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Abstract

We introduce a general multi-material topology optimization framework for large deformation problems that effectively
handles an arbitrary number of candidate hyperelastic materials and addresses three major associated challenges: material
interpolation, excessive distortion of low-density elements, and computational efficiency. To account for many nonlinear elastic
materials, we propose a material interpolation scheme that, instead of interpolating multiple material parameters (such as
Young’s modulus), interpolates multiple nonlinear stored-energy functions. To circumvent convergence difficulties caused
by excessive distortions of low-density elements under large deformations, an energy interpolation scheme is revisited to
account for multiple candidate hyperelastic materials. Computational efficiency is addressed from both structural analysis and
optimization perspectives. To solve the nonlinear state equations efficiently, we employ the lower-order Virtual Element Method
in conjunction with tailored adaptive mesh refinement and coarsening strategies. To efficiently update the design variables of
the multi-material system, we exploit the separable nature and improve the ZPR (Zhang–Paulino–Ramos) update scheme to
account for positive sensitivities and update the design variables associated with each volume constraint in parallel. Four design
examples with three types of nonlinear material models demonstrate the efficiency and effectiveness of the proposed framework.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Multi-material topology optimization; Hyperelastic materials; Large deformations; ZPR update scheme; Virtual Element Method
VEM); Adaptive refinement and coarsening

1. Introduction

Joakim Petersson contributed to establishing a solid basis for computational topology optimization [1]. He made
several important contributions, including techniques to treat numerical instabilities such as checkerboards, mesh-
dependence and local minima occurring in topology optimization [2], regularization of intermediate densities [3],
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nd topoloy design for fluid flow [4]. Frequently, he worked at the interface of different fields [1]. Inspired by his
ontributions and his appreciation of the interconnection of different fields, we propose a general virtual element
ased topology optimization framework for designing structures composed of multiple hyperelastic materials. The
ontributions of our proposed framework are as follows. First, a material interpolation scheme is proposed to
nterpolate an arbitrary number of stored-energy functions of various types. Similarly to the Discrete Material
ptimization (DMO) [5], the proposed material interpolation scheme uses a sequence of products among the
esign variables associated with different materials to effectively penalize material mixture in the final design.
e demonstrate three nonlinear material models, which are the modified Saint Venant-Kirchhoff model, the

ompressible Ogden model, and porous elastomers with Neo-Hookean matrix. Second, to tackle excessive distortions
n low-density elements, we adopt the energy interpolation scheme by Wang et al. [6] and extend it to account for

ultiple candidate materials. With this approach, instead of considering the low-density elements as hyperelastic, the
nergy interpolation scheme treats them as linear elastic and scales down the level of deformation in those elements.
hird, we employ the Virtual Element Method (VEM) for numerical approximation of the finite elasticity boundary
alue problem, which, in general, leads to fewer function evaluations in forming the multi-material system. Further,
ince the VEM can easily handle elements of arbitrary shape, it fosters adaptive mesh refinement and coarsening
trategies to reduce the size of the state equations without sacrificing design resolution. Additionally, we extend
he ZPR design variable update scheme [7] to allow for positive sensitivities while efficiently updating the design
ariables associated with each volume constraint in parallel.

The ideation of this paper is motivated by the pioneering work of Dr. Joakim Petersson [1]. His work paved
he way for many advances in topology optimization, and thus, our multidisciplinary work employing the VEM for
onlinear multimaterial topology optimization is inspired from the work by Petersson [1,2,8,9]. The remainder of
his paper is organized as follows. Section 2 elaborates on the three main challenges associated with multi-material
opology optimization for problems considering finite deformations and reviews previous attempts in the literature to
ddress them. Section 3 presents both invariant-based and stretch-based isotropic hyperelastic models and reviews
he displacement-based variational principle for finite elasticity. Section 4 defines the local displacement virtual
lement spaces and associated projection operator, and addresses the VEM approximation to the displacement-based
ariational principle. Section 5 outlines the VEM-based topology optimization considering an arbitrary number
f candidate hyperelastic materials emphasizing the treatment of the material and energy interpolations schemes.
ection 6 revisits the ZPR design update scheme and introduces a modification to allow for positive sensitivities.
ection 7 introduces mesh refinement and coarsening strategies, tailored for the proposed framework, together with
description of the design variable mapping used here. Section 8 presents four numerical examples, highlighting

he effectiveness and efficiency of the proposed framework in various design scenarios with combinations of
ifferent hyperelastic materials. Section 9 contains concluding remarks. An Appendix complements the paper, which
resents a Finite Element (FE) approximation of the potential energy of the multi-material system and discusses
he comparison between the virtual element and FE approximations.

. Challenges and related work

Several approaches exist in the literature for multi-material topology optimization, such as density-based
5,10–16], level set [17–21], phase field [22–24], moving morphable component [25], and the ground structure [7,26]
ethods. This paper focuses on the density-based approach. While most of the work in multi-material topology

ptimization employs multiple linear elastic materials, less attention has been paid to the consideration of multiple
onlinear elastic materials under large deformations, which are typical in real-world applications (see, however, [7,
2,26,27] for several attempts in the continuum and discrete element settings). Incorporating multiple nonlinear
lastic materials into topology optimization presents three major challenges: material interpolation, excessive
istortion of low-density elements, and computational cost. In the following, we elaborate on these challenges and
ummarize previous attempts in addressing them, before detailing our general VEM-based multi-material topology
ptimization framework for nonlinear elastic structures.

.1. Material interpolation

Most material interpolation schemes in multi-material topology optimization account for multiple linear elastic

aterials. For example, the Solid Isotropic Material with Penalization (SIMP) [28] scheme is generalized in [10,11]
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to three-phase materials (two material phases plus one void phase) and in [12] to an arbitrary number of material
phases. Another popular material interpolation scheme that can also handle an arbitrary number of material phases
is the DMO [5], which introduces a product rule to penalize material mixture. Because the behavior of a linear
elastic material is independent of deformation, the aforementioned material interpolation schemes only need to
interpolate material parameters such as Young’s modulus (or modulus tensors in the anisotropic cases). However,
these schemes become limited when considering multiple nonlinear elastic materials because their behavior is
typically characterized by a stored-energy function, which is a nonlinear function of deformation [29]. Thus,
accounting for multiple nonlinear elastic materials requires a material interpolation scheme capable of effectively
interpolating multiple stored-energy functions (possibly of different forms). To achieve this goal, we propose a
DMO-type material interpolation scheme that is capable of interpolating an arbitrary number of stored-energy
functions of various types.

2.2. Excessive distortion of low-density elements

In the literature, various techniques have been proposed to alleviate convergence difficulties caused by the
excessive distortion of low-density elements, (see [6,30–35] for an incomplete sample). For instance, Yoon and
Kim [31] introduced an element connectivity parametrization to overcome numerical instability of low-density
elements. In their approach, the structural topology is parametrized by a set of zero length elastic links and, instead
of optimizing the density of the finite element, the density of the link is optimized. Wang et al. [6] proposed an
energy interpolation scheme to stabilize numerical instability of low-density elements by using the element densities
to interpolate between the actual stored-energy function and the one of linear elasticity. For solid elements, the
actual stored-energy function is used and, for low-density elements, the stored-energy function of linear elasticity
is employed. Van Dijk et al. [33] suggested a deformation scaling technique to scale down the level of deformation
in low-density elements. Luo et al. [34] presented an additive hyperelastic technique that is able to alleviate the
excessive deformation and instability of the low-density elements. The aforementioned studies have demonstrated
varying degrees of success in addressing excessive distortions of low-density elements in a single material setting.
In this work, we adopt the energy interpolation scheme proposed by Wang et al. [6] and extend it to account for
multiple candidate materials.

2.3. Computational efficiency: solution of the state equation

In terms of the structural analysis, topology optimization considering large deformations is computationally
expensive because the nonlinear state equation needs to be solved iteratively at every optimization step. Additionally,
accounting for multiple nonlinear elastic materials exacerbates the expense of computation because, in order to
form the system of nonlinear state equations, the nonlinear response of each material has to be evaluated. A
common approach to improve the computational efficiency of topology optimization without sacrificing design
resolution and accuracy is to adaptively refine and coarsen the mesh. However, most existing work in topology
optimization focuses on adaptive mesh refinement and linear material behavior (see, e.g., [36–40] for single material
and [41] for multi-material topology optimization) and relatively little attention has been paid to adaptive mesh
coarsening and nonlinearities in material and geometry. To improve the computational efficiency in the structural
analysis, this work proposes a tailored adaptive mesh refinement and coarsening strategy that is enabled by
the VEM used to approximate the boundary value problem of finite elasticity. The VEM has been successfully
applied in many problems in structural mechanics, such as linear elasticity [42–45], small deformation nonlinear
elasticity and inelasticity [46–49], finite elasticity [50,51] and elasto-plasticity [52], plate bending [53–56], contact
mechanics [57], and fracture mechanics [58,59]. The VEM has also been applied to single and multiple material
topology optimization problems considering small deformations [60–63].

2.4. Computational efficiency: nonlinear optimization

Multi-material topology optimization naturally involves multiple design variable fields and typically consists of
multiple volume constraints. As a result, the efficient Optimality Criteria (OC) method [64], introduced specifically
for compliance-minimization problems with a single volume constraint, is no longer applicable. One approach is to
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se the general-purpose Method of Moving Asymptotes (MMA) [65], in which the design variables are updated in
coupled way with respect to all the constraints. Alternatively, an active-phase algorithm, introduced in [24] and

urther studied in references [66,67], performs sequential binary updates of the material phases; however, is limited
o linear elastic materials because it requires the arrangement of the candidate materials in sequence according to
tiffness. In [7], a tailored design update scheme, named Zhang–Paulino–Ramos (ZPR), was proposed for multi-
aterial topology optimization to handle both nonlinear [7,26] and linear [15,68] candidate materials and to update

he design variables associated with each volume constraint independently (e.g., in parallel). The ZPR design update
cheme is employed in this work to efficiently update the design variables in parallel, and is modified to handle
oth positive and negative sensitivities.

. Finite elasticity and hyperelastic material models

Consider an isotropic elastic solid Ω ∈ Rd of dimension d. On the boundary, the solid is subjected to a prescribed
isplacement u0 on ΓX and a prescribed traction t on Γ t, such that ΓX

∪ Γ t
= ∂Ω and ΓX

∩ Γ t
= ∅. In the

remainder of this section, we introduce three constitutive models for hyperelastic materials in conjunction with
the displacement-based variational principle for solving finite elasticity boundary value problems. Throughout this
work, we adopt a Lagrangian description of the solid and neglect body forces.

3.1. Hyperelastic constitutive models for isotropic solids

In hyperelasticity, the constitutive behavior of the solid is characterized by a stored-energy function W . To ensure
objectivity, the stored-energy function W only depends on the right Cauchy–Green deformation tensor C = FT F,
namely, W (X, C), where X is the position vector in the undeformed configuration and F is the deformation gradient
tensor. We adopt the second Piola–Kirchoff stress measure, which is given by

S = 2
∂W
∂C

(X, C). (1)

Constitutive models in terms of invariants. For isotropic solids, the stored-energy function W depends on C through
its invariants I1, I2, and J , which are given by

I1 = trC I2 = tr(C2) J =
√

det C. (2)

We use φ to denote the form of the stored energy function expressed in terms of the three invariants, namely,
φ(X, I1, I2, J ) = W (X, C). In this case, the second Piola–Kirchoff stress can be expressed as

S = 2
( ∂φ

∂ I1

∂ I1

∂C
+

∂φ

∂ I2

∂ I2

∂C
+

∂φ

∂ J
∂ J
∂C

)
= 2

( ∂φ

∂ I1
I + 2

∂φ

∂ I2
C +

J
2

∂φ

∂ J
C−1

)
. (3)

he Lagrangian elasticity tensor, C = 4∂2φ/∂C∂C, can be obtained in a similar manner to the second Piola–Kirchoff
tress. Its expression is not provided here for brevity, but can be found in [69].

This work contains three hyperelastic models. For the model in terms of invariants, we consider the modified
aint Venant-Kirchhoff model [70], which is given by

φ(I1, I2, J ) =
µ

4
(I 2

1 − 2I2 − 2I1 + 3) +
λ

2
(J − 1)2 , (4)

where λ and µ are the first Lame’s constant and the shear modulus, respectively.

Constitutive models in terms of principal stretches. Stored-energy functions are often expressed in terms of principal
stretches λ1, λ2, and λ3 as

Ψ (X, λ1, λ2, λ3) = W (X, C). (5)

With the principal stretches, the right Cauchy–Green deformation tensor can be expressed in spectral form as

C =

3∑
α=1

λ2
αNα

⊗ Nα, (6)

α
where N is the principal direction associated with λα in the undeformed configuration.
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For isotropic solids, the second Piola–Kirchoff stress is co-axial with the right Cauchy–Green deformation tensor
and can be expressed in the following spectral form:

S =

3∑
α=1

SααNα
⊗ Nα

= 2
3∑

α=1

∂Ψ

∂λ2
α

Nα
⊗ Nα. (7)

In addition, the Lagrangian elasticity tensor is given in terms of the principal stretches as

C = 4
∂2W
∂C∂C

= 4
[ 3∑

α=1

3∑
β=1

∂2Ψ

∂λ2
α∂λ2

β

Nα
⊗ Nα

⊗ Nβ
⊗ Nβ

+

∑
α,β=1
α ̸=β

Sαα − Sββ

λ2
α − λ2

β

(
Nα

⊗ Nβ
⊗ Nα

⊗ Nβ
+ Nα

⊗ Nβ
⊗ Nβ

⊗ Nα
)]

. (8)

n the special case of λα = λβ , the ratio in the second term of the above expression is replaced by the limit

lim
λβ→λα

Sαα − Sββ

λ2
α − λ2

β

= 2

(
∂2Ψ

∂λ2
βλ2

β

−
∂2Ψ

∂λ2
αλ2

β

)
. (9)

A representative example of the stored-energy function expressed in terms of principal stretches is the Ogden
model [71], which is commonly used to model elastomers and soft tissues. In this work, the second type of
hyperelastic models is the compressible Ogden model [72], adopted as follows:

Ψ (λ1, λ2, λ3) =

NO∑
a=1

[µa

m2
a

(
λ

ma
1 + λ

ma
2 + λ

ma
3 − 3

)
−

µa

ma
ln(λ1λ2λ3)

]
+

κ

2

(
λ1λ2λ3 − 1

)2
, (10)

here µa ∈ R+ and ma ∈ R are parameters, NO is the number of terms, and κ is the bulk modulus. Based on
he material parameters, the shear modulus is given by µ =

∑NO
a=1 µa/2. We note that, by varying NO and ma ,

the above Ogden model has great flexibility in controlling the degree of tension–compression asymmetry in the
model [72,73].

We emphasize that the proposed multi-material topology optimization framework is general in terms of
the material models combination. To demonstrate this flexibility, in addition to the previous two conventional
hyperelastic models, we also consider a stored-energy function for 2D porous elastomers with incompressible Neo-
Hookean matrix under the plane strain condition (i.e., λ3 = 1) derived from the homogenization theory [74], which
takes the following expression,

Ψ (λ1, λ2, 1) =
µ

2
1 − f0

1 + f0

(
λ2

1 + λ2
2 − 2λ1λ2

)
+

µ

2

(
λ1λ2 − 2

)
log
(λ1λ2 + f0 − 1

f0λ1λ2

)
, (11)

here µ is the shear modulus of the Neo-Hookean matrix and f0 is the porosity in the undeformed configuration.

.2. The displacement-based variational principle for finite elasticity

This work focuses on the standard displacement-based formulation, in which the displacement field v is the only
ndependent field. The deformation gradient F is then assumed to be a function of v given by F(v) = I+∇v, where

stands for the gradient operator with respect to the undeformed configuration and I denotes the second order
dentity tensor. Accordingly, the right Cauchy–Green deformation and second Piola–Kirchoff tensors are dependent
n v through F.

The classical principle of minimum potential energy seeks the equilibrating displacement field u, which
inimizes the potential energy Π among all the kinematically admissible displacement fields, namely,

Π (u) = min
{ˆ

W (X, C(v))dX −

ˆ
t · vdS

}
, (12)
v∈K Ω Γ t
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here K stands for the space of kinematically admissible displacement fields. Moreover, the weak form of the
bove variational principle (12) reads as follows:

G(v, δv) =

ˆ
Ω

[
F(v) · S(X, v)

]
: ∇(δv)dX −

ˆ
Γ t

t · δvdS = 0, ∀δv ∈ K0, (13)

here δv is the variation of v and K0 denotes the set of kinematically admissible displacements, which vanish on
X. In absence of deformation-dependent traction, the linearized weak form is given by

G(v, δv) + DG(v, δv) · w = 0 ∀δv ∈ K0, (14)

ith

DG(v, δv) · w =

ˆ
Ω

∇w : L(X, v) : ∇δvdx. (15)

n the above expression, the modulus L, expressed in indicial notation, is

L i JkL (X, v) = δik SJ L (X, v) + Fi N (v)Fk M (v)CN J M L (X, v), (16)

here SJ L , Fi N , and CN J M L are the components of S, F, and C, respectively; and δik is the Kronecker delta.
For hyperelastic models given in terms of principal stretches, by plugging the expressions of S and C in terms

f the principal stretches into (16), we obtain the expression of L in terms of λ1, λ2, and λ3 as

L = 2
3∑

α=1

3∑
β=1

∂Ψ

∂λ2
α

nβ
⊗ Nα

⊗ nβ
⊗ Nα

+ 4
3∑

α=1

3∑
β=1

λαλβ

∂2Ψ

∂λ2
α∂λ2

β

nα
⊗ Nα

⊗ nβ
⊗ Nβ

+4
∑
α,β=1
α ̸=β

Sαα − Sββ

λ2
α − λ2

β

(
λ2

αnα
⊗ Nβ

⊗ nα
⊗ Nβ

+ λαλβnα
⊗ Nβ

⊗ nβ
⊗ Nα

)
, (17)

where nα .
= FNα/λλα is the unit vector in the deformed configuration.

4. VEM space, projection, and approximation

This section introduces the local virtual element space for the displacement field and addresses the VEM
approximation to the continuum variational principle (12) in 2D [75]. In particular, the basic definition of a 2D
linear virtual element space is defined and a projection operator, which maps functions in the local space onto linear
ones, is introduced. Throughout the section, we comply with the following conventions. For a given tessellation Ωh

that discretizes the domain Ω into non-overlapping polygons, we denote E and e as its generic element and edge,
respectively. Moreover, we use |E | and |e| to denote the area of E and length of e, respectively.

4.1. Local VEM space and projection operator

Given a polygon E with n vertices, we assume that its vertices are numbered in a counterclockwise fashion as,
Xi = [X i , Yi ]T , i = 1, . . . , n. We then define the local virtual element space V(E) as [75]:

V(E) =
{
v ∈ H1(E) : v|e ∈ P1(E) ∀e ∈ E and ∆v = 0 in E

}
, (18)

where ∆ stands for the Laplacian operator and P1(·) is the space of linear functions. According to the above
definition, the local space V(E) contains functions that are harmonic in the interior of the E and have piecewise
linear variations on the boundary of E . We can show that V(E) is linearly complete, namely, P1(E) ∈ V(E), and
its degrees of freedom (DOFs) are the values of its functions at the vertices of E [75].

Although any given function v in V(E) is only known implicitly in the interior of E , we can exactly compute
he average gradient of v over E with the DOFs of v and geometric information of E . In fact, using integration by
arts, we have the following relation:

1
|E |

ˆ
∇vdX =

1
|E |

ˆ
vNdS =

1
|E |

∑ ˆ
v NedS. (19)
E ∂ E e∈∂ E e
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Realizing that v varies piecewise-linearly on ∂ E , we arrive at

1
|E |

ˆ
E

∇v dX =
1

2|E |

n∑
i=1

v(Xi )
(
|ei |Nei + |ei−1|Nei−1

)
, (20)

here |ei | and Nei are the length and the outward normal vector of edge ei , respectively; and the conventions,
+ 1 = 1 when i = n, and i − 1 = n when i = 1, are used in the above summation.

By definition of V(E), the function v is known explicitly on the boundary, but only implicitly defined in the
nterior of element domain E . In order to construct the VEM approximation to the variational principle with V(E),
e make use of a projection operator, Π ∇

E , which maps functions in V(E) onto the space of linear functions P1(E).
or any given v ∈ V(E), the projection Π ∇

E v is formally defined by the following two conditions,
ˆ

E
∇(Π ∇

E v) · ∇ p1dX =

ˆ
E

∇v : ∇ p1dX ∀p1 ∈ P1(E) and
m∑

i=1

v(Xi ) =

m∑
i=1

Π ∇

E v(Xi ), (21)

here we recall that Xi is the i th vertex of E . Because both ∇(Π ∇

E v) and ∇ p1 are constant vectors, the first
ondition in (21) can be recast as

∇(Π ∇

E v) =
1

|E |

ˆ
E

∇vdX. (22)

ccording to (20), the right-hand side of (22) is exactly computable with only the DOFs of v and geometric
nformation of E . Once 1/|E |

´
E ∇vdX is obtained, the projection Π ∇

E v can be exactly computed using this value
ogether with the second condition in (21), which essentially fixes the constant term of the linear function.

.2. Displacement-based VEM approximation for finite elasticity

Having defined the VEM local space and the projection operator, this subsection addresses the virtual element
pproximation of the continuum variational principle (12). For a tessellation Ωh of the domain Ω , which consists of
on-overlapping elements, we assume that the boundary of the mesh Γh is compatible with the applied displacement
nd traction boundary conditions, that is, both ΓX

h and Γ t
h are unions of the edges in the mesh.

We first state the global displacement space, denoted by Kh , as

Kh
.
=

{
vh ∈ K : vh |E ∈ [V(E)]2, ∀E ∈ Ωh

}
. (23)

ccording to the global displacement space, the local displacement field v = [vx , vy]T within each element exists in
he local virtual element space [V(E)]2. We also use Π∇

E v to denote the projection of the displacement in element
E as Π∇

E v = [Π ∇

E vx ,Π
∇

E vy]T . According to (22), we have

∇(Π∇

E v) =
1

|E |

ˆ
E

∇vdX. (24)

With the aforementioned notations, we now proceed to the construction of the VEM approximation for the
ontinuous variational principle of finite elasticity problems. As a first step, we decompose the domain integral into
he summation of element-level contributions as

Πh(vh) =

∑
E∈Ωh

ˆ
E

W (C(vh))dX −

ˆ
Γ t

h

th · vhdS. (25)

To construct the VEM approximation of Πh(vh), which will be denoted as Π V E M
h (vh), we then need to approximate

the internal energy of each element E . Following the VEM philosophy, we approximate the internal energy of each
element using the decomposition asˆ

E
W
(

C(vh)
)

dX ≈ |E |W
(

C(Π∇

E vh)
)

+
1
2
αE (Π∇

E vh)Sh,E

(
vh − Π∇

E vh, vh − Π∇

E vh

)
. (26)

he first term on the right-hand side of (26) is commonly known as the consistency term, which only uses the
rojection of the displacement field. This term is first-order consistent, meaning that, if vh is a linear vector field,
his term recovers the exact internal energy in element E . The consistent term is not enough to constitute a stable
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pproximation because it introduces non-physical zero energy modes. Thus, a stability term is needed, which is given
y the second term on the right-hand side of (26). The stability term consists of two components, a scalar-valued
unction αE (Π∇

E vh) and a bilinear form Sh,E (·, ·), which is given by [46] as follows,

Sh,E (vh, wh) =

m∑
i=1

vh(Xi ) · Wh(Xi ) ∀vh, wh ∈ Kh, (27)

where we recall that Xi stands for the i th vertex of element E . The explicit expressions of the scalar-valued stability
parameter αE (Π∇

E vh) will be discussed in the next subsection. In terms of the external energy, ⟨t, vh⟩h , we adopt
the same approximation as the one presented in [50].

We are now ready to introduce the final form of the VEM approximation to the continuous problem (12), which
consists of seeking the unknown displacement field uh such that

Π V E M
h (uh) = min

vh∈Kh

{∑
E

[
|E |W

(
C(Π∇

E vh)
)

+
1
2
αE (Π∇

E vh)Sh,E (vh − Π∇

E vh, vh − Π∇

E vh)
]

− ⟨t, vh⟩h

}
. (28)

Accordingly, the weak form of the VEM approximation (28) takes the following form

Gh(vh, δvh)

=

∑
E

[
|E |(I + ∇Π∇

E vh)S(Π∇

E vh) +
1
2

Sh,E

(
vh − Π∇

E vh, vh − Π∇

E vh

)∂αE

∂F
(Π∇

E vh)
]

: ∇Π∇

E (δvh)

+

∑
E

αE (Π∇

E vh)Sh,E

(
vh − Π∇

E vh, δvh − Π∇

E (δvh)
)

− ⟨t, δvh⟩h = 0 ∀δvh ∈ K0
h .

(29)

In our implementation, the second order information of Π V E M
h [69,76], which is not provided here for the sake of

conciseness, is needed in order to use Newton’s method.

4.3. Stability parameter αE (·)

The expression for the stability parameter αE is discussed here and follows the trace-based stabilization strategy
proposed in [50]. In a general 2D problem, for a given material model with stored-energy function W (C), the
trace-based stability parameter is given by

αE (Π∇

E sh) =
1
4

tr
( ∂2W
∂F∂F

(
C(Π∇

E sh)
))

=
1
4

trL
(
Π∇

E sh

)
. (30)

here we recall that L is the modulus defined in (16).

hoice of sh . In a general setting, sh can be taken as any kinematically admissible displacement that does not
epend on the loading history.1 From the several choices of sh investigated in reference [50], choosing sh = vh ,
here vh is the displacement field we are seeking, yields the best performance in modeling problems involving

arge deformation fields. Thus, we use sh = vh in the present work.

xplicit expressions of αE . For isotropic materials, explicit expressions of the trace-based stability parameter αE

an be derived, which facilitates a simple implementation. If the stored-energy function φ is expressed in terms of
he three invariants, I1, I2, and J , the explicit expression of αE for 2D problems is [50]:

αE (Π∇

E sh) =
1
4

[
4I1

∂2φ

∂ I1∂ I1
+ (8I1 I2 − 4J 2 I1)

∂2φ

∂ I2∂ I2
+ I1

∂2φ

∂ J∂ J
+ 16I2

∂2φ

∂ I1∂ I2
+ 8J

∂2φ

∂ I1∂ J

+2J I1
∂2φ

∂ I2∂ J
+ 8

∂φ

∂ I1
+ 2I1

∂φ

∂ I2

]
, (31)

where the dependences of I1, I2, and J on Π∇

E sh are assumed.

1 In topology optimization, we prefer that sh be history-independent. A counterexample is choosing sh = vn−1
h , where vn−1

h is the converged
isplacement solution in the last Newton–Raphson step. If the stability parameter αE is history dependent, then the sensitivity analysis will
ecome history dependent as well, causing undesirable complication in terms of computational implementation.
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We also provide the explicit expression for αE when the stored-energy function of an isotropic solid is given in
terms of the principal stretches. Taking the trace of L and making use of the following relations,

Nα
· Nβ

=

{
1 if α = β

0 otherwise and nα
· nβ

=

{
1 if α = β

0 otherwise , (32)

we can simplify the expression of (30) as

αE (Π∇

E sh) =
1
4

trL =
1
4

L i J i J =
1
4

[ 2∑
α=1

(
2 Sαα + 4λ2

α

∂2Ψ

∂λ2
α∂λ2

α

)
+ 4

2∑
α,β=1
α ̸=β

Sαα − Sββ

λ2
α − λ2

β

]
, (33)

where we recall that Sα α
.
= 2∂Ψ/∂λ2

α; the dependence of λβ on Π∇

E sh is assumed, where β = 1, 2.

. VEM-based topology optimization considering multiple hyperelastic materials

Consider a given discretization Ωh composed of a total of N nodes and M elements. If we further assume that
here are a total of m candidate materials, the general topology optimization formulation can be stated as

min
ρ1,..., ρm

J
(
ρ1, . . . , ρm

)
s.t. g j (ρ1, . . . , ρm

)
=

∑
i∈G j VT ρi

|Ωh |
− V j

max ≤ 0, j = 1, . . . , nc,

ρmin ≤ ρ
(e)
i ≤ 1, i = 1, . . . , m, and e = 1, . . . , M,

with uh(ρ1, . . . , ρm) = arg min
vh∈Kh

Π V E M
h (ρ1, . . . , ρm, vh)

(34)

where J (·) is the objective function, V is the vector of element areas, and ρi is the vector of element-wise constant
design variables for the i th material with ρ

(e)
i the design variable of the eth element. For the j th volume constraint

g j , we denote G j as the associated set of material indices and V j
max the associated volume fraction. At every

optimization step, the equilibrating displacement is solved by minimizing the VEM approximation of the potential
energy of the current design. The VEM approximation of the potential energy Π V E M

h is discussed in Section 5.3,
and the particular forms of the objective function J (·) are discussed in Sections 5.4 and 5.5.

In order to regularize the optimization problem, we use a density filter [77]. In formulation (34), we use ρi to
enote the vector of filtered design variables of the i th material through a density filter as

ρi = Piρi , i = 1, . . . , m, (35)

here Pi is the filter matrix corresponding to material i , whose (e, k) component is given as [78]

(Pi )e,k =
max(0, |E (k)

|(1 − |Xc
e − Xc

k |/Ri )q )∑
k∈S(e) |E (k)|(1 − |Xc

e − Xc
k |/Ri )q

. (36)

We note that, while the prescribed filter radius Ri can be different for each candidate material, we assume the same
filter radius R for all the candidate materials in this work. Thus, the density filter matrix Pi is identical for all the
candidate materials and only needs to be formed once.

With the definition of the filtered design variables, we can recast the j th volume constraint g j (ρ1, . . . , ρm) as

g j (ρ1, . . . , ρm) =

∑
i∈G j VT Piρi

|Ωh |
− V j

max =

∑
i∈G j

VT
i ρi − V j

max , j = 1, . . . , nc, (37)

here the vector Vi is introduced such that Vi
.
= PT

i V/|Ωh |. Componentwise, the eth component of Vi is given
y V

(e)
i =

∑
k(Pi )k,eV (k)/|Ωh |. Thus, all the volume constraints are linear with respect to the design variables and

their sensitivities are given by

∂g j

(e) (ρ1, . . . , ρm) =

{
V

(e)
i if i ∈ G j

, j = 1, . . . , nc. (38)

∂ρi 0 otherwise
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The formulation considering multiple hyperelastic materials under large deformations poses additional chal-
enges: (1) how to define the effective (interpolated) material behavior when there are multiple candidate materials
nd the nonlinear response of each one is described by its individual stored-energy function; and (2) how to avoid the
umerical difficulties associated with the low-density elements, which are typical in topology optimization involving
arge deformations. In the subsequent subsections, these two issues are addressed in sequence.

.1. A material interpolation scheme for multiple hyperelastic materials

Unlike the case of optimizing among multiple linear elastic materials, where the interpolation of multiple constant
odulus tensors is needed, optimizing among multiple hyperelastic materials requires the interpolation of multiple

onlinear stored-energy functions that may take different forms. We propose a material interpolation scheme that
enalizes not only the intermediate densities, but also mixing of multiple materials (i.e., the presence of more than
ne material at a given location).

Assuming that we have a total of m candidate materials for element (e), and each one is characterized by a
tored-energy function Wi , we propose to define the interpolated stored-energy function W ρ as:

W ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , v
)

=

m∑
i=1

wi (ρ
(e)
1 , . . . , ρ(e)

m )Wi
(
C(v)

)
, (39)

where wi is a weight function associated with the i th candidate material.
In this work, we propose a DMO-type interpolation scheme for multiple hyperelastic candidate materials in

which we define the weight function wi in (39) via the product rule [5] as follows,

wi (ρ
(e)
1 , . . . , ρ(e)

m ) =

(
ρ

(e)
i

)p m∏
j=1
j ̸=i

[
1 −

(
ρ

(e)
j

)p
]
, (40)

where ρ
(e)
i is the filtered density of the eth element associated with the i th candidate material, “

∏
” is the

perator standing for the product of sequence, and p is the SIMP penalization parameter to penalize intermediate
ensities. We remark that, with this DMO-type material interpolation scheme, the mixture of multiple materials
s penalized implicitly through the product rule. For instance, if both materials i and j are solid in element (e)
i.e., ρ

(e)
i = ρ

(e)
j = 1 for any given i ̸= j), we have wk = 0, k = 1, . . . , m according to (40). Thus, element (e) will

ot have any stored energy even if both materials i and j are present.

emark 5.1. We can show that the proposed material interpolation scheme reduces to the original DMO
nterpolation scheme when all the candidate materials are linear elastic. If the i th candidate material is linear elastic,
ts stored-energy function can be expressed as

Wi (v) =
1
2
ε(v) : Ci : ε(v), (41)

where Ci is the elasticity modulus tensor. Plugging in the above stored-energy function to the proposed material
interpolation scheme (39), we arrive at

W ρ(ρ(e)
1 , . . . , ρ(e)

m , v) =

m∑
i=1

wi (ρ
(e)
1 , . . . , ρ(e)

m )
1
2
ε(v) : Ci : ε(v)

=
1
2
ε(v) :

[ m∑
i=1

wi (ρ
(e)
1 , . . . , ρ(e)

m )Ci

]
: ε(v)

=
1
2
ε(v) : Cρ

: ε(v).

(42)

In the above expression, we note that Cρ .
=
∑m

i=1 wi (ρ
(e)
1 , . . . , ρ(e)

m )Ci is the interpolated elasticity modulus in the
riginal DMO interpolation scheme [5].
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.2. An energy interpolation scheme for low-density elements

For topology optimization problems involving large deformations, elements with low densities become prob-
ematic as they undergo excessive distortion. As a consequence, non-convergence of nonlinear solvers may be
ncountered. To overcome this issue, several techniques have been introduced in the literature for single material
opology optimization, see, e.g. [6,30–35].

In this work, we adopt the energy interpolation approach proposed by Wang et al. [6], whose basic idea is to
se the actual stored-energy function for elements with high densities and a linear elastic stored-energy function
or low-density elements. The original energy interpolation scheme developed in [6] is for the single material case.
n this work, we extend it to problems with any number of candidate hyperelastic materials.

With W ρ the true stored-energy function for element (e), whose form is defined in (39), we can define the energy
nterpolation form of this element as

W ρ,γ
(
ρ

(e)
1 , . . . , ρ(e)

m , γ (e), v
)

= W ρ

(
ρ

(e)
1 , . . . , ρ(e)

m , γ (e)v
)

− W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , γ (e)v
)

+W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , v
)
, (43)

here γ (e)
∈ [0, 1] is an interpolation factor, and W L ,ρ is the stored-energy function for isotropic linear elastic

aterials, which is given by

W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , v
)

= µρ(ρ(e)
1 , . . . , ρ(e)

m )ε(v) : ε(v) +
3κρ(ρ(e)

1 , . . . , ρ(e)
m ) − 2µρ(ρ(e)

1 , . . . , ρ(e)
m )

6

(
trε(v)

)2
,

(44)

here ε is the linearized strain tensor. In the above expression, µρ and λρ are the bulk and shear moduli interpolated
rom m candidate materials,

µρ(ρ(e)
1 , . . . , ρ(e)

m ) =

m∑
i=1

wi (ρ
(e)
1 , . . . , ρ(e)

m )µi and κρ(ρ(e)
1 , . . . , ρ(e)

m ) =

m∑
i=1

wi (ρ
(e)
1 , . . . , ρ(e)

m )κi , (45)

here µi and κi are respectively the shear and bulk moduli for material i .
In the energy interpolation form (43), the interpolation factor γ (e) is defined using a smooth Heaviside function

s

γ (e)(ρ(e)
1 , . . . , ρ(e)

m ) =

tanh(β1ρ0) + tanh
[
β1

(
(
∑m

ı=1 ρ
(e)
i )p

− ρ0

)]
tanh(β1ρ0) + tanh

[
β1
(
1 − ρ0

)] , (46)

where β1 is a sufficiently large number (e.g., β1 = 500) and ρ0 is a threshold. By definition, γ (e) can effectively
distinguish between solid and void elements. If

(∑m
ı=1 ρ

(e)
i

)p
< ρ0, γe → 0 and, according to (43), the behavior

f element (e) is described by an isotropic linear elastic material W L ,ρ . When
(∑m

ı=1 ρ
(e)
i

)p
> ρ0, γe → 1 and,

ccording to (43), the behavior of element (e) is described by the true stored energy function W ρ .
To simplify the expression, we realize that, for all γ ∈ [0, 1], W L ,ρ

(
ρ

(e)
1 , . . . , ρ(e)

m , v
)
−W L ,ρ

(
ρ

(e)
1 , . . . , ρ(e)

m , γ v
)

(1 − γ 2)W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , v
)

. We then obtain the simplified form of W ρ,γ as

W ρ,γ
(
ρ

(e)
1 , . . . , ρ(e)

m , γ (e), v
)

= W ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , γ (e)v
)

+

(
1 − (γ (e))2

)
W L ,ρ

(
ρ

(e)
1 , . . . , ρ(e)

m , v
)

=

m∑
i=1

[
wi (ρ

(e)
1 , . . . , ρ(e)

m )Wi

(
C(γ (e)v)

)]
+

(
1 − (γ (e))2

)
W L ,ρ

(
ρ

(e)
1 , . . . , ρ(e)

m , v
)
.

(47)
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.3. VEM approximation of the potential energy functional: material and energy interpolation schemes

Having introduced the material interpolation and the energy interpolation schemes to account for multiple
yperelastic materials under large deformations, the next step is to introduce the VEM approximation of the potential
nergy functional of the discretized system.

For a given discretization Ωh and a set of design variables ρ1, . . . , ρm , we first assume exact integration within
ach element and write down the potential energy function Πh of the discrete system as

Πh(ρ1, . . . , ρm, γ , vh) =

∑
E (e)∈Ωh

ˆ
E (e)

W ρ,γ
(
ρ

(e)
1 , . . . , ρ(e)

m , γ (e), vh

)
dX −

ˆ
Γ t

h

t · vhdS

=

∑
E (e)∈Ωh

[ m∑
i=1

wi (ρ1, . . . , ρm)
ˆ

E (e)
Wi

(
C(γ (e)vh)

)
dX

+

(
1 − (γ (e))2

)ˆ
E (e)

W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , vh

)
dX

]
−

ˆ
Γ t

h

t · vhdS,

(48)

here γ is a vector collecting γ (e) from all elements in the discretization.
In order to construct VEM approximations to the above potential energy functional, a crucial step is to

pproximate the following integrals over each element,ˆ
E (e)

Wi

(
C(γ (e)vh)

)
dX and

ˆ
E (e)

W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m , vh

)
dX. (49)

Following the concept of “consistency” and “stability” decomposition, we introduce the following VEM
pproximation of the first integral in (49) asˆ

E (e)
Wi

(
C(γ (e)vh)

)
dX ≈ |E (e)

|Wi

(
C(γ (e)Π∇

E (e) vh)
)

+

(
γ (e)

)2

2
αE (e),i (γ

(e)Π∇

E (e)vh)Sh,E (e)

(
vh − Π∇

E (e)vh, vh − Π∇

E (e) vh

)
.
= U (e)

i

(
γ (e), vh

)
, (50)

here we recall that the stability parameter for the i th material αE (e),i is evaluated as:

αE (e),i (γ
(e)Π∇

E (e) vh) =
1
4

tr
[ ∂2Wi

∂F∂F

(
C(γ (e)Π∇

E (e)vh)
)]

, (51)

according to expressions (31) or (33). To simplify expressions, we use U (e)
i to denote the VEM approximation of

the strain energy of element (e) associated with the i th material in the remainder of this section.
Similarly, the second integral in (49) is approximated asˆ

E (e)
W L ,ρ

(
ρ

(e)
1 , . . . , ρ(e)

m , vh

)
dX ≈

[
|E (e)

|W L ,ρ
(
ρ

(e)
1 , . . . , ρ(e)

m ,Π∇

E (e) (vh)
)

+
αE (e),L (ρ(e)

1 , . . . , ρ(e)
m )

2
Sh,E (e)

(
vh − Π∇

E (e)vh, vh − Π∇

E (e) vh

)]
.
= U (e)

L

(
ρ

(e)
1 , . . . , ρ(e)

m , vh

)
, (52)

here the stability parameter αE (e),L is computed as the normalized trace of the elasticity tensor for isotropic linear
lastic materials as

αE (e),L (ρ(e)
1 , . . . , ρ(e)

m ) =
1
2
κρ(ρ(e)

1 , . . . , ρ(e)
m ) +

7
6
µρ(ρ(e)

1 , . . . , ρ(e)
m ). (53)

o simplify expressions, we denote the above VEM approximation (52) as U (e)
L in the remainder of this section.

With the VEM approximations of the two integrals in (49), the VEM approximation of the potential energy
V E M
unctional Πh , which is denoted Πh , is given by
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Π V E M
h

(
ρ1, . . . , ρm, γ , vh

)
=∑

E (e)∈Ωh

{ m∑
i=1

[
wi (ρ

(e)
1 , . . . , ρ(e)

m )U (e)
i

(
γ (e), vh

)]
+

(
1 − (γ (e))2

)
U (e)

L

(
ρ

(e)
1 , . . . , ρ(e)

m , vh

)}
− ⟨t, vh⟩h, (54)

here ⟨t, v⟩h is the VEM approximation of the external energy [50].
We remark that, instead of using the above VEM approximation of the potential energy, one can also adopt a

inite Element (FE) approximation as described in the Appendix. By comparing the expressions for the potential
nergy using a lower-order VEM (54) and a lower-order FEM (89), we notice that to compute the potential energy
f the multi-material system, the VEM approximation requires a total of m+1 evaluations (since ∇Π∇

E vh is constant
or each element domain E), whereas the FEM approximation needs a total of (m + 1) × N Q

E evaluations, with m
he total number of candidate materials and N Q

E the total number of numerical integration points in element domain
E . Note that the potential energy and its linearizations need to be evaluated multiple times at each optimization
tep; thus, the fewer functional evaluations needed for the VEM (for grids other than triangular/tetrahedral) can
ead to considerable computational cost savings. In the meantime, we also note that the above discussions assume
EM approximation with full integration. One can also apply FEM approximation with reduced integration [79] to
chieve a similar computational cost as the VEM approximation.

.4. VEM-based multi-material topology optimization formulation to maximize equilibrating potential energy

The first topology optimization formulation considered in this work aims to maximize the potential energy of
he structure at its equilibrium state, which corresponds to maximizing the overall stiffness of the structure [70,73,
0–82]. The specific form of the objective function is given as:

J
(
ρ1, . . . , ρm

)
= −Π V E M

h

(
ρ1, . . . , ρm, γ , uh

(
ρ1, . . . , ρm

))
, (55)

here Π V E M
h is the VEM approximation of the potential energy introduced in (54).

In order to compute the sensitivity of the objective function, we need to compute the sensitivity of the potential
nergy with respect to the filtered design variable ρ

(e)
i as

∂Π V E M
h

∂ρ
(e)
i

=
∂Π V E M

h

∂w j

∂w j

∂ρ
(e)
i

+
∂Π V E M

h

∂γ (e)

∂γ (e)

∂ρ
(e)
i

+
∂Π V E M

h

∂uh

∂uh

∂ρ
(e)
i

=

m∑
j=1

[
U (e)

j +

(
1 − (γ (e))2

)∂U (e)
L

∂w j

] ∂w j

∂ρ
(e)
i

+

[ m∑
k=1

wk
∂U (e)

k

∂γ (e) − 2γ (e)U (e)
L

]∂γ (e)

∂ρ
(e)
i

.

(56)

n the above relation, the third term in the intermediate step vanishes because uh satisfies the equilibrium condition.
According to the expressions of U (e)

i and U (e)
L , we have the following relations:

∂U (e)
L

∂w j
= |E (e)

|

[
µ jε(Π∇

E vh) : ε(Π∇

E vh) +
3κ j − 2µ j

6

(
trε(Π∇

E vh)
)2]

+

[1
4
κ j +

7
12

µ j

]
Sh,E (e) (vh − Π∇

E (e)vh, vh − Π∇

E (e) vh); (57)

∂U (e)
j

∂γ (e) =

[
|E (e)

|
∂W j

∂F

(
C(γ (e)Π∇

E (e)vh)
)

+
(γ (e))2

2
Sh,E (e) (vh − Π∇

E (e) vh, vh − Π∇

E (e) vh)
∂αE (e), j

∂F
(γ (e)Π∇

E (e)vh)
]

: ∇

(
Π∇

E vh

)
+γ (e)αE (e), j (γ

(e)Π∇

E (e) vh)Sh,E (e) (vh − Π∇

E (e) vh, vh − Π∇

E (e)vh); (58)

nd

∂γ (e)

∂ρ
(e)
i

= p
( m∑

j=1

ρ
(e)
i

)p−1
{β1

[
tanh

(
β1

((∑m
j=1 ρ

(e)
j

)p
− ρ0

))2

− 1
]

tanh
(
β (ρ − 1)

)
− tanh

(
β ρ

) }
; (59)
1 0 1 0
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here the derivative of αE (e), j with respect to F can be obtained using the explicit expressions for αE (see (31) and
(33)) following the same procedure as in Section 3 for computing the derivatives of the stored-energy functions.
In addition, the expression for ∂w j/∂ρ

(e)
i depends on the material interpolation scheme considered. Using the

DMO-type material interpolation scheme (see Section 5.1), we have

∂w j

∂ρ
(e)
i

=

⎧⎪⎪⎨⎪⎪⎩
p
[(

ρ
(e)
i

)p−1∏m
l=1,l ̸=i

(
1 − (ρ(e)

l )p
)]

if i = j,

−p
[(

ρ
(e)
i

)p−1(
ρ

(e)
j

)p ∏m
l=1,l ̸=i,l ̸= j

(
1 − (ρ(e)

l )p
)]

if i ̸= j.
(60)

Once the sensitivity of the potential energy with respect to the filtered design variable ρ
(e)
i is computed, the

sensitivity of the objective function J is given by

∂ J

∂ρ
(e)
i

= −

∑
k

(Pi )k,e
∂Π V E M

h

∂ρ
(k)
i

, (61)

where we recall that (Pi )k,e is the (k, e)th component of the filter matrix Pi associated with the i th candidate material.

.5. VEM-based multi-material topology optimization formulation for compliant mechanism design

To demonstrate the generality of the proposed VEM-based multi-material topology optimization formulation, we
lso consider compliant mechanism designs [13,83–85]. The objective function of such problems has the form

J
(
ρ1, . . . , ρm

)
= LT U(ρ1, . . . , ρm), (62)

here U represents the nodal displacement vector of uh , and L is a constant vector whose components are 1 at
utput DOFs and 0 everywhere else.

The sensitivity of J with respect to the filtered design variable ρ
(e)
i can be computed through the chain rule and

adjoint method [64] as follows:

∂ J

∂ρ
(e)
i

= λT
[∂Fint

∂w j

∂w j

∂ρ
(e)
i

+
∂Fint

∂γ (e)

∂γ (e)

∂ρ
(e)
i

]
, (63)

where Fint
.
= ∂Π V E M

h /∂U stands for the internal force vector of the VEM approximation and λ is the adjoint vector
obtained by solving the following linear system of equations:

λ = −K−1
t (ρ1, . . . , ρm, γ , uh)L, (64)

where Kt
.
= ∂2Π V E M

h /∂U∂U is the tangent stiffness matrix evaluated at the converged solution uh . Expressions for
the derivatives in (63) can be computed in the similar fashion as those in the preceding subsection.

Once the sensitivity of the objective function with respect to the filtered design variable is obtained, that of the
objective function with respect to the design variable is given by

∂ J

∂ρ
(e)
i

=

∑
k

(Pi )k,e
∂ J

∂ρ
(k)
i

. (65)

. A modified ZPR design update scheme

The ZPR design update scheme, proposed in [7] for multi-material topology optimization, is capable of updating
n arbitrary number of volume constraints while preserving the efficiency and robustness of the popular Optimality
riteria (OC) method, which is limited to a single volume constraint. In particular, the ZPR design update scheme

eparates the updates of the design variables associated with each volume constraint and performs the updates
ndependently. The original ZPR update scheme only allows for the optimization problems whose objectives always
ave negative sensitivities. However, for the multi-material topology optimization considered in this work, positive
ensitivities can occur. Thus, an improved version of the ZPR design update scheme is introduced to allow for
ositive sensitivities, while preserving all the features of the original ZPR update scheme.
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Inspired by [86], our idea is to introduce the following modified optimization problem of (34)

min
ρ1,..., ρm

⎡⎣J
(
ρ1, . . . , ρm

)
−

∑
j=1

µ j
∑
i∈G j

VT
i ρi

⎤⎦
s.t. g j (ρ1, . . . , ρm

)
=

∑
i∈G j

VT
i ρi − V j

max ≤ 0, j = 1, . . . , nc,

ρmin ≤ ρ
(e)
i ≤ 1, i = 1, . . . , m, and e = 1, . . . , M,

with uh
(
ρ1, . . . , ρm

)
= arg min

vh
Π V E M

h

(
ρ1, . . . , ρm, vh

)
,

(66)

where µ j , j = 1, . . . , nc are positive constants. Notice that in the modified problem, we augment the objective with
a linear term on the design variables. In the following discussion, we denote the modified objective as Ĵ .

It can be shown that the original and the modified optimization problems are equivalent in the sense that they
possess the same local minima. In fact, the Karush–Kuhn–Tucker (KKT) conditions of the original optimization
problem (34) take the following form:

∂ J

∂ρ
(e)
i

+ φMi V
(e)
i − φ(e)

i
+ φ

(e)
i = 0, (67)∑

i∈G j

VT
ρi − V j

max = 0, j = 1..., nc, (68)⎧⎨⎩φ(e)
i

> 0 if ρ
(e)
i = ρmin

φ(e)
i

= 0 if ρ
(e)
i > ρmin

and

⎧⎨⎩φ
(e)
i > 0 if ρ

(e)
i = 1

φ
(e)
i = 0 if ρ

(e)
i < 1,

(69)

here Mi denotes the volume constraint index associated with the i th material (e.g, if material 3 is assigned to the
st volume constraint, then M3 = 1), and thus φMi is the Lagrange multiplier associated with material i . On the
ther hand, the KKT conditions for the modified problem are identical to the original problem except for the first
ondition:

∂ J

∂ρ
(e)
i

− µMi V
(e)
i + (φ̂Mi )V

(e)
i − φ(e)

i
+ φ

(e)
i = 0, (70)

where we recall that µMi is a positive constant. By comparing the KKT conditions of the original and modified
optimization problems, we conclude that both problems always have the same local minima. Moreover, if the optimal
Lagrange multiplier of volume constraint j for a given local minimum is φ j in the original problem, then the
corresponding Lagrange multiplier for the volume constraint in the modified problem is φ̂ j

= φ j
+ µ j .

Having introduced the modified optimization problem, we then perform sequential approximation on the modified
objective Ĵ . As we will demonstrate later, by properly choosing the constants µ j , the convexity of the sequential
approximation can be ensured. Once the solution converges to a KKT point of the modified problem, by the
equivalence of the KKT conditions between the original and modified problems, we ensure that this converged
solution is a KKT point of the original problem as well.

Following the original derivation of ZPR design update scheme, at each optimization step k, we introduce an
approximation of the objective function Ĵ at the optimization step k over yi (ρi ) (y(e)

i (ρ(e)
i ) .

= (ρ(e)
i )−α , i = 1, . . . , m

nd e = 1, . . . , M) as follows,

Ĵ
(
ρ1, . . . , ρm

)
≈ Ĵ k (ρ1, . . . , ρm

)
= Ĵ

(
ρk

1, . . . , ρ
k
m

)
+

m∑
i=1

[
∂ Ĵ
∂yi

(ρk
1, . . . , ρ

k
m)
]T [

yi (ρi ) − yi (ρk
i )
]

= Ĵ
(
ρk

1, . . . , ρ
k
m

)
+

m∑
i=1

[̂
bi (ρk

1, . . . , ρ
k
m)
]T [yi (ρi ) − yi (ρk

i )
]
, (71)

here α is an arbitrary, strictly positive number, ρk
i and yi (ρk

i ) are the vectors of design and intervening variables atˆ k k
the kth optimization step for material i . Additionally, bi (ρ1, . . . , ρm) is a constant vector associated with material



16 X.S. Zhang, H. Chi and G.H. Paulino / Computer Methods in Applied Mechanics and Engineering 370 (2020) 112976

i

w
d
c

t

N

T

, whose eth component is given as follows:

b̂(e)
i (ρk

1, . . . , ρ
k
m) =

∂ Ĵ

∂y(e)
i

(ρk
1, . . . , ρ

k
m) = −

(ρ(e),k
i )1+α

α

∂ Ĵ

∂ρ
(e)
i

(ρk
1, . . . , ρ

k
m)

= −
(ρ(e),k

i )1+α

α

[
∂ J

∂ρ
(e)
i

(ρk
1, . . . , ρ

k
m) − µMi V

(e)
i

]
. (72)

To ensure convexity of the subproblem, the constant µMi needs to satisfy

−
(ρ(e),k

i )1+α

α

[
∂ J

∂ρ
(e)
i

(ρk
1, . . . , ρ

k
m) − µMi V

(e)
i

]
> 0, (73)

for all the components of material i and all the materials.
Using the approximated objective function Ĵ k , a subproblem is formulated at step k as

min
ρ1,...,ρm

Ĵ k (ρ1, . . . , ρm
)

= min
ρ1,...,ρm

{ m∑
i=1

[̂
bi (ρk

1, . . . , ρ
k
m)
]T [yi (ρi ) − yi (ρk

i )
]}

s.t.
∑
i∈G j

VT
i ρi − V j

max ≤ 0, j = 1, . . . , nc,

ρ
(e),k
i,L ≤ ρ

(e)
i ≤ ρ

(e),k
i,U , i = 1, . . . , m, and e = 1, . . . , M,

with y(e)
i (x (e)

i ) = (ρ(e)
i )−α, i = 1, . . . , m, and e = 1, . . . , M,

(74)

here ρ
(e),k
i,L = max(ρmin, ρ

(e),k
i − move) and ρ

(e),k
i,U = min(1, ρ

(e),k
i + move) are the upper and lower bounds of the

esign variables, which are determined through the prescribed move limit, move. In the above subproblem, the
onstant term in Ĵ k has been omitted.

By introducing a set of Lagrange multipliers φ̂ j,k, j = 1, . . . , nc, the Lagrangian of the subproblem in Eq. (74)
akes the following form:

L
(
ρ1, . . . , ρm, φ̂1,k, . . . , φ̂nc,k)

=

m∑
i=1

[̂
bi (ρk

1, . . . , ρ
k
m)
]T yi (ρi ) +

nc∑
j=1

φ̂ j,k

⎛⎝∑
i∈G j

VT
i ρi − V j

max

⎞⎠ . (75)

otice that the above Lagrangian is a separable function for each volume constraint, namely,

L
(
ρ1, . . . , ρm, φ̂1,k, . . . , φ̂nc,k)

=

nc∑
j=1

L j (ρ1, . . . , ρm, φ̂ j,k)
=

nc∑
j=1

⎧⎨⎩∑
i∈G j

[[̂
bi (ρk

1, . . . , ρ
k
m)
]T yi (ρi ) + φ̂ j,kVT

i ρi

]
− φ̂ j,k V j

max

⎫⎬⎭ . (76)

he KKT conditions of the subproblem (74) require that

L
∂ρ

(e)
i

=
L j

∂ρ
(e)
i

= −αb̂(e)
i (ρk

1, . . . , ρ
k
m)
(
ρ

(e)
i

)(−α−1)
+ φ̂ j,k V

(e)
i = 0, ∀i ∈ G j , (77)

and
L

∂φ̂ j,k
=

∑
i∈G j

VT
i ρi − V j

max = 0, j = 1, . . . , nc. (78)

From (77), we can write the solution ρ
(e) ∗

i as

ρ
(e) ∗

i = Q(e),k
i

(
φ̂ j,k)

=

[
αb̂(e)

i (ρk
1, . . . , ρ

k
m)

j,k (e)

] 1
1+α

, ∀i ∈ G j . (79)

φ̂ V i
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y further incorporating the lower and upper bounds, ρk
i,L, and ρk

i,U, of the design variables, the expression for ρ
(e) ∗

i
s modified as

ρ
(e) ∗

i = Q(e),k
i

(
φ̂ j,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(e),k
i,L if

[
αb̂(e)

i (ρk
1,...,ρk

m )

φ̂ j V (e)
i

] 1
1+α

< ρ
(e),k
i,L[

αb̂(e)
i (ρk

1,...,ρk
m )

φ̂ j,k V (e)
i

] 1
1+α

if ρ
(e),k
i,L ≤

[
αb̂(e)

i (ρk
1,...,ρk

m )

φ̂ j,k V (e)
i

] 1
1+α

≤ ρ
(e),k
i,U

ρ
(e),k
i,U if

[
αb̂(e)

i (ρk
1,...,ρk

m )

φ̂ j,k V (e)
i

] 1
1+α

> ρ
(e),k
i,U

, ∀i ∈ G j . (80)

lugging in the expressions for b̂(e)
i given by (72) and introducing the damping factor η = 1/(1+α), we can further

implify ρ
(e) ∗

i as

Q(e),k
i

(
φ̂ j,k)

=⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(e),k
i,L if

[
ρ

(e) k
i

φ̂ j,k (− ∂ J/∂ρ
(e)
i (ρk

1,...,ρk
m )

V i
+ µ j )

]η

< ρ
(e),k
i,L[

ρ
(e) k
i

φ̂ j,k (− ∂ J/∂ρ
(e)
i (ρk

1,...,ρk
m )

V i
+ µ j )

]η

if ρ
(e),k
i,L ≤

[
ρ

(e) k
i

φ̂ j,k (− ∂ J/∂ρ
(e)
i (ρk

1,...,ρk
m )

V i
+ µ j )

]η

≤ ρ
(e),k
i,U

ρ
(e),k
i,U if

[
ρ

(e) k
i

φ̂ j,k (− ∂ J/∂ρ
(e)
i (ρk

1,...,ρk
m )

V i
+ µ j )

]η

> ρ
(e),k
i,U

,

∀i ∈ G j . (81)

According to (73), at optimization step k, if we choose the constants µ j , j = 1, . . . , nc, such that

µ j
≥ max

(
0,

∂ J/∂ρ
(e)
i (ρk

1, . . . , ρ
k
m)

V i

)
∀e and ∀i ∈ G j , (82)

e can guarantee that the subproblem is convex and function Q(e),k
i

(
φ̂ j
)

is a real-valued function for any 0 < η ≤ 1.

emark 6.1. The choice of constant µ j can be flexible as long as it satisfies Eq. (82). For the topology optimization
roblem (34) considered in this work, we find that the performance of the modified ZPR is insensitive to different
hoices of µ j . Thus, µ j is chosen based on the following rule throughout this work:

µ j
= max

(
0, max

i∈G j

(
max

e

(∂ J/∂ρ
(e)
i (ρk

1, . . . , ρ
k
m)

V i

)))
. (83)

By plugging (80) back into Eq. (78), we have

∂L
∂φ̂ j,k

=

∑
i∈G j

M∑
e=1

V
(e)
i ρ

(e) ∗

i

(
φ̂ j,k)

− V j
max = 0, j = 1, . . . , nc, (84)

here V
(e)
i stands for the eth component of Vi . Notice that the j th equation of the above system is an algebraic

equation of φ̂ j,k only. Therefore, we have a decoupled system with respect to the volume constraints in which each
optimal Lagrange multiplier φ can be solved for independently by their corresponding equations.

Finally, the update of the eth component of design variables ρk+1
i then take as the optimal solution in the

subproblem (74) as:

ρ
(e),k+1
i = Q(e),k

i

(
φ̂ j,k

∗

)
, ∀i ∈ G j . (85)

We note that the update in (85) is decoupled in the sense that the updates of the design variables associated with
each volume constraint only depends on the associated optimal Lagrange multiplier φ̂ j ∗. This feature, together with
the feature of decoupled solution of φ̂ j ∗ in (84), enables us to update the associated design variables of each volume
constraint in parallel throughout the entire optimization process — an attractive feature of the ZPR design update
scheme to promote increased efficiency in large-scale multi-material topology optimization problems.
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Fig. 1. Illustrations of (a) the patch of elements for element (e); (b) the refinement strategy for a quadrilateral mesh; and (c) the refinement
trategy for a CVT mesh.

. Adaptive mesh refinement and coarsening for the VEM-based multi-material topology optimization

Topology optimization considering multiple hyperelastic materials is a computationally intensive task because, at
very optimization iteration, we need to solve a nonlinear system of equations to obtain the equilibrium displacement
eld. To overcome this challenge, we introduce an adaptive refinement and coarsening strategy for the proposed
EM-based multi-material topology optimization, such that we refine the regions where the material densities have
igh spatial variations and coarsen the regions where the material densities have low spatial variations. This idea
ully exploits the advantages of VEM in handling arbitrary element shapes.

We remark that, in this work, the adaptive refinement and coarsening is only performed between optimization
teps and the indicators for both adaptive refinement and coarsening are based on the density fields. Other indicators,
uch as those based on displacements and strains [87], could also be adopted.

.1. Adaptive refinement

The adaptive refinement process is driven by an indicator defined in the following manner. We denote Θ as the
indicator vector whose eth component, Θ (e), is the indicator for element (e). To define Θ (e), we first introduce ωe

s the patch of elements which are connected to element (e), as illustrated in Fig. 1(a). Assuming ωe contains Nωe

lements, we then define the indicator Θ (e) for element (e) as

Θ (e)
= max

i∈{1,...,m}

{
1

Nωe

[ ∑
E (k)∈ωe

(
ρ

(k)
i − ρ

(e)
i

)2] 1
2
}
. (86)

At a given optimization step, once we compute the indicator Θ, we can mark the set of elements whose indicators
are above θ max(Θ), where θ is a user-defined threshold that is set to be 0.1 throughout this work.

We consider the following two adaptive refinement strategies depending on the type of initial mesh. For
quadrilateral meshes, we adopt an adaptive refinement scheme as shown in Fig. 1(b). In this scheme, each marked
element is subdivided into several quadrilateral elements by connecting the midpoint of each edge to its centroid.
For polygonal (e.g., CVT) meshes, we use the adaptive refinement scheme shown in Fig. 1(c), where we subdivide
each marked element with n vertices into n +1 CVT elements using Lloyd’s algorithm. The initial seeds of Lloyd’s
algorithm are placed at the centroid of the element as well as the midpoints of the lines connecting the centroid
and the vertices [39].

To effectively store the hierarchical information in the mesh refinement, we adopt the PolyTree data representation
introduced in [39,41], as illustrated in Fig. 2. To distinguish the elements with different levels of refinement, we
categorize the mesh into different levels. For instance, all the elements in the initial mesh belong to level 0, and
an element obtained after two subdivisions belongs to level 2. Moreover, at a given level, if an element is being
subdivided, we refer to it as a “parent” element and we refer to those elements obtained from the subdivision as
the “children” elements, which belong to the next level. With this data representation, for any given element in the
mesh, we can easily access which refinement level it belongs to and which element is its parent, both of which are

essential to the adaptive coarsening scheme that is described in the following subsection.
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Fig. 2. A schematic illustration of two successive refinement processes on a quadrilateral mesh and the corresponding PolyTree data
epresentation of element numbering.

.2. Adaptive coarsening

Adaptive coarsening is essential for computational efficiency, because the design field is constantly changing
hroughout the optimization, and regions that were once fully dense may become void in later steps and no
onger need such a refined discretization. To that end, this work also introduces an adaptive coarsening strategy
n conjunction with the adaptive refinement.

The basic idea of the adaptive coarsening is to de-refine the “children” elements with the same densities back
o their parents. If we identify that all of the “children” elements of a “parent” element have the same (under a
olerance, e.g. 10−4) material density (namely, filtered design variable2 ) for every candidate material, we then
eplace these “children” elements with the “parent” one. In practice, we start this process for all the elements in

2 Notice that, in the adaptive coarsening scheme, we monitor the filtered design variables instead of the unfiltered design variable because
we do not want the coarsening to affect the density filter.
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t

Fig. 3. A schematic illustration of two successive coarsening processes on a quadrilateral mesh and the corresponding PolyTree data
representation of element numbering.

the highest level of the Polytree data structure, and gradually move down in terms of the level until we reach level
0 (i.e., the coarsest level). An illustration of this coarsening procedure is provided in Fig. 3.

7.3. Mapping of design variables

A crucial step to ensure the effectiveness of the adaptive refinement and coarsening schemes are the mapping of
design variables. In this work, the mapping of the displacement field is not needed because the adaptive refinement
and coarsening are done only between optimization steps.

We map the design variables as follows. In the adaptive refinement, if we subdivide an element into a set of
“children” elements, the unfiltered design variables of those “children” elements are set to be equal to the unfiltered
design variable of the “parent” element. Similarly, when a set of “children” elements is coarsened to their “parent”
element, the unfiltered design variable of the coarsened element is taken to be the unfiltered design variables of
hose “children” elements.
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We use ρnew
i to denote the vector of mapped unfiltered design variables for material i on the new mesh. Once

new
i is obtained, the vector of filtered design variables for material i , denoted as ρnew

i , is computed as

ρnew
i =

(
Pnew

i

)
ρnew

i , (87)

where Pnew
i is the density filter matrix formed on the new mesh for material i .

8. Numerical examples

In this section, we present four numerical examples (three for maximizing the potential energy at equilibrium
states and one for compliant mechanism design) to demonstrate the efficiency and effectiveness of the proposed
VEM-based topology optimization formulation considering multiple types of hyperelastic materials (i.e., modified
Saint Venant-Kirchhoff model, compressible Ogden model, and porous elastomers with Neo-Hookean matrix).

Throughout this section, the Modified Generalized Displacement Control (MGDC) approach [88] is adopted
to perform nonlinear structural analysis at each optimization step with an initial load factor of ∆λ = 0.5. The
convergence tolerance of the norm of the residual vector is set to be 10−3. If the solution cannot converge at a
certain optimization step, we then recursively reduce the initial load factor ∆λ by half and perform the structural
analysis until convergence is achieved. In terms of the optimization parameters, we set the move limit and damping
ratio in the modified ZPR design update scheme to be move = 0.1 and η = 0.5, respectively. To calculate
the energy interpolation factor γe, the threshold ρ0 is chosen according to the following continuation formula:
ρ0 = ρ

0
+ (3 − p)(ρ0 − ρ

0
)/2, where ρ0 (taken to be 0.008 here) and ρ

0
(taken to be 0.004 here) are the upper

nd lower bounds of ρ0 and p is the SIMP penalization parameter. According to the above formula, as p gradually
ncreases from 1 to 3, the threshold ρ0 reduces linearly from its upper bound ρ0 to its lower bound ρ

0
. A continuation

f the density filter radius R is adopted as well. For the first three examples, the filter radius for each candidate
aterial is initially set as R = R0 and is then reduced every 5 optimization steps by ∆R = −7R0/160 starting

rom optimization step 80 until R reaches R = R0/8. For the fourth example, the filter radius for each candidate
aterial is initially set as R0 = 0.125 and is then reduced every 5 optimization steps by ∆R = −0.004 starting

rom optimization step 70 until R reaches R = 0.045. All the numerical examples use uniform initial guesses for
ach of the candidate materials (for example, if the total volume fraction is

∑nc
j=1 V j

max = 0.4 and a total of m = 4
aterials are assumed, the initial design variable value for each material is 0.1).3

.1. Example 1: cantilever beam design with Ogden-based model subjected to end load

In the first example, we consider the design of a cantilever beam subjected to a downward end load F . The
imensions, boundary, and loading conditions of the design domain are shown in Fig. 4(a). To investigate the
nfluence of the load level on the layout of the final design, three values of F are considered, namely, F = 10, 20,
nd 40. Additionally, to showcase the capability of the proposed material interpolation scheme in handling any
umber of candidate hyperelastic materials, this example considers three design cases with different numbers
i.e., two, four, and eight) of one-term (i.e. NO = 1) Ogden materials and assigns one individual volume constraint
o each candidate material. The material parameters (mα , Young’s Modulus E0, and Poisson’s ratio v) for each
andidate material associated with each design case are given in Table 1. The nonlinear elastic response of those
andidate materials (i.e., stretch vs. first PK stress) under uniaxial tension is shown in Fig. 4(b)–(d).

The additional setup of parameters for the optimization and adaptive VEM analysis in this example are
ummarized as follows. In terms of optimization, the initial filter radius R0 is chosen to be R0 = 0.125 for all
he candidate materials and we adopt a continuation scheme on SIMP penalization parameter p as follows: (i) For
he case of two candidate materials, p is initially set to 1 and is increased by ∆p = 0.15 every optimization step
ntil p = 3 is reached; (ii) for the case of four candidate materials, p is initially set to 1 and is increased by
p = 0.2 every 2 optimization steps until p = 3 is reached; and (iii) for the case of eight candidate materials, p

s initially set to 1 and is increased (starting at optimization step 10) by ∆p = 0.1 every 2 optimization steps until
p = 3 is reached. We remark that less aggressive continuation schemes on p are adopted for design cases with more
andidate materials because, similar to the original DMO scheme, the proposed DMO-type material interpolation

3 The examples in this section are carried out on a desktop computer with an Intel(R) Xeon(R), 3.00 GHz processor (8 cores), and 256
GB of RAM running Matlab R2018b.
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Fig. 4. (a) Dimensions, load, and boundary conditions of the design domain for Example 1. The nonlinear elastic responses (i.e., stretch
vs. first PK stress) of (b) two candidate Ogden materials under uniaxial tension; (c) four candidate Ogden materials under uniaxial tension;
(d) eight candidate Ogden materials under uniaxial tension. The material properties of those materials in (b) – (d) are provided in Table 1.

Table 1
Properties of Ogden-based candidate materials and their individual volume fractions considered in Example 1.

# of Mats. Mat. 1 Mat. 2 Mat. 3 Mat. 4 Mat. 5 Mat. 6 Mat. 7 Mat. 8

Two

m1 2 −2
E0 4000 4000
v 0.35 0.35
V j

max 0.25 0.25

Four

m1 −4 −2 2 4
E0 5000 3500 3500 5000
v 0.35 0.35 0.35 0.35
V j

max 0.125 0.125 0.125 0.125

Eight

m1 −4 −3 −2.5 −2 2 2.5 3 4
E0 5000 4500 4000 3500 3500 4000 4500 5000
v 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
V j

max 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
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Table 2
Summary of the total computational time and the final objective values obtained by
the improved ZPR (Section 6) and MMA over 200 optimization steps and under
F = 10.

# of candidate Mats. Two Four Eight

ZPR
Wall clock time (s) 9.44 19.74 40.52
Final objective 3.80 3.39 3.46

MMA
Wall clock time (s) 398.15 570.41 1937
Final objective 3.77 3.40 3.44

Table 3
Summary of the total computational time and the final objective values obtained by VEM with an
adaptively refined and coarsened mesh and a uniform mesh with F = 10 4.

# of candidate Mats. Two Four Eight

VEM + adap. refinement & coarsening
Wall clock time (s) 8237 6736 12 424
Final obj. 3.80 3.39 3.46

VEM + uniform mesh
Wall clock time (s) 18 647 30 500 56 964
Final obj. 3.82 3.39 3.52

scheme (i.e., Eq. (40)) exhibits slow convergence in the first few optimization steps for uniform initial guesses when
the number of candidate materials is large.

In terms of the adaptive VEM analysis, we initially discretize the design domain into a mesh of 104 × 26
structured quadrilateral elements and adopt the adaptive refinement and coarsening scheme introduced in Section 7
as the optimization progresses. For design cases with two, four, and eight candidate materials, the adaptive
refinement starts at optimization step 20, 30, and 50, respectively, and is performed every 10 optimization steps
afterward based on the criteria described in Section 7. The adaptive coarsening is performed every 3 optimization
steps after the first adaptive refinement. Additionally, for all the design cases considered, we set the maximum
refinement level to 1 before optimization step 130 and then increase the allowable refinement level to 2 afterwards.

Before we present the results for all the load levels, we first restrict our attention to the smallest load level,
F = 10, and showcase the efficiency and effectiveness of the modified ZPR update scheme in Section 6 by
comparing its performance with that of the commonly-used MMA method [65]. The comparison of the total
computational time spent by the modified ZPR design update scheme and the MMA, together with the final values of
the objective function, are summarized in Table 2 for the design cases with two, four, and eight candidate materials,
respectively. We observe that, while achieving almost identical objective values, the ZPR, as a tailored design update
scheme for multi-material topology optimization, is more computationally efficient than MMA (which is a general-
purpose design update scheme); and the speedup increases as the number of candidate materials increases. This
is because the update of the design variables associated with each candidate material (and its individual volume
constraint) is separated and performed in parallel in the ZPR update scheme, whereas the update of all the design
variables for all the candidate materials are done together in MMA.

Furthermore, we also demonstrate the computational efficiency of the adaptive refinement and coarsening scheme
by comparing its performance with that of a uniform mesh. Similarly, we set the load level to be F = 10.
For a fair comparison, we consider a uniform discretization of the design domain into a 416 × 104 structured
quadrilateral mesh, which results in the same “design resolution” as the adaptively refined and coarsened one with
an initial 104 × 26 grid and two refinement levels. In Table 3, we present the computational time spent by the
VEM analysis on the adaptively refined and coarsened mesh and the uniform one together with the final objective
values obtained in the different design cases. We can see that, by employing the proposed adaptive mesh refinement
and coarsening scheme, the total computational time in the VEM analysis is significantly reduced without loss of
accuracy. As illustrated in Fig. 5 together with several snapshots of the deformed meshes in a few optimization
steps, the considerable computational time reduction is mainly caused by the greatly reduced number of nodes in

4 The computation in forming the nonlinear system of equations (i.e. stiffness matrix and internal force vector) and computing the
sensitivities are paralleled in 4 cores throughout the optimization process. The inverse is performed using the backslash operator in Matlab.
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Fig. 5. (a) Evolution of the number of nodes in the adaptively refined & coarsened (AR&C) and the uniform meshes throughout the
optimization history for design cases with two, four, and eight candidate materials and F = 10. (b) Several snapshots of the deformed
adaptively refined & coarsened mesh in the design case with eight candidate materials.

Fig. 6. Comparison of final topologies obtained on an adaptively refined & coarsened mesh and a uniform mesh considering two (top row),
four (middle row), and eight (bottom row) candidate materials under F = 10. The adaptively refined & coarsened and the uniform meshes

ave the same spatial resolution. The CPU comparison of results with and without mesh adaptivity are provided in Table 3.

he adaptively refined and coarsened mesh as compared to the uniform mesh throughout the optimization history.
dditionally, we plot in Fig. 6 the final topologies for the cases of two, four, and eight candidate materials. We
bserve that, for the designs in all the cases, the stiffer materials are placed in the outer regions of the designs while
he more compliant ones are placed toward the middle region. In addition, the materials that are stiff in tension are
laced in the upper part and the ones that are stiff in compression are assigned to the lower part. Those observed
eatures suggest that the proposed multi-material topology optimization framework and the improved ZPR update
cheme can effectively distribute materials in the optimized configuration according to their respective nonlinear
ehavior. Moreover, according to the comparisons in the figure, both the adaptively refined and coarsened mesh and
he uniform mesh produce almost identical designs as well as material distributions when there are two candidate
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Fig. 7. Deformed configurations of optimized designs obtained with two, four, and eight candidate materials under higher load levels
(i.e., F = 20 and 40).

aterials. However, as the number of candidate materials increases to four and eight, the adaptively refined and
oarsened mesh and the uniform mesh produce distinct structural layouts as well as different material distributions,
ut have almost identical final objective values. This suggests that, because this optimization problem with a large
umber of materials is highly non-convex, the two cases converge to different local minima.

Having demonstrated the computational efficiency of the modified ZPR design update scheme (Section 6) and
he adaptive mesh refinement and coarsening strategies (Section 7), we now present in Fig. 7 the final topologies
btained from the proposed VEM-based multi-material topology optimization framework under higher load levels
i.e., F = 20 and 40) when considering multiple Ogden materials (i.e., two, four, and eight). As shown from
he figure, the proposed topology optimization framework is able to capture the influence of the load level on the
nal topologies when multiple hyperelastic materials are present. Additionally, the deformed configurations of the
esigns obtained for cases of F = 40 indicate the multi-material topology optimization framework together with
he energy interpolation scheme [6] is robust and able to simulate large deformation responses well.

.2. Example 2: double clamped beam design with Ogden-based and Saint-Venant models

In the second example, we consider the double clamped beam design, which is a benchmark problem in the
iterature of topology optimization under large deformations [30]. As illustrated in Fig. 8(a), the design domain of
imensions 4 × 1 is fixed on both sides and is subjected to a downward distributed load of magnitude τ in the
iddle of its top side.
The setups of the optimization and VEM analysis of this example are described as follows. In the optimization,

e initialize p as 1 and then increase it by ∆p = 0.2 every 2 optimization steps until we reach p = 3. The
nitial filter radius is set to R = 0.1. In the VEM analysis, we consider the left half of the design domain because
0
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Fig. 8. (a) Dimensions, load, and boundary conditions of the design domain for Example 2. (b) A statistics of the CVT mesh considered.
(c) The nonlinear elastic response (i.e., stretch vs. first PK stress) of the four candidate materials (i.e., two Ogden and two Saint-Venant
materials) under uniaxial tension. The material properties of the candidate materials are provided in Table 4.

Table 4
Properties of the candidate materials and the volume fractions in each constraint scenario considered
in Example 2.

Mat. 1 Mat. 2 Mat. 3 Mat. 4

Type Ogden Ogden Saint-Venant Saint-Venant
E0 3000 3000 3200 4000
v 0.35 0.35 0.35 0.35
m1 −2 3
Constraint scenario 1 (V j

max) 0.06 0.14/3 0.14/3 0.14/3
Constraint scenario 2 (V j

max) 0.06 0.14

of structural symmetry and discretize it with an initial CVT mesh of 5000 polygonal elements. The statistics of
the initial mesh are summarized in Fig. 8(b). Beginning from optimization step 30, the adaptive refinement and
coarsening schemes are performed every 10 and 3 optimization steps, respectively. The maximum refinement level
is taken to be 1 before optimization step 160 and to be 2 afterwards.

To showcase the capability of the proposed material interpolation scheme in handling a combination of different
types of hyperelastic materials, this example considers four candidate materials — two characterized by the Ogden
model and the other two by the Saint-Venant model. The material parameters of these four candidate materials
are summarized in Table 4 and their stress–stretch relationships under uniaxial tension are plotted in Fig. 8(c).
Additionally, two volume constraint scenarios are studied. The first scenario assigns an individual volume constraint
to each candidate material (i.e., nc = 4) and, in the second scenario, material # 1 is assigned with an individual
volume constraint and materials # 2, 3, and 4 are assigned with a collective volume constraint (i.e., nc = 2). The

etails of these two volume constraint scenarios are summarized in Table 4.
We consider two values of load level τ in this example, namely τ = 10 and τ = 300. For both smaller and larger τ

alues, Fig. 9(a) and (b) plot the optimized designs obtained with constraint scenario 1 (i.e., each candidate material
s assigned with an individual volume constraint) and scenario 2 (i.e., material # 1 is assigned with an individual
onstraint and materials # 2–4 are assigned with a collective one), respectively. Additionally, Fig. 10(a) and (b)
espectively show the convergence history of the objective functions in constraint scenarios 1 and 2 for the larger τ

alue. From both figures, we conclude that the proposed framework can deliver smooth convergence and is capable
f capturing the influence of the load level in the design when various types of candidate materials are present.
or the smaller τ value, because all the candidate materials behave in the linear elastic regime, the framework
roduces designs which resemble the ones obtained by topology optimization considering multiple linear elastic
aterials. On the other hand, for the larger τ value, because each candidate material behaves in their respectively

onlinear regime, the framework yields designs which are distinctive from the ones obtained by considering linear

lastic materials. The designs obtained with the larger τ are less prone to snap-through behavior [30]. Moreover, the
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Fig. 9. Deformed configurations of the final designs under different load levels (i.e., τ = 10 and τ = 300) and volume constraint settings
(i.e., nc = 2 and nc = 4 according to Table 4).

Fig. 10. The convergence history of the objective function with snapshots of the intermediate designs for (a) the case of τ = 300 and
nc = 2; and (b) the case of τ = 300 and nc = 4.

results demonstrate that the proposed framework is able to distribute each candidate material in the most appropriate
locations of the final design according to their respective nonlinear behavior. For instance, because candidate material
#1 is the stiffest in compression (see Fig. 8(c)), it is assigned to the compressive members in the final designs. In
addition, because material #4 has the stiffest tensile response (see Fig. 8(c)), it is chosen in the second constraint
scenario by the proposed optimization framework among materials #2 – #4 to be assigned to the tensile members
in the final designs.

8.3. Example 3: multiple load cases design with porous elastomers

In the third example, we aim to demonstrate that the proposed framework is readily extendable to account for
multiple load cases [64,89] and other stored-energy functions derived from the homogenization theory. To that end,
we consider a design domain shown in Fig. 11(a) which are subjected to a set of two linearly independent load
cases. Five porous elastomers with different porosities are considered as candidate materials in this design example,
whose stored-energy function is given in (11). The material parameters and the nonlinear elastic response of the 5
porous elastomers are shown in Table 5 and Fig. 11(c), respectively. In this design example, each candidate material
is assigned to an individual volume constraint of V j

= 0.04, which leads to a total of volume fraction of 20%.
max
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Fig. 11. (a) Dimensions, load, and boundary conditions of the design domain for Example 3. (b) A statistics of the CVT mesh considered.
(c) The nonlinear elastic response (i.e., stretch vs. first PK stress) of the 5 candidate porous elastomers under uniaxial tension. The material
properties and porosities of the porous elastomers are provided in Table 5.

Table 5
Properties of the candidate porous elastomers considered in Example 3.

# of candidate Mats. Mat. 1 Mat. 2 Mat. 3 Mat. 4 Mat. 5

µ 2000 2000 2000 2000 2000
f0 0.25 0.3 0.35 0.4 0.45

Similarly to the second design example, parameter p is initialized from 1 and is then increased by ∆p = 0.2
very 2 optimization steps until reaching p = 3; and R0 = 0.1. Regarding the VEM analysis, we consider the left
alf of the design domain and introduce an initial CVT discretization with 5000 elements. The statistics of the CVT
esh are summarized in Fig. 11(b). Beginning from optimization step 30, the adaptive refinement and coarsening

chemes are performed every 10 and 3 optimization steps, respectively. The maximum refinement level is taken to
e 1 before optimization step 160 and to be 2 afterward.

In Fig. 12(a), the final design is depicted together with its deformed configuration under two load cases.
dditionally, Fig. 12(b) shows the convergence history of the objective function for this design problem. From
oth figures, we can conclude that the proposed framework is effective in handling multiple porous elastomers with
wide range of porosities, accounting for multiple load cases, and converging smoothly.

.4. Example 4: compliant mechanism design with Ogden-based model

In the last design example, we deploy the proposed framework to compliant mechanism design (see Section 5.5)
o demonstrate its generality. The domain and boundary conditions of the design problem are shown in Fig. 13(a).
n input force of magnitude F = 340 is applied to the middle of the left edge of the design domain, and we

im to maximize the output displacement in the negative y direction. The stiffness of the springs kin and kout are
hosen as kin = 800 and kout = 30, respectively. Because of symmetry, only the lower half design domain is
onsidered and is discretized with an initial CVT mesh of 6000 elements, whose statistics are listed in Fig. 13(b).
our Ogden materials are considered, whose material parameters and nonlinear elastic responses under uniaxial

ension are shown in Table 6 and Fig. 13(c). In this design example, a total volume constraint of 20% is assigned to
ll the materials. During optimization, we fix the SIMP penalization parameter to be 3. Beginning from optimization
tep 40, the adaptive refinement is performed every 10 steps and the adaptive coarsening is performed every 3 steps.
hroughout the optimization process, we allow for one refinement level.5

5 We only allow for one refinement level in order to avoid the formation of very thin hinge connections in the final design with a
high-resolution mesh. To address this issue, the robust formulation [90] could be adopted.
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Fig. 12. (a) Undeformed and deformed configurations of the final design under two load cases. (b) Convergence history of the objective
functions with snapshots of the intermediate designs.

Fig. 13. (a) Dimensions, load, and boundary conditions of the domain for the compliant mechanism design. (b) A statistics of the CVT
esh considered. (c) The nonlinear elastic response (i.e., stretch vs. first PK stress) of the 4 candidate Ogden-based materials. The material

roperties are provided in Table 6.

Table 6
Properties of the candidate Ogden materials considered in Example 4.

# of candidate Mats. Mat. 1 Mat. 2 Mat. 3 Mat. 4

m1 −2 2 4 6
E0 3000 3000 3000 3000
v 0.35 0.35 0.35 0.35

The final compliant mechanism design is shown in the undeformed and deformed configurations in Fig. 14(a)
and (b), respectively. It can be seen from the figure that the framework assigns materials #1 and #4, which are
the stiffest in compression and tension, respectively (see Fig. 13(c)), to those members in the final design that are
under compression and tension, respectively. Materials #2 and #3 are not assigned in the final design, because they
are less efficient in terms of material properties (thus less favorable under one global volume constraint setting).



30 X.S. Zhang, H. Chi and G.H. Paulino / Computer Methods in Applied Mechanics and Engineering 370 (2020) 112976
Fig. 14. The final compliant mechanism design obtained from the proposed work shown in (a) undeformed configuration and (b) deformed
configuration. The magnitude of the output displacement Uout is 0.3 in the final design.

We also note that all the candidate materials have the same Young’s modulus and Poisson’s ratio, therefore, a
multi-material formulation considering linear elasticity cannot assign these four materials properly because they
behave identically in the linear elastic regime. This example demonstrates that the proposed framework is effective
in distributing multiple candidate hyperelastic materials in proper regions in the final design according to their
nonlinear elastic behaviors.

9. Concluding remarks

This work presents a VEM-based multi-material topology optimization framework considering finite defor-
mations. A material interpolation scheme is presented, which is shown to be effective in handling an arbitrary
number of hyperelastic materials characterized by various stored-energy functions. We demonstrate three nonlinear
material models, which are the modified Saint Venant-Kirchhoff model, the compressible Ogden model, and porous
elastomers with Neo-Hookean matrix. An energy interpolation scheme is introduced, which extends the one by
Wang et al. [6] to account for multiple candidate materials. This energy interpolation scheme is shown to alleviate
the excessive distortion and numerical instability of low-density elements and to stabilize the convergence of the
structural solver under large deformations. The proposed framework introduces adaptive VEM and modified ZPR
(with parallel computing) to improve the computational efficiency of both the nonlinear structural analysis and
optimization updates. On the structural analysis side, the lower-order VEM, which does not need any numerical
integration to construct the element-level stiffness matrix and internal force vector, is adopted in approximating and
solving the nonlinear structural systems. Compared to the FEM approximation, the VEM can effectively reduce the
total number of function evaluations when forming the multi-material system and, comparatively, more reduction can
be achieved with more candidate materials. The VEM has a unique ability to handle arbitrary element shapes, which
is exploited to perform adaptive mesh refinement and coarsening strategies by reducing the size of the structural
system of equations while maintaining the spatial resolution of the design. On the optimization side, the modified
ZPR design update scheme which handles both negative and positive sensitivities of the objective function is derived
in the present framework to efficiently update the design variables associated with each constraint in parallel.

Four design examples are presented to showcase the effectiveness and efficiency of the proposed framework
in various design scenarios and with different types of hyperelastic materials. In the first example, we consider a
cantilever design with various numbers of Ogden-based materials and demonstrate that the proposed framework
is robust with respect to large deformations. In the meantime, this example also showcases the computational

efficiency of both the modified ZPR design variable update scheme and the adaptive mesh refinement and coarsening
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trategies by comparing them with the MMA and a uniform mesh, respectively. For example, when eight candidate
aterials are present, around 40 times and 5 times speedup are achieved in the design update and the nonlinear

tructural analysis, respectively, without loss of accuracy. In the second example, we consider the classical double
lamped beam design with four candidate materials: two Ogden-based materials and two Saint-Venant materials.
he results indicate that the proposed framework can capture the influence of different load levels on the final
esign, and the proposed material interpolation scheme can simultaneously work with different types of hyperelastic
andidate materials. In the third example, we consider a multiple-load-case design problem with five porous
lastomers of various porosities. The results suggest that the proposed framework can effectively handle not only
ultiple materials with classical hyperelastic models but also multiple soft composite materials whose stored-energy

unctions are derived from the homogenization theory. In the last example, a compliant mechanism design is
resented with four Ogden-based materials and a global volume constraint, showcasing the effectiveness of the
roposed framework in properly distributing multiple hyperelastic materials in the final design according to their
espective nonlinear elastic behavior under large deformations.
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ppendix. FE approximation of the potential energy functional in (48)

Instead of using the virtual element approximation of the potential energy, one can also adopt a FE approximation
f the potential energy functional (48). The material interpolation and energy interpolation schemes introduced in
ection 5.2 are both valid in either case.

More specifically, if we were to approximate (48) with FEM, the approximation takes the following form:

Π F E M
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here
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E (·) stands for the numerical integration on a generic element E and ⟨t, vh⟩h is the standard FE
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