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A B S T R A C T   

In order to capture nonlinear crack tip behavior and account for mixed-mode fatigue crack 
growth, a cohesive zone based fatigue crack growth model is proposed in conjunction with the 
Park-Paulino-Roesler (PPR) traction-separation relationship. The model clearly defines five 
stages during arbitrary fatigue loading: softening, unloading, reloading, contact, and complete 
failure. The cohesive traction-separation relationship is based on the PPR fracture potential, 
while the fatigue damage is accumulated by introducing two conjugate damage measures. One 
damage measure is associated with the rate of separation, while the other is related to the rate of 
traction (or local stress). Additionally, two model constants are introduced to control the normal 
contact condition, which may be associated with physical conditions such as crack closure, crack 
face roughness, and oxidation of fracture surface. Furthermore, computational simulations of the 
proposed fatigue crack growth model are performed for a simple mode-I test, double cantilever 
beam test, modified mixed-mode bending test, and three-point bending test. The observed 
computational results lead to stable and consistent fatigue crack growth.  

1. Introduction 

Fatigue damage may lead to unexpected failure phenomena, such as those observed in infrastructure, because the driving force for fatigue 
crack growth can be significantly lower than the required driving force under monotonic loading condition. Fatigue crack growth behavior is 
usually described by a class of relationships that are based on the original phenomenological Paris equation [28], which is the relationship 
between the fatigue crack growth rate (da dN/ ) and the amplitude of the applied stress intensity factor ( K ), i.e., =da dN C K/ ( )C

1 2. We 
denote a as the crack length, N as the number of cycles, and C1 and C2 as the parameters associated with material properties, geometry, 
environment, frequency, etc. Based on linear elastic fracture mechanics, fatigue crack growth has been extensively investigated for various 
engineering applications, e.g., [45,25,34,41,48,49,14,24,55,7]. However, the original Paris relation has limitations, especially when ideal 
conditions, including linear elastic fracture mechanics, small-scale yielding, long cracks, etc., are not satisfied [54]. 

As an alternative to the standard Paris relation, the cohesive zone modeling approach has been employed to predict fatigue crack 
growth, e.g. [9,26,37,36,50,4]. However, previous fatigue crack growth models with the cohesive zone modeling approach display 
several limitations, as discussed in Section 2. For instance, to account for arbitrary loading amplitude and frequency, some of the 
model parameters need to be calibrated in relation with the number of cycles and loading ratios. Although fatigue damage may occur 
when the local stress is lower than the cohesive strength, most models are unable to introduce fatigue damage (without defining the 
cohesive surface). This is because damage evolution is generally associated with the rate of cohesive separation along the potential 
fracture surface, and thus damage evolution is not possible unless cohesive surface elements are inserted in the domain. 
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In the present study, a mixed-mode cohesive zone based fatigue crack growth model is proposed in order to account for arbitrary 
quasi-static cyclic loading history. The proposed model is based on two damage measures associated with the rate of separation and 
the rate of traction, which provide flexibility in capturing fatigue crack growth behavior. The proposed model is evaluated by solving 
mode-I and mixed-mode examples with low-cycle fatigue cases. The remainder of the paper is organized as follows. Section 2 briefly 
reviews previous fatigue crack growth models, which are based on the cohesive zone modeling approach, while addressing their 
limitations. Next, the proposed fatigue crack growth model is presented in Section 3, and computational examples are provided in 
Section 4. Finally, the paper is summarized with key findings in Section 5. 

2. Related works: previous fatigue crack growth models 

To account for nonlinear fracture process in fatigue cracking growth, the cohesive zone model has been employed [9,37]. Usually, fatigue 
crack growth is represented by defining a fatigue damage variable (D) in the cohesive zone model. The rate of fatigue damage is generally 
defined using two approaches, i.e., the envelope load damage models, and the hysteresis unloading–reloading damage models. In the 
envelope load models, e.g., [36,20,10,11], only the maximum load of each load cycle is computed when the damage evolution is directly 
defined on the basis of the number of cycles (dD dN/ ). Additionally, some of the envelope load models provide direct relations to the Paris law 
parameters [47,17,12]. 

Alternatively, the damage evolution (D) during cyclic loading is directly computed in conjunction with an unloading–reloading relation in 
the cohesive zone model, which is the choice of present study. In the literature, few unloading–reloading models were proposed in relation 
with fatigue damage evolution, e.g., [9,26,37]. If one does not consider an unloading–reloading relation, for example, the cohesive traction 
may increase during unloading, as described in Path ① of Fig. 1. In order to account for fatigue crack growth, Andres et al. [9] employed a 
linear unloading–reloading relation, which points towards the origin (Path ② in Fig. 1), in conjunction with conventional continuum plas-
ticity. Deshpande et al. [13] modified the unloading–reloading slope (or stiffness), which resulted in residual opening associated with oxide 
layer of new surface (Path ③ in Fig. 1). Notice that both models provide the same unloading path as the reloading path, while the envelope of 
the traction-separation relation does not change. Thus, fatigue damage cannot be introduced within an elastic domain. 

In order to demonstrate hysteresis during unloading and reloading, the reloading stiffness is generally degraded with a fixed un-
loading stiffness. For example, Nguyen et al. [26] decreased the reloading stiffness based on the rate of local separation while fixing 
the unloading stiffness (i.e. linear to the origin), as shown in Path ④ of Fig. 1. Then, the reloading stiffness was approximated with 
respect to the number of cycles under the uniform separation condition. Later, Maiti and Geubelle [22,23] extended the model by 
Nguyen et al. [26] to have two internal parameters which were calibrated on the basis of the classical Paris’ fatigue curve. Nojavan 
et al. [27] calibrated fatigue parameters using simple mode-I and mode-II tests, and a cycle jump strategy is employed to investigate 
high-cycle fatigue examples. 

Alternatively, the rate of damage is defined in terms of the rate of separation ( ), and a damage variable is introduced in the 
traction-separation relationship. Roe and Siegmund [37] proposed an expression for the fatigue damage evolution using the rate of 
the effective separation in conjunction with the exponential potential-based model [53]. The slope of an unloading path was selected 
as the initial slope of the derivatives of the exponential potential, which was similar to the model by Deshpande et al. [13]. Similarly, 
Ural et al. [50] also defined fatigue damage evolution based on the rate of separation, and developed a damage-based cohesive 
traction-separation relationship. One should note that fatigue damage was not introduced when a separation was smaller than a 
critical separation whose cohesive traction corresponds to the cohesive strength. This is because the initial ascending region in the 
traction-separation relationship is considered as artificial compliance. 

Based on the damage evolution expression by Roe and Siegmund [37], Jha and Banerjee [18] demonstrated typical stress-life 
responses under variable amplitude loads, and Li et al. [21] investigated fatigue crack growth under mixed-mode loading conditions. 
To control damage rate according to a current damage state, Bouvard et al. [6] and Roth et al. [39] introduced power-law terms in the 
damage evolution. Additionally, because of high computational cost for fatigue analysis, fatigue damage per each cycle is ap-
proximated by introducing an extrapolation technique [5,6,16] and a frequency-dependent material parameter [42]. Fatigue crack 
growth simulation has been extensively performed, and the aforementioned references are only an incomplete sample. 

In most previous cohesive zone based fatigue models, fatigue damage is accumulated only when cohesive separation changes. 
Therefore, when cohesive separation is not specified in a continuum domain, the damage accumulation is not possible. For instance, 
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Fig. 1. Illustration of various unloading–reloading relations.  
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although local stress reaches 50% of cohesive strength for millions of times, no fatigue damage is expected if no cohesive surface 
exists in the finite element discretization. In addition, when the fatigue damage evolution is evaluated in conjunction with the 
number of cycles, some of the model parameters may be recalibrated with respect to the loading frequencies and/or magnitudes. In 
order to tackle these limitations of previous models, in this study, a mixed-mode fatigue crack growth model is proposed on the basis 
of the rate of separation and the rate of traction, as described in the following section. 

3. Cohesive zone-based fatigue crack growth 

A mixed-mode fatigue crack growth model is proposed in conjunction with a potential-based cohesive zone model and an un-
loading–reloading relationship. The evolution of fatigue damage is introduced on the basis of five separation states and two damage measures 
for each fracture mode. In the following subsections, a potential-based cohesive zone model is briefly reviewed. Then, separation states are 
described using separation variables, and damage measures are introduced in conjunction with the rate of separation and the rate of traction 
(or stress). Finally, a mixed-mode fatigue traction-separation relationship is presented for arbitrary fatigue loading. 

3.1. PPR cohesive zone model: A brief overview 

A potential-based cohesive zone model provides a consistent traction-separation relationship for cohesive fracture [33,31,29]. 
The potential ( ) for cohesive fracture is expressed as 

= + + + + +m n( , ) min( , ) 1 1 | | | |
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where n and t are normal and tangential separations, respectively, and · is the Macaulay bracket. Due to the nature of the 
potential, the derivatives of the potential with respect to normal and tangential separations lead to the normal and tangential 
cohesive tractions, i.e., 
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Characteristic parameters ( m n, , , , , , ,n t n t ) are evaluated on the basis of cohesive fracture properties such as fracture energy 
( ,n t), cohesive strength ( ,max max), initial slope, and shape of the traction-separation relationship. When the normal fracture 
energy ( n) is different from the tangential fracture energy ( t), the energy constants ( ,n t) are given as 

= =
m n

( ) , ( ) for ( )n n

m
t t

n

n t

n t
n t

t n
t n

(4) 

For the same fracture energy, the energy constants are expressed as 
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The nondimensional exponents (m n, ) are determined as 
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where the initial slope indicators ( ,n t) correspond to the ratio of a critical crack opening width to a final crack opening width (i.e., 
= /n nc n and = /t tc t). Note that a critical crack opening width ( ,nc tc) is separation, which results in the maximum cohesive 

traction, i.e. the cohesive strength ( ,max max). A final crack opening width ( ,n t), also named as a complete separation, is separation 
where the cohesive traction becomes zero. The final crack opening widths ( ,n t) are given as 
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In addition, and are shape parameters, which handle the shape of the traction-separation relation, e.g. linear, convex, or concave. 
The normal and tangential traction-separation relationships [Eqs. (2) and (3)] are defined within the normal and tangential 

interaction regions, respectively. When separation is outside of the interaction region, the corresponding cohesive traction is zero. 
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The normal and tangential interaction regions are defined using the complete separation ( ,n t) and the conjugate complete se-
paration ( ¯ , ¯n t). One notes that ¯n and t̄ are evaluated by solving the following nonlinear equations: 
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and 
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respectively. 
The potential-based model accounts for cohesive failure under monotonic loading (or separation) condition. Thus, energy dissipation 

during cyclic loading is considered in conjunction with a traction-separation relationship under the unloading and reloading conditions. 

3.2. Separation states 

A mixed-mode fatigue traction-separation relationship is defined on the basis of five separation states and two damage measures for each 
fracture mode. The five separation states consist of softening, unloading, reloading, contact, and complete failure conditions. The softening 
condition is defined when a material displays progressive separation due to monotonic external boundary conditions. If one releases the 
external boundary conditions, the separation monotonically decreases. Such condition is defined as the unloading condition. When the 
external boundary conditions are applied again, the separation increases, which leads to the reloading condition. Additionally, the complete 
failure condition is defined when the cohesive traction becomes zero, while the mode-I contact condition occurs when the crack face closes. 

Under mixed-mode, the five separation states are determined by means of the following separation variables: complete separa-
tions ( ,n t), conjugate complete separations ( ¯ , ¯n t), boundary separations ( ,nb tb), normal contact separation ( no), and rate of 
separations ( ,n t). The normal interaction region is defined within 0 n n and | | ¯t t [see Fig. 2(a)], while the tangential 

Fig. 2. Separation states for (a) normal interaction region, and (b) tangential interaction region. Full softening (FS), partial softening (PS), full 
unloading–reloading (FUR), and partial unloading–reloading (PUR) are defined in the cohesive interaction regions. 

H. Choi, et al.   Engineering Fracture Mechanics 240 (2020) 107234

4



interaction region corresponds to 0 ¯n n and | |t t [see Fig. 2(b)]. When the separation is outside of the interaction region, 
the cohesive traction becomes zero, i.e., no bearing capacity, which leads to the complete failure condition. The normal complete 
failure condition is when n n or | | ¯t t ; the tangential complete failure condition is when ¯n n or | |t t . 

The boundary between the softening condition and the unloading–reloading condition is identified by introducing normal and 
tangential boundary separations ( ,nb tb), which correspond to the red thick solid lines in Fig. 2. The boundary separation is initially 
zero, and monotonically increases up to the complete separation based on the damage measure associated with the rate of separation 
(D D,n t ), i.e. = Dnb n n and = Dtb t t . Note that Dn and Dt increase from zero to one through damage accumulation, and thus nb
and tb monotonically increase from zero to n and t, respectively. 

The separation state nb n n provides the normal softening condition in the normal interaction region, while the state 
| |tb t t leads to the tangential softening condition in the tangential interaction region, as shown in Fig. 2. The softening 

condition consists of the two parts, full softening (FS) and partial softening (PS). The FS condition is when both normal and tangential 
separation states are under the softening condition. The normal (or tangential) PS condition indicates that the normal (or tangential) 
separation state is under the softening condition while the other state is under the unloading–reloading condition. The normal PS 
region is where the separation state is nb n n and 0 | |t tb; the tangential PS region is where the separation state is 

no n nb and | |tb t t . 
For the unloading–reloading conditions, the separation states in the normal and tangential interaction regions correspond to 

no n nb and 0 | |t tb, respectively. The positive rate of separation indicates the reloading condition ( > >0, 0n t ), 
while the negative rate of separation represents the unloading condition ( < <0, 0n t ). The unloading–reloading condition is 
divided into the full unloading–reloading (FUR) and the partial unloading–reloading (PUR), as in the softening condition. When both 
normal and tangential separation states are under the unloading–reloading condition, the corresponding state is defined as FUR. The 
separation state is PUR when either normal or tangential separation state is under the unloading–reloading condition while the other 
state is under the softening condition. 

Finally, the separation, which provides closed crack face, is defined as the normal contact separation ( no). When current normal 
separation is smaller than the contact separation ( n no), i.e., dark gray region in Fig. 2(a), the current state represents the contact 
condition for the normal interaction region. Under the normal contact condition, the tangential separation state is identified ac-
cording to the current tangential separation ( t), as shown in Fig. 2(b). 

3.3. Evolution of fatigue damage 

Fatigue damage accumulation is represented by introducing two damage measures, i.e. one damage associated with the rate of 
separation ( ,n t) and the other related to the rate of traction (T T,n t) for each fracture mode. Most previous researchers (e.g.,  
[37,2,5]) used a damage measure based on the rate of separation. The present study introduces the traction damage measure based on 
the rate of traction, and proposes that the two damage measures are separately evolved. Because of two types of damage measure, one 
may expect to have more flexibility on representing fatigue crack growth behavior under various loading conditions. 

The fatigue damage measures are initially zero, and evolve based on the following assumptions.  

• The increment of damage is associated with the increment of deformation and stress.  
• Higher change of deformation and stress results in higher accumulation of fatigue damage.  
• Fatigue damage is inverse proportional to fatigue resistance.  
• No damage accumulation occurs when the rate of separation or the rate of traction (or stress) is negative.  
• Under the normal contact condition, no damage evolution is considered along the normal direction. 

Based on the above assumptions, the four damage measures (D D D D, , ,n t n
T

t
T) monotonically increase from zero to one during 

cyclic loading. The evolution of damage (D D,n t ) associated with the rate of separation is defined as 

=D
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n

n n

n n n

(11) 
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/ for reloading

0 for unloading
t

t t

t t t
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where n and t are the non-dimensional separation rate resistance parameters for fatigue damage along the normal and tangential 
directions, respectively. Similarly, the rate of the traction (or stress) damage measure (D D,n

T
t
T) is defined as 

=D T / for reloading
0 for softening, unloading or contactn
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T
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and 

H. Choi, et al.   Engineering Fracture Mechanics 240 (2020) 107234

5



=D T/ for reloading
0 for softening or unloadingt

T t t
T

max

(14) 

where n
T and t

T are the non-dimensional stress rate resistance parameters for fatigue damage along the normal and tangential 
directions, respectively. The fatigue resistance parameters ( , , ,n t n

T
s
T) are associated with material properties, which control 

fatigue crack growth. Higher values of the fatigue resistance parameters correspond to more fatigue resistance, and thus slower 
fatigue crack growth is expected. 

3.4. Fatigue traction-separation relationship 

In order to represent damage accumulation for arbitrary cyclic loading, a mixed-mode cohesive traction-separation relationship is 
proposed on the basis of the two damage measures for each fracture mode. The damage (D D,n t ) due to the rate of separation is 
associated with the unloading–reloading hysteresis relationship, while the damage (D D,n

T
t
T) due to the rate of traction is related to 

the envelop of the softening curve. Figs. 3(a) and (b) show the schematics of the normal and tangential traction-separation re-
lationships according to the separation states. First, for the softening condition, the normal and tangential traction-separation re-
lationships are obtained directly from the derivatives of the potential, which are expressed as 

=T D( , ) ( , ) (1 )n n t
n t

n
n
T

(15) 

and 

=T D( , ) ( , ) (1 ),t n t
n t

t
t
T

(16) 

respectively. Note that Dn
T and Dt

T are initially zero (i.e. no damage), and do not change under the softening condition ( = =D D 0n
T

t
T ). 

Thus, under the monotonic separation, the traction-separation relations [Eqs. (15) and (16)] are the same as the derivatives of the 
potential [Eqs. (2) and (3)]. However, during cyclic loading (i.e. under the reloading condition), the traction damage measure 
increases from zero to one, which leads to the decrease of cohesive traction under the softening condition. 

For the unloading and reloading conditions, the normal and tangential fatigue traction-separation relationships are defined as 

Fig. 3. Schematics of the fatigue model for (a) normal traction-separation relationship, and (b) tangential traction-separation relationship.  
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and 

=T D( , ) ( , ) (1 )t n t
nb tb

t
t
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tb (18) 

which result in linear unloading and nonlinear reloading relations, as shown in Fig. 3. For the unloading condition, no damage is 
accumulated, and thus all damage measures are constant during the unloading condition. Then, the unloading path is linear from the 
boundary separation to the contact separation for the normal traction [Fig. 3(a)], while the path is linear from the boundary se-
paration to zero for the tangential traction [Fig. 3(b)]. The contact separation is defined by introducing a contact separation ratio (Cs), 
while the corresponding traction, named as contact traction, is specified using a contact traction ratio (Ct). Note that Cs is the ratio of 
the contact separation to the boundary separation while Ct is the ratio of the contact traction to the boundary traction. The contact 
traction and the boundary traction are the cohesive tractions whose corresponding separations are no and nb, respectively. The 
values of Cs and Ct can be selected from zero to one. The higher value of Cs leads to the larger contact separation. Similarly, the larger 
value of Ct results in the larger cohesive traction for the contact separation. For zero Ct and non-zero Cs, a finite separation occurs at 
the zero traction, which is similar to the previous unloading model by Deshpande et al. [13]. When both Cs and Ct are zero, the 
unloading path is linear towards the origin, which reproduces the previous unloading model by de Andres et al. [9]. Then, the normal 
unloading–reloading relationship is simplified as 

=T D( , ) ( , ) (1 )n n t
nb tb

n
n
T n

nb (19) 

which is also analogous to Eq. (18). 
For the reloading condition, the reloading stiffness monotonically decreases due to the increase of the four damage measures 

(D D D D, , ,n t n
T

t
T). The separation damage measure (D D,n t ) increases with respect to the increase of the boundary separation 

( ,nb tb), which results in the decrease of the reloading stiffness. The increase of the cohesive traction damage measure (D D,n
T

t
T) 

provides the decrease of the corresponding cohesive traction and the reloading stiffness. Note that when the separation is on the 
boundary between the softening condition and the unloading–reloading condition ( = =,n nb t tb), the cohesive traction obtained 
from the softening condition [Eqs. (15) and (16)] is the same as the cohesive traction obtained from the unloading–reloading 
condition [Eqs. (17) and (18)]. 

Under the normal contact condition, compression acts on the fracture surface. Thus, a penalty stiffness is introduced in the normal 
traction-separation relationship to prevent from material self-penetration. Additionally, a cohesive frictional-contact model, which 
accounts for the stick–slip condition, can be utilized for the tangential traction-separation relationship [3]. Finally, for the complete 
failure condition, the cohesive traction is zero. 

One should note that the normal (or tangential) separation state can be under the softening condition, while the tangential (or 
normal) separation state can be under the unloading–reloading condition, which leads to the normal (or tangential) PS and tangential 
(or normal) PUR conditions, as discussed in Section 3.2. To consistently handle PS and PUR conditions, a simple coupling procedure 
proposed by Spring et al. [46] is employed. For the normal PS and tangential PUR conditions, the normal and tangential cohesive 
tractions are given as 

=T D( , ) ( , ) (1 )n n t
n tb

n
n
T

(20) 

and 

=T D( , ) ( , ) (1 )t n t
n tb

t
t
T t

tb (21) 

For the normal PUR and tangential PS conditions, the normal and tangential cohesive tractions are expressed as 

= +T D C C
C

C( , ) ( , ) (1 ) 1
1n n t

nb t

n
n
T

t
t

s

n

nb
s

(22) 

and 

=T D( , ) ( , ) (1 )t n t
nb t

t
t
T

(23) 

The cohesive tractions for the normal and tangential PS conditions [Eqs. (20) and (23)] are equivalent to the Eqs. (15) and (16) of the 
FS conditions, while the cohesive tractions for the normal and tangential PUR conditions [Eqs. (22) and (21)] are analogous to the 
Eqs. (17) and (18) of the FUR conditions. 

In summary, when separation initially increases (softening condition), the fatigue traction-separation relationship is obtained 
from the derivative of the potential (i.e. = =D D 0n

T
t
T ). When an external force is unloaded, the cohesive traction linearly decreases 

while separation decreases. If normal separation is smaller than the contact separation, the stiffness of the traction-separation relation 
is penalized to prevent from further crack closing. For the reloading condition, the reloading stiffness decreases with respect to the 
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increase of the damage measures due to fatigue damage. When separation is greater than the boundary separation, the current state 
changes from the reloading condition to the softening condition. Because of fatigue damage under the reloading condition, the fatigue 
cohesive traction is lower than the derivative of the potential. If separation is greater than the complete separation, not only is the 
cohesive traction zero, but the damage associated with the rate of separation becomes one. We remark that one can employ the 
proposed fatigue damage evolution and unloading-reloading relationship with other cohesive zone models, which describe the en-
velope of the traction-separation relation. 

4. Numerical examples 

The proposed fatigue crack growth model is implemented in ABAQUS as a user-defined element (UEL) subroutine [1,30]. In the 
present study, cohesive surface elements are inserted along the potential crack path when the domain is discretized, which leads to 
the intrinsic cohesive zone model. In the following subsections, four computational examples are provided: simple mode-I test, double 
cantilever beam problem, modified mixed-mode bending test, and three-point bending test. A simple mode-I fracture test is in-
troduced to study the effect of model parameters on the fatigue cohesive traction-separation relation. A double cantilever beam and 
modified mixed-mode bending examples are investigated to observe fatigue crack growth behavior and to compare the proposed 
model with the Paris relation. Finally, computational simulation of a three-point bending test is compared with experimental fatigue 
testing results of concrete. 

4.1. Simple mode–I test 

Effects of the fatigue resistance parameters ( ,n n
T) and the contact separation and traction ratios (C C,s t) on a fatigue traction- 

separation relation are investigated by employing a simple mode-I fatigue test. A 0.1 m by 0.1 m square plate is loaded and unloaded 
along the vertical direction, while a cohesive surface element is inserted at the bottom of the plate. Note that this configuration 
provides a homogeneous stress state. Material properties are arbitrarily selected. The elastic modulus and the Poisson’s ratio are 
10.34 MPa and 0.3, respectively, with a unit thickness of the plate. For cohesive fracture properties, the fracture energy is 98.1 N/m, 
and the cohesive strength is 100 kPa with the shape parameter of 3. The initial slope indicator is selected as a small value (e.g. 

= 0.02n ) for numerical stability in order to reduce artificial compliance. 
The effect of the traction rate resistance ( n

T) is first investigated by applying a constant cyclic loading. Here, a constant cyclic 
loading of 5 kN is applied for twenty times under force control, and then the plate is elongated up to the complete failure under 
displacement control. The traction resistance parameter ( n

T) is selected as 100, 200 and 500 while the separation resistance para-
meter ( n ) is fixed as 10. In addition, the contact separation and traction ratios are set to be zero, i.e. =C 0s and =C 0t , which leads to 
a linear unloading towards the origin. The relation between the stress along the vertical direction and the displacement at the top of 
the plate is plotted in Fig. 4(a). The zoom of the peak load and the cyclic load regions are illustrated in Fig. 4(b). The results from the 
cyclic loading case are plotted in marked-solid lines while the result from the monotonic loading case is described in a thick solid line. 
The cyclic loading case results in lower load capacity than the monotonic loading case. In addition, the higher value of the traction 
rate resistance ( n

T) leads to the higher peak load and the higher post-peak load. 
We note that if one employs the previous fatigue models (i.e., [37,50]), the peak load and softening behavior for the cyclic loading 

case will be the same as for the monotonic loading case. This is because the previous fatigue models are unable to introduce fatigue 

Fig. 4. Effect of the traction rate resistance parameter ( n
T) on fatigue damage: (a) stress versus displacement curves, and (b) zooms of the peak load 

and the cyclic load regions. 
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damage before the local traction reaches the cohesive strength, which corresponds to the artificial compliance region in the intrinsic 
cohesive zone model. Alternatively, the fatigue damage can be introduced in the artificial compliance region using the rate of 
separation [43,40,8]. However, in the intrinsic cohesive zone model, the effect of artificial compliance on computational results 
should be generally eliminated, and thus an initial ascending slope is usually selected as a large value for numerical stability [33]. 
Then, the fatigue damage may largely depend on the artificial compliance if the damage evolution model is solely based on the rate of 
separation. Thus, fatigue damage evolution within this region should be carefully considered in conjunction with artificial com-
pliance. 

Next, the effect of the separation rate resistance parameter ( n ) is investigated by applying a constant cyclic displacement. The 
plate is elongated up to 12 mm and released to zero for twenty times, and then it is elongated up to the complete failure. The traction 
rate resistance parameter is fixed as 200 while the separation rate resistance parameter is chosen as 30, 50 and 100. The contact 
separation and traction ratios are assumed to be zero. Fig. 5 demonstrates the computational results with respect to the different 
separation rate resistances. The monotonic loading case is also included in a thick solid line for comparison purpose. The increase of 
the separation rate resistance results in higher reloading and unloading stiffness in the unloading–reloading relation under the 
constant displacement amplitude. Additionally, the stress versus displacement curves for the cyclic displacement case are lower than 
that of the monotonic loading case because of the fatigue damage. 

Finally, the effect of the contact separation and traction ratios (C C,s t) on the fatigue traction-separation relation is illustrated in  
Fig. 6. A constant cyclic displacement is applied for twenty times from zero to 12 mm, and then the plate is elongated up to complete 
failure. The fatigue separation and traction resistance parameters are selected as 30 and 200, respectively. When both contact 
separation and traction ratios are zero, the unloading path points towards the origin, as shown in Figs. 4(a) and 5. The contact 
condition is expected when the separation and traction are smaller than zero. With the non-zero contact separation ratio and the zero 
contact traction ratio [Fig. 6(a)], the contact condition occurs at zero traction with finite separation. The larger value of Cs leads to 
the increase of separation at the onset of the contact condition. Additionally, the separation at the onset of the contact condition 
increases during the cyclic displacement loading. For the zero contact separation ratio and the non-zero contact traction ratio, a 
material contact starts at zero separation with finite traction [Fig. 6(b)]. The increase of Ct results in the higher traction at the onset of 
the contact traction. For the non-zero contact separation and traction ratios, as expected, the contact condition occurs at non-zero 
separation and traction [Fig. 6(c)]. 

4.2. Double cantilever beam test 

A double cantilever beam test is employed to investigate the fatigue crack growth and to compare computational results with the 
Paris relations. The geometry of the double cantilever beam is illustrated in Fig. 7, and a cyclic load (P) of 10 kN is applied. The elastic 
modulus and the Poisson’s ratio are 70 GPa and 0.33, respectively, and the cohesive strength is 6.66 MPa. The geometry and the 
material properties are taken from an example provided by Ural et al. [50]. Additionally, the fracture energy ( n) and the cohesive 
shape parameter ( ) are selected as 800 N/m and 3, respectively. 

In computational simulation, a crack tip location is defined by employing two approaches [56]. One crack tip corresponds to the 
final crack opening width ( n), called as the macroscopic crack tip. The other location is the critical separation ( nc), named as the 
microscopic crack tip, whose cohesive traction corresponds to the maximum in the traction-separation relationship. In addition, the 
stress intensity factor (KI) is approximately calibrated on the basis of linear elastic fracture mechanics [15], which is given as 

= + + +K P
B h

a
h

h
a

a
h

12 0.673 2 0.815 0.429I
0.619 1

(24) 

where a is a crack length, and h is a height of each cantilever beam with a unit thickness (B = 1). The crack length is calculated by 

Fig. 5. Effect of the separation rate resistance parameter ( n ) on fatigue damage.  
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Fig. 6. Effect of the contact separation and traction ratios on fatigue damage: (a) non-zero contact separation ratio, (b) non-zero contact traction 
ratio, and (c) non-zero contact separation and traction ratios. 
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adding the initial crack length (a0) and the length from the macroscopic crack tip to the initial crack tip. 
Then, fatigue crack growth phenomena are simulated by changing the fatigue resistance parameters ( ,n n

T) and the cohesive 
fracture parameters ( ,n max). The separation resistance parameter ( n ) is first arbitrarily selected as 5, 10 and 20 with the given 
cohesive fracture parameters. The traction resistance parameter is fixed as infinity, which leads to no damage associated with the rate 
of traction. The relation between the microscopic crack tip position and the number of loading cycles is plotted in Fig. 8(a). The 
higher separation rate resistance parameter results in higher number of loading cycles for fatigue crack growth, as expected. Ad-
ditionally, the fatigue crack growth rate (da dN/ ) versus the stress intensity factor ( KI) curves are plotted in logarithmic scales 
[Fig. 8(b)]. The da dN/ versus KI curves shift upwards (i.e. faster fatigue crack growth rate) while the separation rate resistance 
parameter decreases. Additionally, the da dN/ versus KI curves obtained from the computational results are compared with the 
classical Paris equation. The slope (C2) is fixed as 2 for a constant traction resistance parameter, while an intercept (C1) changes with 
respect to the change of the separation resistance parameter. When the fatigue separation resistance ( n ) doubles, the constant (C1) in 

Fig. 7. Geometry of a double cantilever beam.  

Fig. 8. Effect of the fatigue separation resistance ( n ) on (a) fatigue crack growth and (b) fatigue crack growth rate.  
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the Paris equation decreases almost in half. 
Next, the traction resistance parameter ( n

T) is selected as 50, 100, and infinity while the separation resistance parameter is fixed 
as 10 with the given cohesive fracture parameters. Similarly, the increase of n

T results in slower fatigue crack growth, as shown in  
Fig. 9. For a given number of cycles, the length of the fatigue crack increases with respect to the decrease of the traction resistance 
parameter [Fig. 9(a)]. In the da dN/ versus KI relation [Fig. 9(b)], the higher value of n

T leads to the slower rate of the fatigue crack 
growth, which corresponds to the decrease of the slope (C2) in the classical Paris equation. Note that linear lines are also fitted to the 
computational results on the basis of the classical Paris equation for comparison purpose. 

The effects of the cohesive fracture parameters ( ,n max) on the fatigue crack growth rate (da dN/ ) are investigated with the fixed 
separation and traction resistance parameters (i.e. = =10, 80n n

T ). For the effect of the fracture energy, n is selected as 700 N/m, 
750 N/m and 800 N/m with the cohesive strength of 6.66 MPa. The computational results illustrate that higher fracture energy leads 
to slower fatigue crack growth rate as shown in Fig. 10(a). Basically, the slope of the da dN K/ I curve in the stable fatigue crack 
growth region decreases with respect to the increase of the fracture energy. For the smaller fracture energy, the stable fatigue crack 
growth region finishes at the relatively lower stress intensity factor. Next, the cohesive strength ( max) is selected as 5 MPa, 6.66 MPa 
and 8 MPa under the constant fracture energy of 800 N/m. Higher cohesive strength results in more resistance on the fatigue crack 
growth, as expected [Fig. 10(b)]. Therefore, in the proposed fatigue traction-separation relation, both fatigue resistance and cohesive 
fracture parameters consistently influence the fatigue crack growth rate. 

4.3. Modified mixed-mode bending test 

A modified mixed-mode bending (MMB) test is simulated to demonstrate fatigue crack growth under mixed-mode loading 

Fig. 9. Effect of the fatigue traction resistance ( n
T) on (a) fatigue crack growth and (b) fatigue crack growth rate.  
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condition. The original MMB test was proposed in [35], while a modified MMB configuration was employed to have a constant ratio 
of the normal to tangential energy release rates during fatigue crack growth [17,19]. The specimen geometry and boundary con-
ditions of the modified MMB test are illustrated in Fig. 11. The fixed displacement boundary condition is applied on the right edge, 
while cyclic loading is applied at the left-top and -bottom corners with the magnitudes of P and P, respectively. The loading ratio ( ) 
is selected as 0.07180, which leads to the same strain energy release rate for each mode [52,36,19], i.e., 

= =
+

G G Pa
BEI

3
(2 3 )

( )
I II 2

2

(25) 

where B and I are the beam thickness and the second moment of area, respectively, and E is the elastic modulus. 

Fig. 10. Change of the fatigue crack growth rate (a) the fracture energy and (b) the cohesive strength.  

Fig. 11. Geometry and boundary conditions of the modified mixed-mode bending (MMB) test.  
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The beam size is 150 × 3.12 mm with a thickness (B) of 25.4 mm, and the length of an initial notch (a0) is 35 mm. The maximum 
and the minimum values of the load (P) are 100 kN and 10 kN, respectively. The material is assumed as isotropic with the elastic 
modulus of 122 GPa and Poissons ratio of 0.25. Additionally, plane stress condition is assumed for the computational simulation. For 
the cohesive fracture parameters, the fracture energy ( ,n t) and the cohesive strength ( ,max max) are selected as 500 N/m and 
10 MPa, respectively. The initial slope indicator ( ,n t) is 0.02, while the shape parameter ( , ) is 3. Three sets of the fatigue 
resistance parameters ( , , ,n t n

T
t
T ) are employed in this study, i.e., (1) = = 20n t and = = 50n

T
t
T , (2) = = 40n t and 

= = 100n
T

t
T , and (3) = = 80n t and = = 200n

T
t
T . The contact separation and traction ratios are assumed to be 0.3 and 0.0, 

respectively. The domain is discretized using 4-node quadrilateral elements, while the cohesive elements are inserted along the 
horizontal direction. The number of continuum and cohesive elements are 28500, and 1150, respectively, and the number of nodes is 
30776. 

For the three sets of the fatigue resistance parameters, the fatigue crack growth of the modified MMB test is investigated. The 
crack tip location versus the number of loading cycles relations are plotted in Fig. 12. The crack tip location is defined by two 
different approaches, i.e., microscopic crack tip and macroscopic crack tip. The microscopic crack tip is defined by the critical 
separation ( ,nc tc), while the macroscopic crack tip is determined by the complete separation ( ,n t). Under mixed mode condition, 
the microscopic (or macroscopic) crack tip location is where either normal or tangential separation reaches to the normal or tan-
gential critical (or complete) separation, respectively. When the crack tip is defined by the critical separation, i.e., microscopic crack 
tip, the crack growth is observed from the beginning of the computation [Fig. 12(a)]. If the crack tip location is obtained from the 
complete separation [Fig. 12(b)], the crack does not propagates up to a certain number of cycles, and then relatively rapid crack 
growth is observed. As the fatigue resistance parameters increase, the number of required cycles increases, i.e., 50 cycles, 99 cycles, 
and 197 cycles, for the formation of a macroscopic crack, as expected. The increase of the fatigue resistance parameters leads to 
slower fatigue crack initiation. Additionally, more cycles are needed for fatigue crack growth according to the higher values of the 

Fig. 12. (a) Microscopic and (b) macroscopic crack tip locations according to the variation of the fatigue resistance parameters.  
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fatigue resistance parameters, as shown in the previous examples. 
Next, the computational results of the fatigue crack growth rate (da dN/ ) are compared with a modified Paris law according to the 

energy release rate [51], i.e., =da dN C G/ ( )C
1 2, where G is the change of the strain energy release rate during each cycle. Then, the 

relation between the fatigue crack growth rate and the strain energy release rate (e.g., = +G G GI II
2 2 ) is plotted in Fig. 13. 

Higher values of the fatigue resistance parameter result in slower fatigue crack growth, as expected. 

4.4. Three-point bending test 

In order to demonstrate the validity of the proposed fatigue crack growth model, a computational result is compared to the fatigue 
bending experiment performed by Shah and Kishen [44]. The test configuration of a concrete beam is shown in Fig. 14, and a cyclic load is 
applied to the beam until the complete failure. Note that a cyclic load of 0.5 kN is increased every after 500 cycles while having the constant 
minimum load of 0.2 kN. In addition, the compressive strength of concrete was 34 MPa, and the peak load under the monotonic loading was 
measured as 4.46 kN. Because other material properties of concrete are not reported in the paper, they are assumed on the basis of available 
information (e.g. peak load) and previous literature [38,32]. The elastic modulus and the Poisson’s ratio are 21 GPa and 0.25, respectively. 
For the cohesive fracture parameters, the cohesive strength is 4.6 MPa and the fracture energy is 150 N/m with the shape parameter of 5. In 
the fatigue traction-separation relation, the fatigue separation and traction resistance parameters are selected as 250 and 1650, respectively, 
with the contact separation ratio of 0.3 and the zero contact traction ratio. 

Both monotonic and cyclic loading cases are simulated. For the monotonic loading case, the peak load of the computational result is 4.46 
kN, which corresponds to the experimental result. For the cyclic loading case, the load versus crack mouth opening displacement (CMOD) 
curves are plotted in every 500 cycles up to 3000 cycles and in every 100 cycles after 3000 cycles including the last cycle before the failure, as 
shown in Fig. 15(a). The computational and experimental results demonstrate the decrease of the stiffness and the increase of a finite 
separation at the minimum load during the cyclic loading. The failure of the beam is observed at the 3.5 kN, which is lower than the peak 
load for the monotonic loading condition. Note that the failure occurs after 3256 cycles in the experiment while it occurs after 3208 cycles in 
the computation. In addition, the change of the unloading–reloading stiffness is plotted in Fig. 15(b) for both experimental and computational 
results, which displays good agreement. Note that the unloading–reloading stiffness is simply evaluated by calculating the slope from the 
minimum loading point to the maximum loading point. 

5. Conclusion 

A mixed-mode fatigue crack growth model is proposed on the basis of five separation states (softening, unloading, reloading, 

Fig. 13. Fatigue crack growth rate versus strain energy release rate according to the variation of the fatigue resistance parameters.  

Fig. 14. Geometry of a three-point bending test.  
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contact, and complete failure) and damage measures associated with local separation and stress (or traction) states. The separation 
damage measure (D D,n t ) is proportional to the rate of the separation and inversely proportional to the separation rate resistance 
parameter ( ,n t ). Similarly, the stress (or traction) damage measure (D D,n

T
t
T) is proportional to the rate of the traction and 

inversely proportional to the traction rate resistance parameter ( ,n
T

t
T). Because of the stress damage measure, fatigue damage can 

be accumulated during cyclic loading although cohesive surface elements are not inserted in the domain. Additionally, the contact 
separation and traction ratios (C C,s t) are introduced in order to define the onset of normal contact condition. The proposed model 
introduces fatigue damage before the local cohesive traction reaches the cohesive strength in the loading history. The effects of the 
fatigue resistance parameters and the cohesive fracture parameters on the fatigue traction-separation relation and the fatigue crack 
growth are investigated for both mode-I and mixed-mode examples. The computational results illustrate consistency with respect to 
the change of the fatigue resistance parameters, fracture energy and cohesive strength. The results also capture stable fatigue crack 
growth behavior represented by the Paris type relation. The effect of the fracture energy and cohesive strength on fatigue crack 
growth is investigated, and the fracture properties consistently affect the fatigue crack growth rate. Finally, a fatigue crack growth 
computation is compared with a three-point bending test of concrete, which demonstrates good agreement between computation and 
experiment. 

For the generalization of the proposed mixed-mode fatigue crack growth model, further in-depth investigation is needed. For 
example, the present study focuses on low-cycle fatigue examples, and the model is validated for a quasi-brittle material. 
Additionally, a fatigue crack path is pre-defined, and thus surface elements are inserted along the potential crack path. Some of these 
constraints should be revisited. Moreover, model parameter calibration is essential to estimate fatigue life of a structure. 
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