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Abstract
When conventional filtering schemes are used in reliability-based topology optimization (RBTO), identified solutions may violate
probabilistic constraints and/or global equilibrium. In order to address this issue, this paper proposes to incorporate a discrete
filtering technique termed the discrete filtering method (Ramos Jr. and Paulino 2016) into RBTO using the elastic formulation of
the ground structure method. The discrete filtering method allows the optimizer to achieve more physically realizable truss designs
in which thin bars are eliminated while ensuring global equilibrium. The method uses a potential-energy-based approach with
Tikhonov regularization to solve the singular system of equations that may result from imposing the discrete filter. Combining this
method with RBTO allows us to use the reliability-based truss sizing optimization for the purpose of topology optimization under
uncertainties. Furthermore, a single-loop approach is adopted to enhance the computational efficiency of the proposed RBTO
method. Numerical examples of two- and three-dimensional engineering designs demonstrate useful features of the proposed
method and illustrate the influence of the discrete filter and parameter uncertainties on the optimization results. In order to check
if the optimal topologies obtained by the proposed approach satisfy the constraints on the failure probabilities, structural reliability
analysis is also performed using the first-order reliability method and Monte Carlo simulations.

Keywords Reliability-based topology optimization . Ground structure . Single-loop approach . Discrete filtering

1 Introduction

Topology optimization is a computational-simulation-based tool
which has been utilized to identify optimal topology solutions
for various engineering problems. In particular, topology opti-
mization of continuum structures seeks for optimal material lay-
outs and connectivities in a given design domain (Bendsøe and
Sigmund 2003). In such continuum-based topology optimiza-
tion, the design domain is discretized with finite elements (or
other methods), each of which is assigned to void or solid ma-
terial through an iterative optimization procedure (see Rozvany

(2009), and Deaton and Grandhi (2014) for a state-of-the-art
review of topology optimization). In the field of structural engi-
neering, continuum-based topology optimization has been ap-
plied to aid the design process of lateral-load resisting systems
(Mijar et al. 1998; Stromberg et al. 2012; Bobby et al. 2014;
Chun et al. 2016). On the other hand, topology optimization of
discrete structures, such as trusses and frames, has been applied
to find optimal connectivity of the nodes by the structural ele-
ments. This approach commonly implements the ground struc-
ture method (Bendsøe and Sigmund 2003; Ohsaki 2010), in
which the design domain is discretized by use of spatial nodes,
which are highly interconnected by either truss or frame ele-
ments. Topology optimization is performed on the generated
ground structure to minimize the objective function while satis-
fying constraints, and thus the size of elements and
connectivities are subsequently determined. Zegard and
Paulino (2014, 2015) developed both two- and three-
dimensional implementations of ground structure based topolo-
gy optimization for trusses using the optimization for trusses
using the so-called plastic formulation. The developed computer
codes, GRAND and GRAND3, include an efficient algorithm
for ground structure generation using restriction zones that allow
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for ground structure generation on arbitrary domains.
Furthermore, topology optimization of truss structures consider-
ing an integrated discrete filtering was proposed by Ramos Jr.
and Paulino (2016).

In the last decades, deterministic topology optimization
(DTO) has beenwell developed for both continuum and discrete
topology optimization. These methods consider all design pa-
rameters such as material properties, loadings, and geometry as
deterministic quantities during the optimization. However, con-
sideration of uncertainties in loads and material properties is
critical in engineering efforts to manage the risk of unexpected
structural failures that may eventually result in catastrophic dam-
age. Therefore, optimization processes should utilize systematic
treatment of uncertainties to obtain engineering solutions achiev-
ing a satisfactory level of reliability. This is widely referred to as
reliability-based design optimization (RBDO; Frangopol and
Maute 2005; Tsompanakis et al. 2008) or reliability-based topol-
ogy optimization (RBTO; Maute and Frangopol 2003; Guest
and Igusa 2008; Rozvany 2008). In particular, Nguyen (2010)
proposed a system reliability-based design optimization using
the matrix-based system reliability (MSR) method, which can
consider statistical dependence and compute parametric sensitiv-
ity in an efficient way. This approach was further applied to the
continuum topology optimization (Nguyen et al. 2011).
Jalalpour et al. (2013) focused on the reliability-based topology
optimization of a truss structure to address geometric imperfec-
tions and uncertainty in the material property.

Traditional formulations in RBDO and RBTO employ two
nested loops of iterative computations: an optimization loop
and a reliability analysis loop. The inner loop for reliability
analysis is to evaluate probabilistic constraints or objective
functions for the design variables updated by the outer loop
for optimization. The solutions of reliability problems can be
obtained by means of the First-Order Reliability Method
(FORM) or the Second-Order Reliability Method (SORM)
(see Der Kiureghian 2005 for a comprehensive review). To
reduce computational cost in RBDO and RBTO, a single-loop
approach has been developed (Du and Chen 2004; Liang et al.
2004, 2007, 2008; Shan and Wang 2008; Nguyen 2010). This
method replaces the inner loop of the reliability analysis by an
approximate non-iterative solution, which eventually tends to
converge to an accurate reliability estimate as the optimal
design is achieved through iterations.

In topology optimization for truss structures, a lower bound
of design variables is set to a very small value to avoid an ill-
posed condition such as a singular matrix. As a result, the
converged topology still includes the original connectivity
from the generated ground structure. To define the final topol-
ogy, the conventional topology optimization for truss struc-
tures implements a filtering procedure at the end of optimiza-
tion. More specifically, conventional filtering schemes select
bars having areas greater than a small arbitrarily assigned cut-
off value of the area, which subsequently become the bars

defining the final optimized topology. However, the selection
criteria for the lower bound and the cut-off are often ambigu-
ous (Christensen and Klarbring 2009). Thus, conventional
filtering methods may produce ill-conditioned solutions, such
as a singular stiffness matrix, hanging members or many thin
bars, which may be undesirable in engineering and architec-
ture. Conventional filtering schemes in RBTO are thus highly
likely to result in a final structure that violates not only the
probabilistic constraints but also the global equilibrium con-
dition. Therefore, development of a topology optimization
framework for truss structures is needed to obtain reliable
designs that satisfy global equilibrium and that are not depen-
dent on the cut-off.

To address the aforementioned issues, a discrete filtering
method proposed by Ramos Jr. and Paulino (2016) is incor-
porated into RBTO for truss structures in this paper so that
more physically realizable truss designs are obtained, e.g., thin
bars are eliminated while satisfying global equilibrium. As a
result, by means of the proposed approach, a topology opti-
mization problem under significant uncertainties can be
solved effectively by the reliability-based truss sizing optimi-
zation. Moreover, the computational efficiency of the pro-
posed method is further improved by utilizing a single-loop
approach (Liang et al. 2004, 2007, 2008; Nguyen 2010).

2 Single-loop reliability-based topology
optimization formulation

In this section, mathematical formulations of RBTO are first
presented. Then, as a method to enhance computational effi-
ciency in RBTO, a single-loop RBTO approach is reviewed.
A study on concavity of probabilistic constraints is presented
and effects of local and global optima in a lower level optimi-
zation problem, which is the inner loop for reliability analysis
in RBTO, on a converged solution are discussed.

2.1 Reliability-based topology optimization

A general mathematical formulation of reliability-based topol-
ogy optimization can be written as

min
d;μX

f d;μXð Þ
s:t: P g d;Xð Þ≤0½ �≤P f

target

dlower ≤d≤dupper

with K d;Xð Þu d;Xð Þ ¼ f Xð Þ

ð1Þ

where f(·) denotes the objective function, d represents the
vector of design variables, and μx is the vector of the means
of random variables inX. g(·) is the limit-state function whose
negative value indicates the violation of the given constraint.
P[·] is the probability of the limit-state function g(·) ≤ 0.K, u,
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and f are the global stiffness matrix, the global displacement
vector, and the global force vector, respectively. The probabil-
ity of the failure event defined in terms of g(·) can be comput-
ed by integrating the joint probability density function (PDF)
of X in the failure domain, i.e.

P ¼ ∫
g Xð Þ≤0

f xð Þdx ð2Þ

By transforming the random variables to the space of un-
correlated standard normal random variables, i.e., U =T(X)
(Der Kiureghian 2005), the failure probability is given by

P ¼ ∫
G uð Þ≤0

φn u; Ið Þdu ð3Þ

where U represents the vector of uncorrelated standard
normal variables transformed from X. G(·) denotes the
limit-state function given in terms of U, and φn(·) is the
joint PDF of the n standard normal random variables.
The correlation coefficient matrix of the joint PDF is
given as the identity matrix I since the random variables are
uncorrelated.

In general, RBTO consists of an outer loop for optimization
and an inner loop for the reliability analysis. The reliability
analysis forms a loop because reliability analysis methods
such as the FORM or SORM (Der Kiureghian 2005) find
the “most probable failure point (MPP),” U* by performing
constrained nonlinear optimization, i.e.

U* ¼ arg min
U

‖U‖ j G d;Uð Þ≤0
n o

ð4Þ

In the FORM, for example, the “reliability index” β in the
standard normal space is obtained as

β ¼ −
∇G U*
� �

‖∇G U*
� �

‖
⋅U* ð5Þ

Then, the failure probability in (3) is approximately evalu-
ated by use of the reliability index β as

P≅Φ −β½ � ð6Þ
where Φ is the cumulative distribution function (CDF) of the
standard normal distribution.

Accordingly, the RBTO problem can be written using the
so-called reliability index approach (RIA; Enevoldsen and
Sorensen 1994) as follows:

min
d;μX

f d;μXð Þ
s:t: β d;Uð Þ≥βtarget

dlower ≤d≤dupper

with K d;Xð Þu d;Xð Þ ¼ f Xð Þ

ð7Þ

where βtarget = −Φ−1[Pf
target]. Alternatively, the minimum

value of the limit-state function on the surface of the
hypersphere with the radius βtarget can be used to check the
violation of the probabilistic constraint. This is referred to as
the performance measure approach (PMA; Tu et al. 1999).
RBTO based on PMA is formulated as
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Fig. 1 Two-bar truss problem definition. Loading, boundary conditions,
and material property
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Fig. 2 a Performance function ((μm1,μm2) = (50,20),(σ1,σ2) = (30,10)) plot in the standard normal space, b a feasible solution line for the lower level
optimization problem, and c local and global minima on a contour plot of the performance function
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min
d;μX

f d;μXð Þ
s:t: gPtarget

f
≥0

dlower≤d≤dupper

with K d;Xð Þu d;Xð Þ ¼ f Xð Þ

ð8Þ

where gPtarget
f

is the performance function that is the Ptarget
f -

quantile of the limit-state function g, alternatively obtained by

gPtarget
f

¼ arg min
G

G d;Uð Þ j ‖U‖ ¼ βtarget
n o

ð9Þ

In general, the PMA shows more efficient and robust con-
vergence compared to the RIA (Tu et al. 1999). The PMA
minimizes a complex objective function in (9) while satisfying
a simple constraint function, whereas the RIA solves a mini-
mization problem of a simple objective function with a com-
plicated constraint function in (4).

2.2 Single-loop algorithm for RBTO

Efficiency in RBDO/RBTO can be improved by replacing the
inner loop of the reliability analysis by a non-iterative proce-
dure, which is often called single-loop scheme (Liang et al.
2004; Shan and Wang 2008). By enforcing the Karush-Kuhn-
Tucker (KKT) optimality conditions of the probabilistic con-
straint in the reliability analysis, the constraint is replaced with
an approximate deterministic constraint. In this approach, the
optimal point in (9) should satisfy the following KKToptimal-
ity conditions:

∇UG d;Uð Þ þ λ⋅∇U ‖U‖−βtarget
� �

¼ 0 stationarityð Þ
λ⋅ ‖U‖−βtarget
� �

¼ 0 complementary slacknessð Þ
‖U‖−βtarget ¼ 0 primal feasibilityð Þ

ð10Þ

From the geometric interpretation (Liang et al. 2004), the
solution U of (10) is derived as:

U ≡Ut ¼ βtarget −
∇Xg d;X Uð Þð ÞJX;U
‖∇Xg d;X Uð Þð ÞJX;U‖

 !
ð11Þ

where JX,U is the Jacobian of the transformation, X to U (see
Der Kiureghian (2005) for more information about general
transformation of random variables). Thus, the equivalent de-
terministic optimization problem is formulated as

min
d;μX

f d;μXð Þ
s:t: g d;X Utð Þð Þ≥0

dlower≤d≤dupper

with K d;X Utð Þð Þu d;X Utð Þð Þ ¼ f X Utð Þð Þ

ð12Þ

Nguyen (2010) proposed a single-loop RBDO algorithm
for system reliability analysis using the matrix-based system
reliability (MSR) method (Song and Kang 2009). Numerical
examples showed that the proposed single-loop system
reliability-based design optimization (SRBDO) approach is
efficient and accurate. This paper primarily focuses on
single-loop (component) reliability topology optimiza-
tion. Therefore, readers interested in system level con-
straints in optimization can refer to Nguyen (2010); and
Nguyen et al. (2011).

2.3 Non-convexity of probabilistic constraints
and the local optimum effects on RBTO results

A probabilistic constraint in RIA and PMA of RBTO requires
using an optimization algorithm to find the MPP as a lower
level optimization problem. Due to the characteristics of prob-
abilistic constraints such as probability distribution functions,
and transformation between physical space and normalized
space used for reliability analysis, the lower level optimization
problem is often non-convex in nature also referred as an NP-
hard problem. The MPP is likely to be a local optimum and
may cause the optimization to result in different results. The
single-loop approach adopted in the paper utilizes the KKT
necessary conditions to approximate the MPP from the perfor-
mance function at each iteration of the optimization. A point
satisfying the KKT conditions cannot guarantee global opti-
mality unless the performance function is convex. For
robustness-based design optimization, Guo et al. (2009a,
2009b, 2011) presented a method to perform confidence struc-
tural response analysis of truss structures considering ellipsoid
static load uncertainty. The authors discussed convexity of
functions in a robust optimization problem and proposed a
method of a confidence single-level formulation for ellipsoidal
load uncertainty by using Semidefinite Programming (SDP).
That allows the reformulated lower level problem to be solved
with global optimality. The global optimality of the probabilis-
tic function is also a crucial consideration in RBTO; however,

Table 1 Two-bar truss
optimization results and failure
probabilities

Optimization results Failure probability

U0 Volume Area 1 Area 2 FORM SORM MCS

(0.0,0.0) 17.64 2.52 3.36 1.35 × 10−3 1.40×10−3 1.38 × 10−3

(−1.732,−1.732) 1.44 0.36 0.12 8.297 × 10−1 8.411×10−1 8.43 × 10−1
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literary discussion is not as robust. In this section, we study the
optimum state of a probabilistic compliance constraint trans-
formed in PMA and its potential effects on converged results.

Now consider the two-bar truss structure illustrated in
Fig. 1. The structure is subjected to a random horizontal force

H with a mean μm1 of 50 and a normal distribution having a
standard deviation of σ1=30; and a random vertical force V
with a mean μm2 of 20 and a normal distribution having a
standard deviation of σ1=10. The general form of the sizing
optimization problem is as follows.

||U||=βtarget(a) (b) (c)

Fig. 4 Performance function ((μm1,μm2,) = (50,20)) plots for varying standard deviations. a (σ1,σ2) = (25,10), b (σ1,σ2) = (10,4), c (σ1,σ2) = (5,2)

A
1
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2
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Fig. 3 Convergence histories and optimized bar sizes for case I and II
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min
A

Vol ¼ ∑
2

i¼1
AiLi

s:t: P g H;V;Að Þ : 20−c H;V;Að Þ≤0½ �≤Ptarget
f ¼ 0:0013

ð13Þ

where

c H;V;Að Þ ¼ ∑
2

i¼1

f i H;Vð Þ2Li
EiAi

f 1 H;Vð Þ ¼ V

2cosα
−

H

2sinα
; f 2 H;Vð Þ ¼ V

2cosα
þ H

2sinα

ð14Þ

where Vol, Ai and Li represent the truss volume, the cross-
sectional area, and the length of member i, respectively.
Moreover, c represents the compliance, and fi denotes the
force in member i, and Ei is Young’s modulus of member i.
In the PMA, the performance function is

min
A

G U;Að Þ ¼ 20− ∑
2

i¼1

Uiσi þ μmið Þ2Li
EiAi

s:t: ‖U‖ ¼ βtarget ¼ 3:0

ð15Þ

Figure 2 shows the overall behavior of the performance
function in the standard normal space U. In PMA-based
RBTO, an optimal solution of a lower level problem in (13)
should be located on a feasible solution line as shown in
Fig. 2b, c. Given random variables and deterministic properties,
global and local minimums can be identified at the first iteration

of the double-loop optimization process. The performance func-
tion at the local minimum U*local = (− 2.9173, 0.6997) that is
found by solving a lower level optimization problem with initial
guess Uinitial = (− 1.732, − 1.732) is gPtarget U*

local

� � ¼ 13.591.
Thus, the local minimum satisfies the inequality in (9). The
pe r fo rmance f unc t i on a t t h e g l oba l m in imum

U*global = (2.9961, 0.1538) is gPtarget U*
global

� �
¼ − 40.092.

Note that the performance function shows the most negative
value with respect to the compliance constraint at the global
optimum and the local minimum is an infeasible point for the
upper level optimization. Assume that a lower level optimization
problem is numerically solved by an optimization algorithm
with an initial guess that is an optimal point obtained from the
previous iteration in (9). Reliability-based design optimization of
the given problem considering two different initial guesses (Case
I:U0 = (−1.732,−1.732); Case II:U0 = (0.0,0.0)) results in totally
different bar sizes (see Table 1). The difference in bar sizes is
mainly due to the inequality constraint of the optimization prob-
lem being satisfied in the local minimum condition and then in
each iteration,U* is trapped in the valley of the PMA function at
the upper left of Fig. 2b.

The convergence histories of the objective function and the
performance function are illustrated in Fig. 3. Although the op-
timization algorithm finds converged solutions satisfying the in-
equality constraint for both cases, the target failure of probability

neighbors

(a) (b) (c)

(d) (e) (f)

Fig. 5 Example of ground structure connectivity level generation. a Base mesh, b level 1 connectivity, c level 2 connectivity, d level 3 connectivity, e
level 4 connectivity, and f full level connectivity
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Fig. 6 Ground structure and filtered structure for DTO employing the
conventional filtering approach: a design domain, loading and boundary
conditions, b ground structure, c filtered structure (ɛcut-off =0.00), d filtered

structure (ɛcut-off = 0.0001), e filtered structure (ɛcut-off = 0.001), and f
filtered structure (ɛcut-off = 0.1)
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Fig. 7 Flowchart of the proposed optimization algorithm
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for Case I is indeed violated. The failure probabilities for both
results, computed by First-Second Order Reliability Method
(FORM/SORM; Der Kiureghian 2005) and Monte Carlo
Simulation (1 × 106 simulations) are shown in Table 1.

In contrast to the DTO case (Christensen and Klarbring
2009), when the compliance is mathematically expressed
in the probabilistic form, it commonly becomes a concave
function based on probabilistic distribution functions and
transformation of its random variables to the standard
normal space for reliability analysis using FORM and
SORM. It is noted that the degree of concavity of proba-
bilistic compliance function depends on types of random
variables and standard deviation, correlation, etc. For in-
stance, Fig. 4 illustrates performance functions of the giv-
en problem in the U space corresponding to different stan-
dard deviations of normally distributed and uncorrelated
random variables. The overall concavity of the function
decrease when a standard deviation of a random variable
is relatively smaller than its mean value (e.g., small coef-
ficient of variation) so that it reduces the existence of
multiple local minima. Although finding global optimality
with confidence is beyond the scope of this paper, it
should be noted that RBDO/RBTO may suffer on finding

feasible solutions due to the local minima as discussed
above.

The single-loop approach adopted in this paper uses the
KKTcondition to approximately find aMPP in the lower level
optimization problem. Since the performance function in the
PMA-based RBTO is generally not a convex function, the
solution from the KKT necessary conditions is not guaranteed
as a global optimum. Therefore, the possibility of obtaining a
local minimum from the approximated MPP by the single-
loop approach still exists. In numerical applications of this
paper, relatively small standard deviations of random vari-
ables are considered, and failure probabilities of optimized
structures are computed and verified.

3 Discrete filtering

The set of interconnected bars is referred to as the ground
structure in topology optimization of discrete structures. The
size of the ground structure is dependent on the connectivity
level that determines the interconnectedness of bars. To gen-
erate the ground structure, a design domain is discretized with
elements, also known as a base mesh, shown in Fig. 5a. In the

F

4 m

8 m

(a) (b)

(e) (f)

(c) (d)

Fig. 8 Ground structure and filtered structures with varying ɛcut-off for RBTO using the conventional filtering approach: a design domain, loading and
boundary conditions, b full connectivity ground structure, c ɛcut-off = 0.0001, d ɛcut-off = 0.005, e ɛcut-off = 0.02, and f ɛcut-off = 0.05
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base mesh, two nodes are considered neighbors if they belong
to the same element, and the connectivity level defines subse-
quent surrounding nodes to which each node can be connect-
ed. For instance, a node will only be connected to its neigh-
bors in connectivity level 1 as shown in Fig. 5b. Level 2
connectivity will generate bars up to the immediate surround-
ing nodes of its neighbors (Fig. 5c). Similarly, level 3 connec-
tivity will generate bars up to the subsequent neighboring
nodes surrounding level 2 (Fig. 5d). ‘A full connectivity level’
refers to a ground structure where all nodes are interconnected
within a design domain.

In the context of deterministic topology optimization
(DTO), a compliance minimization problem with a volume
constraint is formulated as

min
A

fTu Að Þ
s:t: ∑

ne

i¼1
AiLi≤Vc

Alower≤A≤Aupper

with K Að Þu Að Þ ¼ f

ð16Þ

where Li is the length of truss element i, ne is the number of
truss elements, and A is the vector of cross-sectional areas. A
lower bound on each design variable is commonly assigned to
avoid a singular stiffness matrix during topology optimization.
Conventional topology optimization of truss structures using
the ground structure approach implements a filtering process
with a cut-off value ɛcut-off after the optimization processes are
complete. That is, truss elements smaller than the cut-off value
are eliminated, and the filtered truss structure is subsequently
considered as the final topology. This end-filtering process is
used to interpret the final structure from the ground structure.

DTO with the conventional filtering method is illustrated
through a cantilever beam optimization problem. The rectan-
gular cantilever beam in Fig. 6a is clamped on the left side and
loaded by a vertical force F at mid-height of the right side.
Using the ground structure approach, the structural domain is
discretized into a finite spatial distribution of nodes that are
each connected to every other node with truss members as
shown in Fig. 6b. Figure 6c through f shows final topologies
after optimization according to varying cut-off values (in-
creasing from 0 to 0.1). It should be noted that the determina-
tion of a proper cut-off value is ambiguous and is often based
on a process of trial and error. For example, a small cut-off
value may lead to many thin elements, which cannot be
practically built, while a larger cut-off value may result
in a rigid-body motion (mechanism) or hanging member
shown in Fig. 6e. In addition, the end-filtering process may
change the final compliance and cause the problem of violat-
ing global equilibrium.

To address these issues, Ramos Jr. and Paulino (2016) re-
cently proposed a discrete filtering scheme that enables

filtering of well-defined (e.g., satisfying the global equilibri-
um) structures from ground structures. The discrete filtering
process is performed with updated design variables at each
optimization iteration according to:

Filter A;α f
� � ¼ 0 if Ai=max Að Þ < α f

Ai otherwise
; 0≤α f ≤1

�
ð17Þ

It is noted that αf was adopted in the range of 1% from a
practical point of view in Ramos Jr. and Paulino (2016). After
the discrete filtering, global equilibrium is checked to ensure
that the filtered structure is well defined. If the global equilib-
rium is violated, the move limit in the Optimality Criteria
(OC) for updating design variables is adjusted to a smaller
value, and the discrete filtering technique is performed again.
These steps are repeated until the global equilibrium is satis-
fied or the number of checking processes reaches the pre-
scribed maximum iteration. However, some structures satisfy-
ing global equilibrium may be singular due to aligned hinges
and/or detached degrees of freedom. To handle the singularity
of the structural system, minimization of potential energy with
Tikhonov regularization is adopted. Thus, it allows for a zero
bound on the design variables. Using this approach, the regu-
larized compliance minimization problem in DTO can be for-
mulated as:

min
A

fTu Að Þ

s:t: ∑
ne

i¼1
AiLi≤Vc

0≤A≤Aupperwith A ¼ Filter A;α f
� �

and min
u

∏ u Að Þð Þ þ λ
2
u Að ÞTu Að Þ

ð18Þ

where λ denotes a small positive number, and Π(·) represents
the potential energy of the system defined as:

Table 2 Influence of filtering method on actual probabilities of the
optimal topology for the cantilever beam problem (target failure
probability, Pf

target = 0.005)

Conventional filtering method

ɛcut-off 0.05 0.02 0.005 0.0001

Volume 369.76 379.14 385.48 386.48

||Ku-f||/||f|| 5.78 × 10–2 1.32 × 10–2 8.51 × 10–7 3.99 × 10–7

PFORM 1.00 1.00 6.13 × 10–3 5.01 × 10–3

PMCS 1.00 1.00 6.24 × 10–3 5.08 × 10–3

Discrete filtering method

αf 0.05 0.02 0.005 0.0001

Volume 407.39 395.68 386.91 387.93

||Ku-f||/||f|| 4.42 × 10–7 4.52 × 10–7 4.62 × 10–7 3.65 × 10–7

PFORM 5.00 × 10–3 5.00 × 10–3 5.00 × 10–3 5.00 × 10–3

PMCS 5.05 × 10–3 5.05 × 10–3 5.06 × 10–3 5.05 × 10–3
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∏ u Að Þð Þ ¼ 1

2
u Að ÞTK Að Þu Að Þ− fTu Að Þ ð19Þ

The particular solution of displacements of the linear sys-
tem is obtained by minimizing the potential energy with
Tikhonov regularization as follows:

K Að Þ þ λIð Þu Að Þ ¼ f ð20Þ

The structure is considered to be in global equilibrium if the
following inequality holds:

‖K Að Þu Að Þ− f‖≤γ‖f‖ ð21Þ
where γ is a prescribed tolerance (e.g., γ = 10−4).

By incorporating the discrete filtering scheme into
the RBTO framework, one can obtain an optimal

(a) (b)

(c) (d)

Fig. 9 Filtered structures by RBTO with varying discrete filter values: a αf = 0.0001, b αf = 0.005, c αf = 0.02, and d αf = 0.05
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Fig. 10 Convergence histories of the cantilever problem: a volume, and b failure probability
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topology of a structure under uncertainties using a
ground structure model as follows:

min
A;μX

f A;μXð Þ

s:t: g A;X Utð Þð Þ≥0

0≤A≤Aupper

with A ¼ Filter A;α f
� �

and min
u

∏ A d;X Utð Þð Þð Þ þ λ

2
u A;X Utð Þð ÞTu A;X Utð Þð Þ

ð22Þ

The proposed optimization algorithm is illustrated by a
flowchart as shown in Fig. 7. This paper implements Ramos
Jr. and Paulino (2016) method into single-loop RBTO so that
it can solve the singularity of the structural system after the
discrete filter is carried out, and identify the structure in global
equilibrium, while satisfying the target failure probability.

As a ground structure undergoes many iterations to reach
optimal design, many of design variables, such as highly redun-
dant bars are imposed zero areas using the discrete filter. Thus,
computational times of general structural analysis and reliability
analysis in RBTO can be reduced by excluding zero areas for
stiffness matrix assembly, structural analysis, sensitivity calcu-
lations as well as reliability analysis. In contrast, RBTO using

the conventional filtering approach maintains the same number
of design variables because removal of bars, i.e. assigning zero
areas to bars which have less cross-sectional area than the cut-
off filter value, is performed after optimization is completed.
Further reduction of the overall computational cost can be con-
sidered as a synergistic aspect of combining single-loop RBTO
with a discrete filter.

4 Comparative study and numerical
applications

The proposed RBTO using the ground structure method with
the discrete filtering approach is demonstrated by numerical
examples where the design variables are cross-sectional areas,
and the objective function is the total volume. The probabilis-
tic constraint is defined in terms of the compliance with the
upper limit Cmax such as P(g(X) = Cmax – C ≤ 0) ≤ Pftarget.
Applied forces, force direction, and Young’s modulus are con-
sidered as random variables following normal distributions.
However, it should be noted that the application of the pro-
posed method is not limited to normal distributions. Different
combinations of random variables and statistical dependency
are considered in RBTO, which will be stated for each numer-
ical example. Although only the compliance constraint is con-
sidered in this paper, different types of design criteria such as
stress (Ohsaki 2010; Hemp 1973), buckling failure and nodal
instability (Tyas et al. 2006; Guo et al. 2005; Descamps and
Filomeno Coelho 2014; Mitjana et al. 2018), and natural fre-
quency (Jin and De-yu 2006) have been studied for multidis-
ciplinary design and applications. As a structure endures var-
ious demands on its capacity, combinations of design consid-
eration for objective and constraint functions are of great in-
terest for practical design and applications. In the probabilistic
design approach, the failure event associated with combina-
tions is often formulated as a system event such as a logical or
Boolean function of multiple failure modes. The system event
is evaluated by system reliability analysis and incorporated in
the system reliability-based design optimization. The readers
can refer to (Royset et al. 2001; Ba-abbad et al. 2006; Nguyen
2010) for more details on the system reliability-based design
optimization.

The optimality criteria (OC) (Bendsøe and Sigmund 2003;
Groenwold and Etman 2008; Ramos Jr. and Paulino 2016) is
utilized as the update scheme. For the first two numerical
problems, the FORM and the Monte Carlo Simulation

(0.0,0.0) (3.0,0.0)

(a)

(b)

(0.0,1.0)

(1.25,1.0)

(3.0,1.0)

(1.75,1.0)(1.5,1.0)

unit: m

θ θ θ

F1 F2 F3

Fig. 11 Clamped beam problem: a loadings and boundary conditions,
and b level 4 connectivity ground structure

Table 3 Parameter values of
random variables used for the
clamped beam problem

E (N/m2) F1 (N) F2 (N) F3 (N) θ (N)

μmE σsE μmF1 σsF1 μmF2 σsF2 μmF3 σsF3 μmθ σsθ

100,000 7,500 600 150 900 90 700 140 45 6.82
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(MCS) are also performed to check whether the optimal struc-
ture filtered by the conventional method and the proposed
method satisfies the target failure probability. It should be
noted that minimization of potential energy with Tikhonov
regularization is used to solve the singular system in the
FORM and the MCS.

4.1 Comparison between conventional filtering
approach and discrete filtering approach in RBTO

First, the conventional and discrete filters are imposed on
a cantilever beam optimal design to demonstrate the ef-
fects of varying filter input parameters ɛcut-off and αf on

(d)

Iteration
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Fig. 12 Topology optimization
results by discrete filter
(αf = 0.01): a DTO
(volume = 33.35 m3,
PMCS = 6.56 × 10–1), b RBTO*—
Case I
(volume = 60.82 m3,
PFORM = 5.00 × 10–3), c
RBTO**—Case II (volume =
74.67 m3, PFORM = 5.00 ×
10–3), and d convergence
histories

Table 4 Summary of comparison
between RBTO and DTO for
varying safety factors

Safety factor 1.25 1.5 1.75 2.0 2.121 2.25 2.5

Pf_FORM 0.2256 0.0872 0.0293 0.0088 0.0050 0.0029 0.0009

Volume (DTO), m3 43.50 54.06 65.32 78.05 84.71 91.97 106.78

Pf
target 0.2256 0.0872 0.0293 0.0088 0.0050 0.0029 0.0009

Volume (RBTO), m3 42.78 51.68 60.82 70.27 74.66 78.76 87.90

Difference, % 1.67 4.61 7.41 11.07 13.46 16.77 21.48
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the final topologies. The cantilever design domain
clamped on the left and loaded on the right by a vertical

force at two thirds-height is discretized with 12 × 6 ele-
ments (Fig. 8a). A full connectivity level ground

(a) (b)

(c) (d)

(0.0,0.0) (5.0,0.0)
Rv1

Rv3

Rv2

(5.0,2.0)

(5.0,1.0)

(0.0,2.0)

Fig. 14 a Applied forces Rv1, Rv2, Rv3 on given design domain with
boundary condition, b convergence history plot using single-loop (SL)
and double-loop (DL) algorithms in RBTO, c optimal topology using SL

RBTO, and d optimal topology using DL RBTO. Note that the results of
an optimization problem considering the level 2 connectivity and two
random variables, Rv1 and Rv2 are presented

Fig. 13 Optimal structure volume
(left y axis) and graphic
representation of volume
difference from DTO and RBTO.
Calculated failure probability
(right y axis) at corresponding a
safety factor (x-axis) using
connectivity level four for a
ground structure
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structure is generated as shown in Fig. 8b. To incorpo-
rate uncertainties in material properties and the load,
Young’s modulus E and the force F are modeled as ran-
dom variables following the normal distributions with
means (μmE = 10,000 N/m2, μmF = 100 N) and standard
deviations (σsE = 750 N/m2, σsF = 20 N), respectively.
The objective function is the total volume, and the prob-
abilistic constraint is defined as P (g(X) = 5 – C ≤ 0) ≤
0.005. The initial cross-sectional areas are set to 0.5 m2.
The optimization results from Eq. (12) according to vary-
ing cut-off values ɛcut-off of the conventional filter are
illustrated in Fig. 8c through f. In addition, using a cer-
tain cut-off value can lead to a final topology including
hanging members, which are not connected to the struc-
ture. A filter value with ɛcut-off = 0.05 eliminates rela-
tively larger sizes of bars from a converged ground
structure. Such bars removed by the conventional filter
can greatly decrease stiffness and increase structural
compliance. As a result, the filtered structure is highly
likely to be an infeasible design and violate the probabi-
listic compliance constraint. The influence of the cut-off

values on actual failure probabilities of the optimal topology
is checked by use of the FORM and theMCS (Table 2). As the
selected ɛcut-off increases for the filtering process, a failure
probability higher than the target probability is observed.
That is, the conventional filtering approach may lead to the
violation of the prescribed target failure probability.

Next, the same optimization problem is solved using the
proposed method while varying discrete filtering values αf.
A discrete filter is activated with each iteration of optimi-
zation. Often, bars to be eliminated by the discrete filter
have very low sensitivities of a probabilistic constraint
with respect to design variables. The discrete filter pre-
vents dramatic changes in structural responses of a filtered
structure at each iteration. In addition, a gradient-based
optimization algorithm can effectively search for optimum
design based on the sensitivity of the probabilistic con-
straint while ensuring global equilibrium. These character-
istics of a converged solution allow for a feasible design in
global equilibrium with a certain level of reliability.
Figure 9 shows filtered structures, which are in global
equilibrium. In all plots, tension members are shown
in blue and compression members in red. The thick-
nesses of the lines indicate the normalized area of truss
elements to the maximum member area. Unlike the con-
ventional approach, the proposed method is able to find
feasible solutions that satisfy the target failure probabil-
ity as confirmed in Table 2. Figure 10 shows the con-
vergence history of the volumes and failure probabilities
of the conventional and discrete filtering approaches in
RBTO for 100 iterations. The non-smooth zig-zag pat-
tern observed in the convergence plot within the first fifty

(a) (b)

Fig. 15 Normalized computational times for SL andDLRBTO regarding
(a) connectivity levels, and (b) number of random variables.
Computational times are normalized with respect to the single-loop
computation (12.5 s in this case) with connectivity level 2 and two

random variables. (SL single-loop algorithm, DL1 double-loop
algorithm with initial guess of U* obtained in a previous step, and DL2

double-loop algorithm with a fixed initial guess of ||U0|| =β at every
iteration

Table 5 The number of bars and parameter values for random variables
used in comparative study of SL RBTO and DL RBTO

Connectivity level 1 2 3 4

Number of bars 504 1,284 2,199 3,106

Random variable Rv1 Rv2 Rv3

Mean 120 150 120

Standard deviation 12 15 12
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iterations is primarily due to the discrete filtering, which ac-
tively eliminates bars with areas smaller than the prescribed
filtering value αf.

4.2 Comparison of DTO and RBTO

In this example of the clamped beam (Fig. 11), the results by
DTO and RBTO are compared to investigate the influence of
the uncertainties on the optimal topologies. Note that, for
DTO, the random variables in RBTO are replaced by deter-
ministic parameters whose values are the same as the mean
values. Five statistically independent random variables are
used to describe forces (F1, F2, F3), force angle (θ) and mate-
rial property represented byYoung’sModulus (E). All random
variables are assumed to follow normal distributions.
Figure 11a shows the design domain fixed on both left and
right sides. Three parallel forces with a random angle θ are
applied at the center region of the top edge of the design
domain. The design domain is discretized with 40 polygonal
elements after 100 Lloyd’s iterations (Talischi et al. 2012), as
shown in Fig. 11a. On the other hand, the ground structure
with a level 4 connectivity (1,858 design variables) is illustrat-
ed in Fig. 11b. Table 3 lists the mean value μm and standard
deviation σs for each random variable. The target failure prob-
ability of the compliance limit-state function Pf

target =
0.005, the upper bound of design variable Aupper = 1.0 m2,
the discrete filter coefficient αf = 0.01, and Cmax = 8 are used
in optimization.

To verify the effects of the random variable θ on the
final topology, two cases are considered for RBTO: (Case
I) four random variables of F1, F2, F3, E and deterministic
force angle θ, and (Case II) five random variables of F1,
F2, F3, E, and θ. Figure 12 shows the optimal configura-
tion of bar connectivities and sizes from DTO and RBTO.
Due to the risk caused by the uncertainties, increased bar
areas and additional connectivities are observed in RBTO
compared to those from DTO. In addition, dominant direc-
tions of bar connectivities are observed between the forces
and supports as shown in Fig. 12a and b. Additional con-
sideration of the random variable θ (Case II) results in the
creation of arch-shape connectivities towards the center at
the bottom in Fig. 12c, primarily due to the possibility of
forces with θ > 45° that cause the further increase in com-
pliance. Therefore, the compliance will be reduced by pro-
viding the arch-shape connectivities. The convergence his-
tory in Fig. 12d confirms that the proposed method is able
to find the optimal solution efficiently. In engineering prac-
tice, deterministic design generally adopts safety coeffi-
cients such as a safety factor, load and resistance factors
to account for inherent uncertainties and natural random-
ness. The failure probability of the deterministic result
(Fig. 12a) under the five random variables used for
RBTO is provided in the paper, however, this does not
suggest an actual collapse or failure of the structure.
Further study on DTO with safety factors and comparison
to RBTO are described in the following section.

(5,2.5)

(8.0,8.0)

(8.0,10.0)unit: m

(5,0.0)(0.0,0.0)

r=10

r=5.5

F
4
F

3
F

2
F

1

(a) (b)

Fig. 16 Curved beam problem: a
design domain, and b loadings
and boundary conditions, and
level 3 connectivity ground
structure

Table 6 Parameter values of the
random variables used for the
curved cantilever structure
problem

E (N/m2) F1 (N) F2 (N) F3 (N) F4 (N)

μmE σsE μmF1 σsF1 μmF2 σsF2 μmF3 σsF3 μmF4 σsF4
100,000 7,500 50 10 80 12 45 6.75 35 5.25
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4.3 Comparison of RBTO and DTO considering varying
safety factors

A numerical comparison between optimum designs of DTO
and RBTO is presented with varying safety factors from 1.25
to 2.5. The same design domain, material properties, and ran-
dom variables following a normal distribution, as described in
Section 4.2, are used for the comparison study. The safety
factor is defined as the ratio between the allowable compliance

and the maximum compliance. When the optimal design is
achieved in DTO, reliability analysis using the FORM is per-
formed to compute the probability of failure of the structure.
The probability of failure in DTO from the FORM analysis is
imposed as a target failure probability in RBTO to compare the
results from DTO, and RBTO approaches. The failure proba-
bility and volume of the optimal design in DTO corresponding
to each safety factor are tabulated in Table 4. An optimal vol-
ume of a structure in RBTO with a target failure probability,

(a) (b)

(c) (d)

Fig. 17 Topology optimization results by a discrete filter (αf = 0.01): a
DTO (volume = 54.73 m3, PMCS = 7.56 × 10–1), b RBTO, ρij = 0.0
(volume = 90.79 m3, PFORM = 7.50 × 10–3), c RBTO, ρ ij = 0.5

(volume = 105.39 m3, PFORM = 7.50 × 10–3), and d RBTO, ρij = 0.75
(volume = 113.91 m3, PFORM = 7.50 × 10–3)
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Fig. 18 Convergence histories of
the curved beam problem: a
volume, and b failure probability
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and the failure probability in DTO, are summarized in Table 4.
Figure 13 shows a higher optimal volume achieved by DTO
when compared to an optimal structure from RBTO, while the
probability of failure is the same for both structures. The opti-
mal volume increases when a higher safety factor is imposed in
DTO. When matching the safety factor with RBTO, DTO pro-
duces an optimized structure with a greater volume, suggesting
a sub-optimal result. Given that converged solutions from
RBTO and DTO are probably local minima due to possible
non-convexity of the given problem, the RBTO design is closer
to the global optimum design. As presented in Fig. 13, DTO
and RBTO result in different optimal topologies of a
structure under the equivalent probability of failure.
Based on the present study, diverse solutions for a given op-
timization problem are expected to be found from RBTO, and
DTO optimization approaches.

4.4 Comparison of computational time of single-loop
RBTO and double-loop RBTO

Computational time for RBTO using single-loop (SL) algo-
rithm in (12) and double-loop (DL) algorithm in (8) are com-
pared in this section. Figure 14a shows the geometry and
boundary conditions of a design domain used for the compu-
tational cost study. The optimization problem is comprised of
one probabilistic constraint with respect to compliance.
Random variables are forces, following the normal distribu-
tion, that are applied at the points shown in Fig. 14a. The
different number of design variables and random variables in
RBTO are used to show comprehensive differences with re-
spect to computational cost. A ground structure of the design
domain is constructed with four different connectivity levels
to visualize the effects of the different number of design
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Fig. 19 Roof structure optimization example: a roof structure domain, loadings and boundary conditions, b top view, and c side view
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variables in RBTO on computational cost. The number of bars
generated based on the connectivity level, the mean and stan-
dard deviation of random variables are summarized in Table 5.

The double-loop approach solves a lower level optimiza-
tion problem to find MPPs (e.g., ||U*|| =β) using reliability
analysis. In this study, two different initial points are also
considered in addition to the connectivity level for the lower
level optimization procedure. The initial points, U0 satisfying
||U0|| =β at the first iteration, are selected, and new MPPs are
found through optimization. Subsequent design variables are
updated with sensitivity analysis of current design from the

new MPPs. For each iteration in RBTO, MPPs obtained from
the previous iterative step are used as starting points to identify
new MPPs of the sub-optimization procedure in the updated
design. Another consideration for U0 in sub-optimization
is using the same fixed points ||U0|| = β for every itera-
tion in RBTO. When level 2 connectivity and two ran-
dom variables, Rv1 and Rv2 are considered in a opti-
mization problem, optimal topologies from SL (Single
Loop) RBTO and DL (Double Loop) RBTO and their con-
vergence history are illustrated in Fig. 14b through d.

Figure 15 shows the average computational time for five
analyses, of each different case, carried out to 70 optimization
iterations. Times are normalized with respect to the SL RBTO
method with level 2 connectivity considering two random
variables. Figure 15, however, does not include the initializa-
tion time such as meshing design domain, or generating the
ground structure. The computational cost of RBTO using the
DL algorithm is heavily dependent on the selection of initial
points for lower level optimization. Using DL RBTO with

(a) (b)

(c) (d)

Fig. 20 Ground structure: a upper restriction surface, b lower restriction surface. c Level 1 connectivity (2,569 design variables), and d level 4
connectivity (7,995 design variables)

Table 7 Parameter values of the probabilistic constraint and random
variables, and the discrete filter used for the roof structure problem

E (GPa) F (kN) Cmax Pf
target αf Aupper (m2)

μmE σsE μmF σsF 10 0.0025 0.01 1.5
200 40 100 20
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fixed U0 requires about eight times more computational cost
than using the single-loop RBTO (level four connectivity and
two random variable case in Fig. 15a). However, the increased
computational time of DL RBTO is reduced when using U0

obtained from previous iterations.

Computational cost analysis with the varying random vari-
ables is presented in Fig. 15b, which shows the number of
random variables does not significantly increase the overall
computational cost. However, in SL RBTO, the outer loop,
which includes structural and sensitivity analysis, updating

(a) (b)

Fig. 21 Final topology by discrete filter (αf = 0.01, level 1 connectivity): a DTO, and b RBTO (Pf
target = 0.0025)
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design variables significantly affects the overall computational
cost. The increase in overall computation cost using the
double-loop method with a higher number of random variables
highlights the efficacy of the single-loop algorithm in RBTO.
Considering average computation time represented in Fig. 15a,
the number of random variables and problem sizes are signif-
icant factors affecting computational cost. Taken together,
RBTO with the single-loop algorithm is a more computation-
ally efficient optimizationmethod when considering the differ-
ent number of design and random variables (Table 5).

4.5 Curved cantilever structure optimization

Next, the proposed method is applied to design a curved canti-
lever truss clamped on the left side to demonstrate how the
correlation affects the spatial distribution of structural members.

The design domain discretizedwith 30 polygonal elements, after
100 Lloyd’s iterations, is shown in Fig. 16a. The ground struc-
ture for a level 3 connectivity is then generated using “GRAND”
(Zegard and Paulino 2014), which generates a ground structure
with a total of 981 truss members. The limit-state function is
defined on the compliance computed with multiple loads, i.e.,
g(A,X) = 8−C(A,X). Young’sModulus E and forces Fi, i = 1,…,
4, are assumed to be normal random variables. The mean
and the standard deviation of each random variable are
shown in Table 6. The target failure probability, the upper
bound of design variables, and the discrete filter coefficient
are set to Pf

target = 0.0075, Aupper = 4.0 m2, and αf = 0.01, re-
spectively. The correlation coefficient ρij, i ≠ j, i, j = 1,…,
4, between random forces is varied from 0.0 to 0.75 to
investigate the effect of the correlations between the
uncertain loadings on the final topology.

(a)

(c)

(b)

Fig. 22 Final topology by
discrete filter (αf = 0.01, level 4
connectivity): a DTO, and b
RBTO (Pf

target = 0.0025)
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The optimization results from DTO and RBTO are shown
in Fig. 17. The line thicknesses in the plots are normalized to
the upper bound of the cross-sectional area, which is 4.0 m2.
Compared to the results from DTO, overall cross-sectional
areas on top and bottom chords are increased in RBTO.
Furthermore, additional connectivities of truss elements are
clearly observed in the RBTO results. Those connectivities
in RBTO increase the stiffness of the truss structure so that
the compliance decreases to satisfy the target failure probabil-
ity. Furthermore, optimization results from RBTO show that
the increase in the correlation coefficient results in the higher
optimized volume, primarily because the positive correlation

between forces increases the chance of violating the limit-state
function by a raised compliance. The convergence histories of
the objective function and the failure probability over itera-
tions are plotted in Fig. 18.

4.6 Roof structure optimization

Finally, our method is applied to a large space structure
fixed on ground level to identify the optimal topology
while achieving the desired reliability. The problem do-
main is discretized with solid elements as shown in
Fig. 19a. Figure 19b, c provide top and side views,

(a)

(c)

(b)

Fig. 23 Final topology by discrete filter (level 4 connectivity, Pf
target = 0.0025): a αf = 0.02, b αf = 0.03, and c αf = 0.04
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respectively. Based on the discretized domain, the ground
structure analysis and design in 3D (GRAND3, Zegard and
Paulino 2015) were adopted to generate a ground structure
using restriction zones (Fig. 20a, b). The restriction zones
prevent truss members in the ground structure from passing
through the restricted region. Two connectivity levels of
the ground structure, shown in Fig. 20c, d, are generated
and used for optimization while initial design variables are
set to 0.25 m2. Young’s modulus and applied forces
(Fig. 19a) are considered as random variables following
normal distributions. The compliance under multiple loads
is computed as

C A;Xð Þ ¼ ∑
i¼1

n f

fTi Xð Þui A;Xð Þ ð23Þ

where nf denotes the number of applied forces. Parameters
of the probabilistic constraint on the compliance, and ran-
dom variables, and the discrete filter are given in Table 7.

Figures 21 and 22 show a comparison of the optimized
results for level 1 and 4 connectivity levels, respectively by
DTO and RBTO. The connectivity level leads to the different
topologies such as different connectivity of members in opti-
mized solutions. Differences in optimal solutions between the
deterministic and the probabilistic constraints can be clearly
observed from the optimized results. To achieve the constraint

on the failure probability, the overall member sizes are in-
creased and more connectivities between bars remain.
Figure 23 shows optimal topologies based on varying filter
sizes. It should be noted that those solutions in global equilib-
rium satisfy the target failure probability. Finally, Fig. 24
shows the convergence histories of the volume in optimiza-
tion. The resulting volume of high connectivity level is slight-
ly reduced for both DTO and RBTO, as expected since a
higher number of design variables (connectivities) typically
reduce the objective function. Table 8 presents results associ-
ated with the roof structure optimization problem.

5 Concluding remarks

This paper presents a framework of single-loop reliability-based
topology optimization that incorporates the discrete filtering
scheme proposed by Ramos Jr. and Paulino (2016). Reliability-
based topology optimization using the ground structure method
with the conventional filtering scheme (cut-off) often leads to
solutions that violate the prescribed failure probability after the
post-processing. The proposed method successfully finds topol-
ogy optimization solutions that satisfy the target failure probabil-
ity and that are in global equilibrium. Numerical verifications by
the first-order reliability method and Monte Carlo simulations
confirm that the optimal topologies obtained by the proposed
approach satisfy the given probabilistic constraints, unlike those
by a conventional filtering scheme.

The effect of uncertainties in load and material property on
optimal topologies are observed and investigated through
comparison with the results of deterministic optimization.
Using the discrete filter parameter and the connectivity level
of the ground structure results in the various topologies with
different optimized sizes while satisfying the desired failure
probability. The variety of optimal solutions obtained from the
proposed method can allow engineers to develop multiple
structural design schemes.

In the present study, a single probabilistic constraint on the
compliance is considered. In reality, different types of constraints
such as displacement constraints and stress constraints under
uncertainties are also of great interest in structural engineering.
Most truss structures are indeterminate so that single failure (or a

Table 8 Representative
parameters for optimal solutions
of the roof structure problem

Level 1 connectivity Level 4 connectivity

Filter size, αf

0.01 0.01 0.02 0.03 0.04

Volume 2,419.73 2,361.73 2,376.27 2,433.11 2,531.09

||Ku-f||/||f|| 3.10 × 10–6 2.57×10–6 2.69×10–6 3.40×10–5 2.69×10–5

PFORM 0.0025 0.0025 0.0025 0.0025 0.0025

Iteration
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component) may not result in failure of the entire structural sys-
tem. Therefore, the aforementioned failure events and various
failure sequences need to be considered for more realistic appli-
cations of engineering designs. Moreover, a system failure event
with statistical dependence between component failure events
needs to be addressed in RBTO. Those remain as potential future
research topics.
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