, i = 123, 369, 147, 789 normals of triangular faces after bending deformation

`i, i = 1 to 4 lengths of shorter diagonals of the panels

θi, i = 123, 369, 147, 789 angle change between normals due to bending deformation

κL, κW curvatures along L, W directions

νbWL Poisson’s ratio in bending

F energy stored per unit length in the bending rotational hinges

Ub total energy in the unit cell due to out-of-plane bending

BW , BL bending stiffnesses per unit width along W, L directions

kb stiffness constant per unit length of bending rotational hinges

φe, ψe angles between opposite crease lines in eggbox mode

φm, ψm angles between opposite crease lines in Miura mode

φ1, φ2 angles between panel edges and altitudes of triangles 123 or 789

L′, W ′ global length and width of a hybrid pattern

Le length of unit cell in eggbox mode

Lm length of unit cell in Miura mode

ne number of eggbox mode strips in the hybrid pattern

nm number of Miura mode strips in the hybrid pattern

νs
WL,h global Poisson’s ratio in stretching of the hybrid pattern
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