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Summary

We present a general framework to solve elastodynamic problems by means of
the virtual element method (VEM) with explicit time integration. In particular,
the VEM is extended to analyze nearly incompressible solids using the B-bar
method. We show that, to establish a B-bar formulation in the VEM setting, one
simply needs to modify the stability term to stabilize only the deviatoric part
of the stiffness matrix, which requires no additional computational effort. Con-
vergence of the numerical solution is addressed in relation to stability, mass
lumping scheme, element size, and distortion of arbitrary elements, either con-
vex or nonconvex. For the estimation of the critical time step, two approaches are
presented, ie, the maximum eigenvalue of a system of mass and stiffness matri-
ces and an effective element length. Computational results demonstrate that
small edges on convex polygonal elements do not significantly affect the criti-
cal time step, whereas convergence of the VEM solution is observed regardless
of the stability term and the element shape in both two and three dimensions.
This extensive investigation provides numerical recipes for elastodynamic VEMs
with explicit time integration and related problems.
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1 INTRODUCTION

The virtual element method (VEM) has been recently developed to effectively and efficiently handle general polygonal
and polyhedral elements.1,2 Because of the flexibility and robustness in selecting element shapes, the VEM was employed
to solve various partial differential equations of physical problems, such as elliptic, hyperbolic, and parabolic problems.3-6

For engineering applications, elastostatic problems were investigated for small and finite strain conditions.7-10 Compu-
tational results demonstrated that the VEM provided a more stable solution than the finite element method (FEM) for
soft materials under a large deformation, and a locking-free behavior was observed for both nearly incompressible and
incompressible materials.9,10 Elastodynamic examples with nonconvex meshes were solved, and computational results
illustrated that the VEM was able to consistently handle general nonconvex elements.11 Furthermore, the VEM was also
utilized to investigate fracture problems,12-14 contact mechanics,15 and topology optimization.16,17

In this study, two-dimensional (2D) and three-dimensional (3D) elastodynamic problems are comprehensively investi-
gated in conjunction with the stability and convergence of a numerical solution for explicit time integration. In particular,
the VEM is extended to investigate nearly incompressible solids using the B-bar method. For the estimation of the critical
time step to obtain a stable VEM solution, two approaches are suggested, ie, the maximum eigenvalue of a local system
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and an effective element length. Computational results demonstrate that both approaches provide a good approximation
of the critical time step. Additionally, the effect of the stability term, the mass lumping scheme, and the element size and
distortion on the critical time step is demonstrated for convex and nonconvex elements. Furthermore, convergence of the
VEM solution is illustrated according to the stabilization scheme for both convex and nonconvex elements.

The remainder of this paper is organized as follows. The VEM formulation constructed using a linear space and its
extension to the B-bar method are presented in Section 2. Section 3 explains mass lumping techniques and critical
time-step approximation, in which we define an effective element length for convex and nonconvex elements. Then,
critical time-step estimation and elastodynamic analysis are demonstrated in Sections 4 and 5, respectively. Finally, key
findings of the present study are summarized in Section 6.

2 BASIC ELASTODYNAMIC VEM FORMULATION

A solid domain (Ω) has displacement boundary conditions on the displacement boundary (𝜕Ωu), and external tractions
(t) are applied on the traction boundary (𝜕Ωt). A weak form of elastodynamic problems is given as

∫Ω
v · 𝜌0üdx+∫Ω

𝝐(v) ∶ 𝝈(u)dx=∫
𝜕Ωt

v · tdx ∀v ∈ 0, (1)

where u and ü are displacement and acceleration vectors, respectively, and 𝜌0 is the density of a material. The virtual
displacement field (v) satisfies the homogeneous essential boundary condition on the displacement boundary (𝜕Ωu), and
0 is a subset of the space of admissible displacement . In this study, the solid is assumed to be linear isotropic elastic,
and thus, the stress tensor (𝝈) is simply obtained from the linear elasticity tensor (C) and the linearized strain tensor (𝝐),
ie, 𝝈(u) = C𝝐(u).

The domain (Ω) is discretized into nonoverlapping elements. A generic element (E) in this discretization is assumed
to be polygonal elements (F) in 2D and polyhedral elements (P) with planar faces in 3D. Within a discretized domain
(Ωh), the global virtual element space (h) is defined in relation with the local virtual element space  (E), which is
expressed as

h =
{

vh ∈  ∶ vh|E ∈ [(E)]d,∀E ∈ Ωh
}
, (2)

where d is the dimension number and any admissible displacement field (vh) in h belongs to the local virtual space
[(E)] of an element (E). A 2D local virtual element space [(F)] is first defined in a polygon (F), whereas a 3D local
virtual element space [(P)] of a polyhedron (P) is constructed from the 2D local space.18 In this study, the linear virtual
element space is considered, and the extension of linear to higher-order virtual elements can be found in the literature.19

In the following subsections, 2D and 3D local virtual element spaces are defined, and two L2-projection operators are
explained for the discretization of the weak form. Then, a procedure to construct mass and stiffness matrices is described.

2.1 Virtual element space in 2D
A preliminary 2D local virtual element space18 is first introduced as

̃(F) = {
vh ∈ 1(F) ∶ Δvh ∈ (F) in F, vh∣e ∈(e)∀ e∈ 𝜕F

}
, (3)

where Δ and e denote the Laplacian operator and a generic edge of an element, respectively, and  (·) is the space of
linear polynomial functions. The preliminary space contains functions that satisfy first-order Laplacians in a polygon and
linear variations on the element boundary (𝜕F). Because (F) is a subset of ̃(F), a projection operator (Π𝛻) is defined by
projecting functions in ̃(F) onto (F), ie, Π𝛻vh ∈ (F), such that

∫F
𝛻(Π𝛻vh) · 𝛻p dx = ∫F

𝛻vh · 𝛻p dx ∀p ∈ (F) (4)
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and ∑
xv∈F

Π𝛻vh(xv) =
∑
xv∈F

vh(xv), (5)

where xv is the position vector of a generic vertex (v) of F. A linear polynomial function p consists of scaled monomials
(m𝛼), given as

p =
3∑

𝛼=1
a𝛼m𝛼, (6)

where a𝛼 are coefficients of scaled monomials and p is a polynomial function. Scaled monomials (m𝛼) are selected as

𝑚1 = 1, m2 = x − xc

hF
, m3 = 𝑦 − 𝑦c

hF
, (7)

where (xc, yc) are the coordinates of the centroid of a polygon and hF is a length associated with polygonal element size.
Based on the projection operator, the 2D local virtual element space is defined as

(F) =
{

vh ∈ ̃(F) ∶ ∫F

(
Π𝛻vh − vh

)
q dx = 0 ∀ q∈(F)

}
, (8)

where q is an arbitrary function that is in the linear polynomial space (F).
One should note that the projection operator is uniquely evaluated using a complete set of degrees of freedom (DOFs)

in 2D. The integration by parts of Equation (4) leads to

∫F
𝛻(Π𝛻vh) · 𝛻p dx = ∫

𝜕F
vh𝛻p · ne dx−∫F

vhΔp dx, (9)

where ne is the unit normal vector on an edge. The first term on the right-hand side is exactly computed using the values
of vh at xv, which correspond to DOFs, because 𝛻p is a constant and vh is a linear function on edges. The second term
vanishes because Δp is zero for a linear polynomial function.

2.2 Virtual element space in 3D
A preliminary 3D local space18 within a polyhedral element is defined as

̃(P) = {
vh ∈ 1(P) ∶ Δvh ∈ (P) in P, vh||F ∈ (F)∀F ∈ 𝜕P

}
, (10)

where functions on faces of a polyhedron are in the local space of (F). Similarly to the 2D case, functions in ̃ (P) are
projected onto  (P), ie, Π𝛻vh ∈  (P), such that

∫P
𝛻(Π𝛻vh) · 𝛻p dx = ∫P

𝛻vh · 𝛻p dx ∀p ∈  (P) (11)

and ∑
xv∈P

Π𝛻vh (xv) =
∑
xv∈P

vh (xv) . (12)
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A linear polynomial space  (P) has four monomial basis functions, ie,

𝑚1 = 1, m2 = x − xc

hP
, m3 = 𝑦 − 𝑦c

hP
, m4 = z − zc

hP
, (13)

where hP is a length associated with polyhedral element size. Finally, the 3D local virtual element space is given as

 (P) =
{

vh ∈ ̃ (P) ∶ ∫F

(
Π𝛻vh − vh

)
𝑞𝑑x = 0∀ q∈ (P)

}
. (14)

Furthermore, the projection operator in 3D is also uniquely identified using the integration by parts and a complete set
of DOFs in 3D, associated with the integration on the element boundary (ie, face), as explained in the 2D case.

2.3 L2-projection operators
For the construction of mass and stiffness matrices, two L2-projection operators are employed, which are applicable for
both 2D and 3D local virtual element spaces. The first projection operator (Π0) is defined by projecting vh ∈k onto  (E),
such that

∫E

(
Π0vh

)
pdx = ∫E

vhpdx ∀p∈ (E) . (15)

The projection Π0vh can be exactly computed using DOFs and expressed in terms of DOFs. This is because, due to
the definition of the local virtual element space (Equations (9) and (14)), the projection operator Π0 is identical to the
projection operator Π𝛻 when the polynomial space is linear.18

The second projection operator (𝚷0) is defined by projecting 𝛻vh onto a constant space [0 (E)]d, such that

∫E
𝚷0 (𝛻vh) · p0 dx = ∫E

𝛻vh · p0 dx ∀p0 ∈ [0 (E)]d, (16)

where p0 is a vector of constant functions, ie,

p0 =
np0∑
𝛼=1

a𝛼m𝛼. (17)

Basis function vectors (m𝛼) are constant, which correspond to the unit base vectors, and the number of basis function vec-
tors (np0 ) is the dimension number (d) in this study. The projection𝚷0

𝛻vh is exactly evaluated using DOFs and integration
by parts. Integration by parts of Equation (16) results in

∫E
𝚷0 (𝛻vh) · p0 dx = ∫

𝜕E
vhp0 · n𝜕E dx − ∫E

vh div (p0) dx, (18)

where n𝜕E is the unit normal vector to the element boundary. The first term on the right-hand side is simply the integration
of a linear function on the element boundary using DOFs, whereas the second term is zero because p0 is constant. The
integration on the element boundary is associated with the line and face integrals in 2D and 3D, respectively. One notes
that the face integral in 3D can be evaluated by triangulation of faces.7,18,20 Finally, we can show that, for any vh ∈  (E),
the following relation holds between the two projections:

∇
(
Π0vh

)
= 𝚷0 (𝛻vh) . (19)

2.4 Mass matrix
For polygonal and polyhedral elements with n nodes, the consistent mass matrix (ME) is constructed using the first
L2-projection (Π0). It consists of the consistency and stability terms, given as

ME = ME,c ⊗ Id + ME,s ⊗ Id, (20)
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where Id ∈ Rd × d is the identity matrix and ⊗ denotes the Kronecker product of two matrices (A ∈ Ri × j, B ∈ Rk × l), ie,

A ⊗ B=
⎡⎢⎢⎣

a11B · · · a1𝑗B
⋮ ⋱ ⋮

ai1B · · · a𝑖𝑗B

⎤⎥⎥⎦∈R
𝑖𝑘×𝑗𝑙. (21)

The first term on the right-hand side of Equation (20) is the consistency term of ME. It is expressed as2

[ME,c]𝑖𝑗 =∫E
𝜌0(Π0𝜙i)(Π0𝜙𝑗)dx =

np∑
𝛼=1

np∑
𝛽=1

[
(S0)T]

𝑖𝛼∫E
m𝛼m𝛽dx [S0]𝛽𝑗 , (22)

where 𝜙i are implicit shape functions of  (E) and np is the number of scaled monomial basis functions. The projection
of implicit shape functions is expressed in terms of a set of scaled monomial functions, ie,

Π0𝜙i =
np∑
𝛼=1

a𝛼𝑖m𝛼, (23)

where coefficients (a𝛼i) correspond to the components of the matrix representation of the projection operator (S0). The
coefficients can be exactly computed using integration by parts (eg, Equation (9)), as discussed previously. Additionally,
in Equation (22), the integration of quadratic functions within an element is needed because linear scaled monomial
functions are employed in this study. Finally, the stability term (ME,s) is approximated as

ME,s = 𝜌0 |E| (In − P0)T(In − P0), (24)

where |E| denotes the volume of an element and In ∈ Rn × n is the identity matrix. Additionally, P0 is a matrix
representation of the projection Π0 expressed in terms of basis functions 𝜙j,2 ie,

Π0𝜙i =
n∑

𝑗=1
[P0]𝑖𝑗𝜙𝑗 . (25)

One should note that both S0 and P0 are matrix representations of the projection Π0, but expressed in terms of different
sets of basis functions.

2.5 Stiffness matrix
The element stiffness matrix (KE) consists of a consistency term (KE,c) and a stability term (KE,s), ie, KE = KE,c + KE,s.7
The second L2-projection (𝚷0), which projects gradients of vh, is utilized to construct the consistency term, whereas the
first L2-projection (Π0) is used to approximate the stability term. Then, the consistency term of KE is expressed as

KE,c = ∫E
Bc

TCBcdx, (26)

where C is a matrix representation of the fourth-order elasticity tensor (C). A matrix (Bc) provides the relationship
between strain and nodal displacements (DOFs), and thus, its components consist of the projection of the gradient of
implicit shape functions. The projection of 𝛻𝜙i is expressed in terms of a set of constant basis function vectors, ie,

𝚷0 (𝛻𝜙i) =
np0∑
𝛼=1

a𝛼𝑖m𝛼, (27)

where coefficients (a𝛼i) are exactly computed using Equation (18).
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For the approximation of the stability term, ie, KE,s =KE,s⊗Id, a diagonal matrix–based stabilization scheme is utilized,
given as

KE,s = (In − P0)T𝚲(In − P0), (28)

where 𝚲 is a diagonal matrix to scale the stiffness of KE,s. The components of the diagonal matrix are defined as11,19

𝛬𝑖𝑖 = max
(
[KE , c]𝑖𝑖, 𝛼0

tr (C)
nC

)
, (29)

where nC is the size of the elasticity matrix, eg, nC = 3 for 2D and nC = 6 for 3D. A nondimensional parameter (𝛼0) can be
selected in between 0 and 1 and provides a lower bound of the diagonal matrix (𝚲). The lower bound is defined because
the diagonal terms of the consistency part (KE, c) can be very small values, especially for nonconvex elements. In this
study, 𝛼0 is selected as 1/3 and 1/9 for 2D and 3D, respectively.
Alternatively, a scalar-based stabilization scheme can be used, and KE,s is expressed as

KE,s = 𝛼s(In − P0)T(In − P0), (30)

where 𝛼s is a stiffness scaling parameter. Previously, tr(C)/nC was used as the scaling parameter.9,20 Additionally, the
present study proposes to use the maximum diagonal component of the consistent part for the scaling parameter, ie,
𝛼s = max ([KE,c]ii), in the scalar-based stabilization scheme.

2.6 B-bar method
The presented VEM is extended to analyze nearly incompressible solids using the B-bar method.21 In the B-bar method,
the strain-displacement matrix (B) is decomposed into deviatoric and dilatational parts, ie, B = Bdev + Bdil. To avoid a
volumetric locking behavior, the components of Bdil are projected using the concept of selective integration and mean
dilatation formulations, given as

Bi =
1|E|∫E

Bidx, (31)

where the components of Bdil are replaced by Bi, which leads to Bdil. One should note that Bi can be exactly computed using
𝚷0(𝛻𝜙i) in our setting. The modified strain-displacement matrix (B=Bdev +Bdil) is then utilized for the construction of
the element stiffness matrix, which gives

KE = ∫E
B

T
CBdx = ∫E

Bdev
TCBdevdx + |E|Bdil

T
CBdev + |E|Bdev

T
CBdil + |E|Bdil

T
CBdil, (32)

where Bdev denotes the volume average of Bdev = 1|E|∫EBdevdx. Notice that, using the projection of the shape function

gradients, we can compute Bdev exactly as well. The first term on the right-hand side of Equation (32) is defined as the
stiffness matrix of the deviatoric part (KE, dev), which can be approximated using the “consistency” and “stability” terms as

KE,dev =∫E
Bdev

TCBdevdx≈ |E|Bdev
T

CBdev +KE,s(dev), (33)

where KE,s(dev) is the stability term associated with KE, dev. Substituting Equation (33) in Equation (32) results in

KE ≈ |E| (Bdev + Bdil

)T
C
(

Bdev + Bdil

)
+ KE,s(dev). (34)

Note that, in the first term on the right-hand side of (34), the summation of Bdev and Bdil yields the volume average of the
strain-displacement matrix (Bc) in Equation (26), ie, Bc = 1|E|∫EBdx=Bdev +Bdil. Thus, this term recovers the consistency
term in the standard VEM approximation. The second term on the right-hand side of Equation (34) suggests that, to establish
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a B-bar formulation in the VEM setting, one simply needs to modify the stability term to stabilize only the deviatoric part of the
stiffness matrix (KE, dev), which requires no additional computational effort with respect to the standard VEM formulation.
In this work, the stability term KE,s(dev) is simply evaluated using the scalar-based stabilization scheme (Equation (30))
with the stiffness scaling constant (𝛼s) of the shear modulus (𝜇) because KE, dev corresponds to the deviatoric part.

3 TIME INTEGRATION

The equation of motion is solved using the central difference method, which is a special case of the Newmark-𝛽 method.22

To achieve an efficient and stable computation in explicit time integration, a mass lumping scheme and critical time-step
evaluation are essential, and thus, these are addressed in the following subsections.

3.1 Mass lumping techniques
The consistent mass matrix is diagonalized for an efficient computation in explicit time integration. In this study, a diag-
onal mass matrix (MD

E ) is obtained by scaling the diagonal terms of the consistent mass matrix,23 named diagonal scaling,
which is expressed as [

MD
E
]
𝑖𝑖
= [ME]𝑖𝑖

𝜌0|E|
tr (ME)

(no sum in i) , (35)

One should note that diagonal scaling always provides positive nodal masses because the diagonal terms of the consistent
mass matrix are positive. For a computation of the lumped mass matrix in Equation (35), the numerical integration of
second-order polynomials is needed.

Alternatively, the consistent mass matrix can be diagonalized using the row sum technique,24,25 ie,

[
MD

E
]
𝑖𝑖
=
∑
𝑗

[ME]𝑖𝑗 . (36)

The diagonal mass matrix in Equation (36) can be exactly constructed without adopting numerical integrations. To show
that, we will prove that the following two relations hold:

∑
𝑗

[ME,c]𝑖𝑗 = ∫E
𝜌0Π0𝜙idx (37)

and ∑
𝑗

[ME,s]𝑖𝑗 = 𝟎 (or, equivalently, ME,s𝟏 = 𝟎), (38)

where 1∈Rn and 0∈Rn are vectors containing all 1 and 0 components, respectively. For the first relation (Equation (37)),
taking the consistency matrix defined in Equation (22) and applying the row sum technique lead to

∑
𝑗

[ME,c]𝑖𝑗 =
∑
𝑗

[
∫E

𝜌0(Π0𝜙i)(Π0𝜙𝑗)dx
]
=∫E

𝜌0(Π0𝜙i)Π0(Σ𝑗𝜙𝑗)dx=∫E
𝜌0Π0𝜙idx, (39)

because of the partition-of-unity property of the basis function 𝜙i, namely,
∑

𝑗𝜙𝑗 = 1. The second relation (Equation (38))
is deduced from the definitions of ME,s and P0 in Equations (24) and (25), respectively. The definition of matrix P0

results in
n∑

k=1
Π0𝜙i (xk) =

n∑
k=1

n∑
𝑗=1

[P0]𝑖𝑗𝜙𝑗 (xk) =
n∑

k=1

n∑
𝑗=1

[P0]𝑖𝑗𝛿𝑗𝑘 =
n∑

k=1
[P0]𝑖𝑘, (40)
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where 𝛿ik is the Kronecker delta symbol and xk is the position vector of the kth node in an element. Because of the
Kronecker delta property of the basis function 𝜙i, ie,

∑n
k=1 Π0𝜙i (xk) =

∑n
k=1 𝛿𝑖𝑘 = 1, the following property of P0 is

obtained:

P0𝟏 = 𝟏. (41)

Using Equations (24) and (41), one obtains the following relations:

ME,s𝟏= 𝜌0 |E| (In − P0)T (
In − P0) 𝟏= 𝜌0 |E| (In − P0)T [

In𝟏 − P0𝟏
]
= 𝟎. (42)

Then, in order to compute the components in the diagonal mass matrix with the row sum technique, we only need to
compute ∫ E𝜌0Π0𝜙idx for all the vertices, which are all integrals of linear functions over the element E. As a consequence,
no numerical integration is needed for the row sum technique because the integration of linear functions in general
polygons (or polyhedra) can be computed using the centroid and area (or volume). However, the row sum technique does
not guarantee positive nodal masses, even with the linear polynomial space in the VEM.

3.2 Critical time step and effective element length
A critical time step is essential to achieve a stable solution in explicit time integration. Then, the critical time step (Δtcr)
for linear elastic problems is given as25-27

Δtcr =
2

𝜔G
max

, (43)

where 𝜔G
max is the maximum eigenfrequency of a global system matrix. The maximum eigenfrequency is obtained by

solving an eigenvalue problem of a system, given as

det(−𝜔2M + K) = 0, (44)

where K and M are the global stiffness and mass matrices, respectively, and 𝜔 is the eigenvalue of a system.
Because the calculation of the maximum eigenvalue for a large system is computationally expensive, the critical time

step can be approximated using the maximum eigenvalue of a local system.28,29 Because the maximum eigenvalue of
a local system is greater than the maximum eigenvalue of a global system, an approximated critical time step (Δt̃cr) is
given as

Δt̃cr =
2

max
(
𝜔E

max
) < Δtcr, (45)

where 𝜔E
max is the maximum eigenvalue of an element. The maximum eigenvalue of an element is evaluated by solving

the following equation:

det(−𝜔2ME + KE ) = 0. (46)

For every element in a mesh, 𝜔E
max is computed, and then, the maximum of 𝜔E

max is used to approximate Δtcr.
Alternatively, the critical time step is approximated in relation with an element size and wave speed of a material.30-32

A travel distance of wave for a given time shall not be greater than an element size, called the Courant condition, and
thus, an approximated critical time step is expressed as

Δt̃cr =
min (𝓁E)

Cd
< Δtcr, (47)

where 𝓁E is an effective element length for an element and Cd is the dilatational wave speed. For general convex and
nonconvex elements in the VEM, an effective length of an element is defined as

𝓁E = max
(
𝓁E

e,min,𝓁
E
𝑐𝑛,min

)
, (48)
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where 𝓁E
e,min and 𝓁E

𝑐𝑛,min are the minimum edge length and the minimum length from the centroid to nodes, respectively,
of an element (E). For the standard FEM, as a rule of thumb, the minimum edge length is generally utilized for an effective
element length. Then, in the following section, the effect of small edges in random polygons on the critical time step is
demonstrated.

4 CRITICAL TIME-STEP ESTIMATION

A critical time step is approximated using the maximum eigenvalue of a system (Equations (43)-(46)) and the effective
element length (Equations (47) and (48)) for convex and nonconvex meshes. Four types of discretization are employed
within a 1× 1 rectangular domain, ie, centroidal Voronoi tessellation (CVT), random Voronoi tessellation (RVT), pegasus,
and “VEM” meshes, as shown in Figure 1. The CVT and RVT meshes are generated using PolyMesher33 with the num-
ber of elements of 1600. The 6× 6 periodic patterns in the pegasus mesh are generated by using Escher's tessellation34,35

and cropping elements to fit with the domain, as shown in Figure 1C. For the “VEM” mesh, each patch consists of seven
elements, ie, four background elements and three letter elements. Material properties are arbitrarily selected. The elas-
tic modulus and Poisson's ratio are 10 and 0.3, respectively, with the density of 2, which leads to the dilatational wave

(A) (B)

(C) (D)

FIGURE 1 Virtual element meshes for critical time-step approximation. A, Centroidal Voronoi tessellation mesh; B, Random Voronoi
tessellation mesh; C, Pegasus mesh; D, “VEM” mesh—notice that there are seven colors (or shades in black and white) that correspond to
each element (seven elements per “VEM” patch)
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speed of 2.594. Additionally, the stability term is scaled using the diagonal terms of the consistency matrix with 𝛼0 = 1/3
(Equations (28) and (29)), whereas the mass matrix is diagonalized using the diagonal terms of the consistent mass matrix
(Equation (35)).

4.1 Selection of effective element length
The critical time step is evaluated using the following three approaches, ie, the maximum eigenvalue of a global sys-
tem, the maximum eigenvalue of a local system, and the effective element length. For each element, 𝓁E

e,min and 𝓁E
𝑐𝑛,min

are calculated, and the histogram for each length is plotted in Figures 2A and 2B for the CVT and RVT meshes. Addi-
tionally, a representative element length is also calculated using the maximum eigenvalue of a global system and the
maximum eigenvalue of a local system, which are given as 𝓁G

𝜔 = 2Cd∕𝜔G
max and 𝓁L

𝜔 = 2Cd∕max(𝜔E
max), respectively.

Figure 2 demonstrates that 𝓁L
𝜔 and min(𝓁E) provide a good approximation of 𝓁G

𝜔 for the CVT and RVT meshes.
For the four meshes, the approximated critical time steps are summarized in Table 1. Additionally, the critical time

step is also calculated using min(𝓁E
e,min) and min(𝓁E

𝑐𝑛,min) for the comparison. Similarly, the maximum eigenvalue of a
local system (𝜔E

max) and the effective element length (𝓁E) provide a good approximation of the critical time step obtained
from the maximum eigenvalue of a global system for all the mesh types. The critical time step obtained from min(𝓁E)
is generally similar to the step calculated from min(𝓁E

𝑐𝑛,min). However, one notes that min(𝓁E
𝑐𝑛,min) leads to the zero time

step for the “VEM” mesh because the centroid of an element in the “VEM” mesh corresponds to the nodal location.
Furthermore, Δtcr obtained from the minimum edge length is one order of magnitude lower than Δtcr resulted from the
maximum eigenvalue, especially for CVT and RVT meshes, as shown in Table 1.

(A) (B)

FIGURE 2 Histogram of the representative element length from 2Cd∕wE
max, the minimum edge length of an element (𝓁E

e,min), and the
minimum centroid-to-node length of an element (𝓁E

e,min) for (A) the centroidal Voronoi tessellation mesh and (B) the random Voronoi
tessellation mesh

TABLE 1 Estimated critical time step
for the centroidal Voronoi tessellation
(CVT), random Voronoi tessellation
(RVT), pegasus, and “VEM” meshes

CVT mesh RVT mesh Pegasus mesh “VEM” mesh

2∕𝜔G
max 8.227 × 10−3 3.433 × 10−3 10.938 × 10−3 6.032 × 10−3

2∕max
(
𝜔E

max
)

5.973 × 10−3 0.981 × 10−3 10.254 × 10−3 5.482 × 10−3

min(𝓁E)/Cd 5.212 × 10−3 1.300 × 10−3 3.973 × 10−3 2.677 × 10−3

min
(
𝓁E
𝑐𝑛,min

)
∕Cd 5.187 × 10−3 1.300 × 10−3 3.973 × 10−3 0.0000

min
(
𝓁E

e,min

)
∕Cd 0.673 × 10−3 0.518 × 10−3 3.328 × 10−3 2.677 × 10−3
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(A) (B)

(C) (D)

FIGURE 3 Estimation of the critical time step according to the number of elements for (A) the centroidal Voronoi tessellation mesh,
(B) the random Voronoi tessellation mesh, (C) the pegasus mesh, and (D) the “VEM” mesh [Colour figure can be viewed at
wileyonlinelibrary.com]

4.2 Effect of element size
The change in the critical time step is investigated according to the element size. The critical time step is estimated using
the five approaches, ie, 𝜔G

max, 𝜔E
max, min(𝓁E), min(𝓁E

𝑐𝑛,min), and min(𝓁E
e,min). For each mesh type, five meshes are generated,

ie, 25 meshes in total. The numbers of elements for the CVT and RVT meshes are 100, 200, 400, 800, and 1600. For the
pegasus and “VEM” meshes, 3× 3, 6× 6, 9× 9, 12× 12, and 15× 15 patterns are generated. One notes that a larger number
of elements corresponds to a smaller element size. Figure 3 demonstrates that the critical time step decreases while the
number of elements increases, as expected. In general, 𝜔E

max and 𝓁E provide a good approximation of the critical time
step according to decreasing the element size. One notes that min(𝓁E

e,min) is similar to min(𝓁E) for the nonconvex meshes
(pegasus and “VEM” meshes) but one order of magnitude lower than min(𝓁E) for the convex meshes (ie, CVT and RVT).
Therefore, in this study, relatively short edges in the CVT and RVT meshes do not significantly impact the critical time
step in an elastodynamic VEM.

4.3 Comparison between VEM and FEM
The critical time steps obtained from the VEM are compared with the time step resulted from the FEM. For the construc-
tion of shape functions for convex polygons in the FEM, mean value coordinates are employed.36 The critical time step is
estimated using the maximum eigenvalue of a global system (𝜔G

max) for the CVT and RVT meshes. The critical time of the

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 4 Comparison of the critical time step between the virtual element method (VEM) and the finite element method (FEM).
A, Centroidal Voronoi tessellation mesh; B, Random Voronoi tessellation mesh [Colour figure can be viewed at wileyonlinelibrary.com]

FEM is similar to that of the VEM for the CVT meshes (Figure 4A), whereas the critical time step of the VEM is slightly
greater than that of the FEM for the RVT meshes (Figure 4B). Thus, the VEM can provide a smaller computational cost
than the FEM for elastodynamic problems, especially when mesh quality is relatively low.

4.4 Effect of stability term
The effect of the stabilization scheme on the critical time step is investigated. The four cases of the stabilization method
are used, ie, the matrix-based stabilization with 𝛼0 = 1/3, the matrix-based stabilization with 𝛼0 = 0, the scalar-based
stabilization with 𝛼s= tr(C)/nC, and the scalar-based stabilization with 𝛼s= max([KE,c]ii). Then, the critical time steps
are evaluated using the maximum eigenvalue of a global system for the RVT and pegasus meshes, as shown in Figure 5.
The computational results illustrate that the change in the critical time is not sensitive according to the choice of the
stabilization scheme for convex meshes, eg, the RVT mesh. For nonconvex meshes, eg, the pegasus mesh, the critical time
step changes with respect to the stabilization scheme. Although the diagonal matrix–based stabilization scheme with
𝛼0 = 0 provides the largest critical time step, the accuracy of the computational results can be lower than that in the other
cases, as discussed in Section 5.1.

(A) (B)

FIGURE 5 Effect of the stability term on the critical time step. A, Random Voronoi tessellation mesh; B, Pegasus mesh [Colour figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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4.5 Lumped mass matrix
The diagonal scaling method is compared with the row sum technique for the estimation of the critical time step. The
maximum eigenvalues of global and local systems are used to estimate the critical time step for the RVT and pega-
sus meshes. The effect of the mass lumping scheme on the critical time step is not significant for the convex mesh
(eg, Figure 6A). The slight differences in the critical time step between diagonal scaling and the row sum technique
are observed for the nonconvex mesh (eg, Figure 6B), although the evaluated critical time steps are within the same
order of magnitude. Such difference is resulted from different nodal mass distributions with respect to the mass lumping
technique. For the RVT mesh, the nodal mass distribution with the row sum technique is similar to that with diagonal
scaling, as shown in Figure 7A, and thus, the estimated critical time steps are similar to each other. However, for the
pegasus mesh, diagonal scaling provides a more uniform nodal mass distribution than the row sum technique, and the
minimum nodal mass with diagonal scaling is greater than that with the row sum technique (see Figure 7B). Therefore,
diagonal scaling provides a larger critical time step than the row sum technique, whereas the accuracy of the compu-
tational result with diagonal scaling is equivalent to or better than that with the row sum technique, as discussed in
Section 5.2.

(A) (B)

FIGURE 6 Critical time-step comparison between diagonal scaling and the row sum technique. A, Random Voronoi tessellation mesh;
B, Pegasus mesh [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 7 Nodal mass comparison between diagonal scaling and the row sum technique. A, Random Voronoi tessellation mesh with
1600 elements; B, Pegasus mesh with the 15× 15 pattern

http://wileyonlinelibrary.com
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4.6 Element distortion
To investigate the effect of element distortion on the critical time step in the VEM, a mesh is stretched either from 1 to 5
(ie, elongation) or from 1 to 0.2 (ie, compression). For the elongation case, the size of the initial domain is 1× 0.2, and the
CVT mesh with 800 elements and the pegasus mesh with the 15× 3 pattern are generated, as shown in Figures 8A and 8B,
respectively. The meshes with the stretch (𝜆) of 5 are illustrated in Figures 8C and 8D. While the stretch increases as 2, 3,
4, and 5, the critical time step is evaluated using 𝜔G

max, 𝜔E
max, min(𝓁E), min(𝓁E

𝑐𝑛,min), and min(𝓁E
e,min). Figure 9 demonstrates

(A) (B)

(C) (D)

FIGURE 8 Element distortion under elongation. A, Original centroidal Voronoi tessellation (CVT) mesh with 800 elements; B, Original
pegasus mesh with the 15× 3 pattern; C, Distorted CVT mesh with 𝜆 = 5; D, Distorted pegasus mesh with 𝜆 = 5

(A) (B)

FIGURE 9 Change in the critical time step according to stretch. A, Centroidal Voronoi tessellation mesh; B, Pegasus mesh [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(A)

(C)

(B)

(D)

1.0 1.0

0.2 0.2

FIGURE 10 Element distortion under compression. A, Original centroidal Voronoi tessellation (CVT) mesh with 1600 elements in a
square domain; B, Original pegasus mesh with the 15× 15 pattern in a square domain; C, Zoomed-in view of the distorted CVT mesh with
𝜆 = 0.2; D, Zoomed-in view of the distorted pegasus mesh with 𝜆 = 0.2 [Colour figure can be viewed at wileyonlinelibrary.com]

that the critical time step tends to increase while the stretch increases because the element size increases with the increase
in stretch.

For the compression case, the 1× 1 square domain is discretized into the CVT mesh with 1600 elements and the pegasus
mesh with the 15× 15 pattern, as shown in Figures 10A and 10B, respectively. Then, the stretches of 0.8, 0.6, 0.4, and 0.2
are introduced in the domain, and the example of the meshes with 𝜆 = 0.2 is shown in Figures 10C and D. The evaluated
critical time steps with 𝜔G

max, 𝜔E
max, min(𝓁E), min(𝓁E

𝑐𝑛,min), and min(𝓁E
e,min) are plotted in Figure 11. While the stretch

decreases from 1 to 0.2, the element size and the element quality decrease, and thus, the critical time step decreases,
as expected.

5 ELASTODYNAMIC EXAMPLES

To verify the elastodynamic VEM, four computational examples are employed, ie, swinging plate, 2D cantilever, 3D can-
tilever, and Cook's beam, with compressible and nearly incompressible materials. In this computation, the time step is
determined using the maximum eigenvalue of a local system, and consistent units are employed.

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 11 Change in the critical time step according to decreasing the stretch. A, Centroidal Voronoi tessellation mesh; B, Pegasus mesh
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Geometry of a swinging plate example

5.1 Swinging plate
A swinging plate example37-39 is utilized to verify the rate of convergence for the elastodynamic VEM. In a square domain
of 2× 2, the displacement along the four edges is fixed along the edge-normal direction, as shown in Figure 12. The domain
is discretized into four types of meshes, ie, CVT, RVT, pegasus, and “VEM” meshes (see Figure 1). Then, the analytical
solution is given as

u (x, t) = u0 sin (𝜔𝑡)
⎡⎢⎢⎣
− sin

(
𝜋

2
x1

)
cos

(
𝜋

2
x2

)
cos

(
𝜋

2
x1

)
sin

(
𝜋

2
x2

) ⎤⎥⎥⎦ (49)

when the initial displacement and velocity boundary conditions are imposed based on Equation (49). The displacement
amplitude of u0 is selected as 0.01, and 𝜔 is the angular frequency, ie, 𝜔 = 𝜋

2

√
2𝜇∕𝜌0 . The density (𝜌0) is 1100, and the

elastic modulus is 1.7 × 107 with the plane strain condition. Poisson's ratio (𝜈) is selected as 0.45 and 0.49994, which
correspond to compressible and nearly incompressible materials, respectively. For the error estimation of both convex
and nonconvex elements, the L2-type displacement error measure9 is defined as

𝜖0 ,u (t)=
[∑

E

|E|
n

∑
xv∈E

(u (xv, t) − uh (xv, t)) · (u (xv, t) − uh (xv, t))

] 1
2

, (50)

where u(xv, t) and uh(xv, t) are the exact and approximated displacements on vertex xv at time t, respectively. In this study,
the error measure is estimated at t = 0.001.

http://wileyonlinelibrary.com
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FIGURE 13 Rate of convergence according to the mesh type for the
compressible material (𝜈 = 0.45). CVT, centroidal Voronoi tessellation; RVT,
random Voronoi tessellation [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 14 Rate of convergence with respect to the stability terms for a compressible material. A, Centroidal Voronoi tessellation mesh;
B, “VEM” mesh [Colour figure can be viewed at wileyonlinelibrary.com]

For the compressible material (𝜈 = 0.45), the L2-type displacement error is evaluated under mesh refinement, and the
optimal rate of convergence of 2 is achieved for all the mesh types, as shown in Figure 13. The diagonal matrix–based
stabilization scheme is utilized with 𝛼0 = 1/3. Additionally, the effect of the stabilization scheme is investigated using the
CVT and “VEM” meshes. The four cases of the stabilization method are utilized, ie, (a) diagonal matrix–based stabiliza-
tion with 𝛼0 = 1/3, (b) diagonal matrix–based stabilization with 𝛼0 = 0, (c) scalar-based stabilization with 𝛼s = tr(C)/nC,
and (d) scalar-based stabilization with 𝛼s = max ([KE,c]ii). Figure 14 demonstrates that the VEM provides the optimal
rate of convergence regardless of the stabilization schemes, whereas the accuracy of the solution depends on the stabi-
lization scheme in this study. Additionally, to investigate the influence of the stability term, the strain energy associated
with the consistency part (KE,c) and the stability part (KE,s) is evaluated using the CVT mesh (see Figure 15). The strain
energy associated with KE,s decreases under mesh refinement, and it is a few orders of magnitude lower than the energy
associated with KE,c.

The computational results of the VEM are compared with those of the FEM for the CVT and RVT meshes. In the
FEM, shape functions of polygonal elements are constructed using the mean value coordinates.36 In the VEM, the
diagonal matrix–based stabilization scheme with 𝛼0 = 1/3 is utilized. The computational results demonstrate that the
VEM provides slightly more accurate results than the FEM in this example, as shown in Figure 16.

When Poisson's ratio is selected as 0.49995, a material is nearly incompressible. Thus, the B-bar method is employed
with the scalar-based stabilization scheme (𝛼s = 𝜇), as discussed in Section 2.6. Figure 17 demonstrates that the VEM

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 15 Strain energy associated with (A) the consistency term (KE,c) and (B) the stability term (KE,s) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 16 Comparison between the finite element method (FEM) and
the virtual element method (VEM) for the L2-type displacement error. CVT,
centroidal Voronoi tessellation; RVT, random Voronoi tessellation [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 17 Rate of convergence according to the mesh type for the
nearly incompressible material (𝜈 = 0.49995) [Colour figure can be viewed at
wileyonlinelibrary.com]

with the B-bar method results in the rate of convergence of 2, whereas the CVT mesh leads to the most accurate result
in this study. The magnitude of the displacement vector at t = 0.001 is plotted in Figure 18. Although highly noncon-
vex elements are employed (ie, pegasus mesh), a smooth displacement field is achieved. Additionally, the VEM without
the B-bar method is also employed for comparison purposes. The four stabilization schemes are utilized, ie, 𝛼0 = 1/3,
𝛼0 = 0, 𝛼s = tr(C)/nC, and 𝛼s = max ([KE,c]ii), and the CVT meshes are employed. Figure 19 demonstrates that the

http://wileyonlinelibrary.com
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FIGURE 18 Magnitude of the displacement vector at t = 0.001

FIGURE 19 Effect of the stabilization scheme on the rate of convergence
for the nearly incompressible material (𝜈 = 0.49995) [Colour figure can be
viewed at wileyonlinelibrary.com]

VEM without the B-bar method also reaches the optimal rate of convergence regardless of the stabilization scheme
when the element size is smaller than a certain level. In addition, the diagonal matrix–based stabilization scheme tends
to provide more accurate results than the scalar-based stabilization scheme in this study when the B-bar method is
not utilized.

5.2 Cantilever example
The length of the cantilever is 2 with a cross section of 0.1× 0.1, as shown in Figure 20. The elastic modulus, Poisson's
ratio, and density are 100, 0.25, and 0.1, respectively, and the plane stress condition is assumed. A sinusoidal load (P) is
applied at the tip of the cantilever, ie, P(t) = sin(𝜋t/T), for 0 ≤ t ≤ T, where T is the period of the cantilever (ie, T = 7.831),
and the force is set to zero for t ≥ T.

The cantilever is discretized into three types of meshes, eg, CVT, RVT, and pegasus meshes, as shown in Figure 21.
For each mesh type, the convergence of the VEM is investigated in conjunction with the stabilization scheme. The
four cases of the stabilization method are employed, ie, (a) diagonal matrix–based stabilization with 𝛼0 = 1/3, (b) diag-
onal matrix–based stabilization with 𝛼0 = 0, (c) scalar-based stabilization with 𝛼s = tr(C)/nC, and (d) scalar-based
stabilization with 𝛼s= max([KE,c]ii). One notes that the computational results with the diagonal matrix–based stabiliza-
tion with 𝛼0 = 1 are similar to those with the scalar-based stabilization with 𝛼s = tr(C)/nC because tr(C)/nC is greater than
[KE,c]ii in most cases.

P(t)

2

0.1

0.1

FIGURE 20 Geometry and boundary conditions for a three-dimensional
elastodynamic problem
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(A) 

(B) 

(C) 

FIGURE 21 Example of two-dimensional meshes for the cantilever example. A, Centroidal Voronoi tessellation mesh; B, Random Voronoi
tessellation mesh; C, Pegasus mesh

(A) (B)

(C) (D)

FIGURE 22 Convergence of the centroidal Voronoi tessellation (CVT) meshes with respect to the stabilization schemes.
A, Diagonal matrix–based stabilization with 𝛼0 = 1/3; B, Diagonal matrix–based stabilization with 𝛼0 = 0; C, Scalar-based stabilization with
𝛼s = tr(C)/nC; D, Scalar-based stabilization with 𝛼s= max([KE,c]ii)
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For the convex meshes (ie, CVT and RVT meshes), the VEM solution is almost on top of the analytical solution
when the nondimensional constant 𝛼0 is in a range of 0 ≤ 𝛼0 ≤ 1/3 for the diagonal matrix–based stabilization, as
shown in Figures 22A,B and 23A,B. For the scalar-based stabilization, the scaling parameter (𝛼s) based on KE,c provides
a more accurate solution than 𝛼s based on the elasticity tensor. In summary, the diagonal matrix–based stabiliza-
tion scheme provides a good approximation of the VEM, and the nondimensional parameter (𝛼0) associated with a
lower bound of 𝚲 does not significantly affect the accuracy of the VEM solution for convex meshes. Furthermore,
regardless of 𝛼0 and 𝛼s, the computational results demonstrate the convergence of the VEM solution to the analytical
solution.

For the nonconvex mesh, ie, pegasus mesh, the convergence of computational results is shown in Figure 24. The
diagonal matrix–based stabilization with 𝛼0 = 1/3 provides the most accurate results in this study. When the lower
bound is not specified in the diagonal matrix–based stabilization (𝛼0 = 0), the result provides a relatively large error
(Figure 24B) because some diagonal terms of KE,c for a nonconvex element are very small. In this example, the minimum
of [KE,c]ii is a few orders of magnitude lower than the maximum of [KE,c]ii. Thus, the accuracy of the VEM solution with
nonconvex meshes is sensitive with respect to the stabilization scheme than with convex meshes. Additionally, Figure 24D
demonstrates that the mesh grid of 60× 3 provides a more accurate solution than the mesh grid of 120× 6 because of
error cancellation at the relatively coarse discretization. If one further refines the pegasus mesh, one can observe the
convergence of computational results under mesh refinement.

(A) (B)

(C) (D)

FIGURE 23 Convergence of the random Voronoi tessellation (RVT) meshes with respect to the stabilization schemes.
A, Diagonal matrix–based stabilization with 𝛼0 = 1/3; B, Diagonal matrix–based stabilization with 𝛼0 = 0; C, Scalar-based stabilization with
𝛼s = tr(C)/nC; D, Scalar-based stabilization with 𝛼s= max([KE,c]ii)
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(A) (B)

(C) (D)

FIGURE 24 Convergence of the pegasus meshes with respect to the stabilization schemes. A, Diagonal matrix–based stabilization with
𝛼0 = 1/3; B, Diagonal matrix–based stabilization with 𝛼0 = 0; C, Scalar-based stabilization with 𝛼s = tr(C)/nC; D, Scalar-based stabilization
with 𝛼s= max([KE,c]ii)

FIGURE 25 Comparison of computational results according to the mass
lumping technique. CVT, centroidal Voronoi tessellation; RVT, random
Voronoi tessellation
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The effect of the mass lumping techniques on computational results is investigated by comparing diagonal scal-
ing (Equation (35)) with the row sum technique (Equation (36)). Four meshes are used in this study, ie, the CVT
mesh with 250 elements, the RVT mesh with 250 elements, the pegasus mesh with 60× 3 patches, and the pegasus
mesh with 40× 2 patches. Computational results with diagonal scaling are indicated as solid lines, whereas computa-
tional results with the row sum technique are denoted by markers (see Figure 25). These results are on top of each
other for the CVT, RVT, and 60× 3 pegasus meshes. However, the row sum technique provides a diverged solution
for the 40× 2 pegasus mesh, and thus, the result is not available in Figure 25. This is because the row sum tech-
nique does not guarantee the positive nodal mass for arbitrary nonconvex elements even with the linear polynomial
space. For example, the histogram of nodal masses for the 40× 2 pegasus mesh is illustrated in Figure 26. The row
sum technique leads to negative nodal masses, whereas diagonal scaling provides positive nodal masses. Additionally,
the distribution of nodal masses with the row sum technique is wider than that with diagonal scaling, as shown
previously.

The computational results of the VEM are compared with those of the FEM for the CVT and RVT mesh types, as shown
in Figures 27A and 27B, respectively. For each mesh type, two meshes are generated with numbers of elements of 100
and 250. For VEM analysis, the diagonal matrix–based stabilization with 𝛼0 = 1/3 is employed, and the results are plotted
with solid markers. In the FEM, mean value coordinates36 are utilized to construct shape functions, and the results are
plotted with empty markers. Figure 27 demonstrates that the VEM provides a slightly more accurate solution than the
FEM in this study.

FIGURE 26 Nodal mass comparison between diagonal scaling and the row
sum technique with the 40× 2 pegasus mesh
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FIGURE 27 Computational result comparison between the virtual element method (VEM) and the finite element method (FEM) for (A) the
centroidal Voronoi tessellation mesh and (B) the random Voronoi tessellation mesh [Colour figure can be viewed at wileyonlinelibrary.com]
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(A) 

(B) 

(C) 

FIGURE 28 Example of three-dimensional meshes for the cantilever example. A, Centroidal Voronoi tessellation mesh; B, Random
Voronoi tessellation mesh; C, Particle mesh

FIGURE 29 Elements and their normal
vectors for the particle mesh
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5.3 Three-dimensional example
For 3D analysis, the cantilever example (Figure 20) is solved using convex and nonconvex polyhedral elements. Three
types of meshes are used, ie, CVT, RVT, and particle meshes, as shown in Figure 28. The CVT and RVT meshes are
generated using PolyMesher3D.40 The particle mesh is generated by creating empty holes within the CVT mesh. The
particle mesh consists of two types of polyhedra, ie, one with an empty hole and another to fill the empty hole, as shown
in Figure 29. Four meshes are generated for each mesh type. The numbers of elements are 100, 250, 500, and 1000 for
the CVT and RVT meshes, and they are 200, 500, 1000, and 2000 for the particle meshes. Four stabilization schemes
are compared among each other, ie, diagonal matrix–based stabilization with 𝛼0 = 1/9 (case I), diagonal matrix–based
stabilization with 𝛼0 = 0 (case II), scalar-based stabilization with 𝛼s = tr(C)/nC (case III), and scalar-based stabilization
with 𝛼s= max([KE,c]ii) (case IV).

For each mesh type, the convergence of the VEM solution is investigated according to the cases of the stabilization
scheme, as shown in Figures 30-32. For all mesh types, the stabilization method with cases I, II, and IV provides a more
accurate approximation than the stabilization method with case III. Additionally, the results of case III lead to the mono-
tonic convergence of the VEM solution, whereas those of the other cases are not monotonic. Nonmonotonic convergence

(A) (B)

(C) (D)

FIGURE 30 Convergence of the three-dimensional centroidal Voronoi tessellation (CVT) meshes according to the stabilization schemes.
A, Diagonal matrix–based stabilization with 𝛼0 = 1/9; B, Diagonal matrix–based stabilization with 𝛼0 = 0; C, Scalar-based stabilization with
𝛼s = tr(C)/nC; D, Scalar-based stabilization with 𝛼s= max([KE,c]ii)
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(A) (B)

(C) (D)

FIGURE 31 Convergence of the three-dimensional random Voronoi tessellation (RVT) meshes according to the stabilization schemes.
A, Diagonal matrix–based stabilization with 𝛼0 = 1/9; B, Diagonal matrix–based stabilization with 𝛼0 = 0; C, Scalar-based stabilization with
𝛼s = tr(C)/nC; D, Scalar-based stabilization with 𝛼s= max([KE,c]ii)

is resulted from error cancellation associated with the stability term. For example, when the lower bound of the scaling
term (𝛼0) is set to zero (case II), the approximated KE,s may be lower than the exact KE,s, and thus, the VEM solution is
more flexible than the analytical solution, as shown in Figures 30B, 31B, and 32B. On the other hand, for stabilization case
III, the approximated KE,s may be stiffer than the exact KE,s, and thus, the VEM solution provides a smaller deformation
than the analytical solution, as shown in Figures 30C, 31C, and 32C.

A cantilever with inclusions is investigated using the particle mesh with 200 elements. The matrix is represented
by elements with a hole, whereas each particle is described by one element to fill the hole. The elastic modu-
lus of the matrix is fixed at 100, whereas the five cases of the elastic modulus of particles (Ep) are defined, ie,
three constant cases and two graded cases, as shown in Figure 33A. For the constant cases, the elastic modu-
lus is 1, 100, and 10 000. For the graded case, the elastic modulus of a particle is defined by a function value
at the centroid of a particle. Two exponentially varying functions are used, ie, Ep(x) = 10 000 exp(−4.6052x) and
Ep(x) = exp(4.6052x), which lead to the stronger and weaker elastic moduli of particles at the support, respec-
tively. Then, the displacement-time results are shown in Figure 33B. When the smaller elastic modulus is defined
at the support region, the corresponding displacement is larger than the displacement in the homogeneous case.
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(A) (B)

(C) (D)

FIGURE 32 Convergence of the three-dimensional particle meshes according to the stabilization schemes. A, Diagonal matrix–based
stabilization with 𝛼0 = 1/9; B, Diagonal matrix–based stabilization with 𝛼0 = 0; C, Scalar-based stabilization with 𝛼s = tr(C)/nC;
D, Scalar-based stabilization with 𝛼s= max([KE,c]ii)

Additionally, the period of the stiffer cantilever at the support is shorter than that of the homogeneous cantilever,
as expected.

5.4 Cook's beam with nearly incompressible solids
Wave propagation in Cook's beam with a nearly incompressible material is investigated. The geometry of the beam is
shown in Figure 34, and a uniformly distributed traction of P(t) is applied along the right edge, ie, P(t) = sin(𝜋t/5).
The domain is discretized into CVT meshes, and four meshes are generated with numbers of elements of 200, 400, 800,
and 1600. The elastic modulus and Poisson's ratio are selected as 250 and 0.49995, respectively, with the plane strain
condition, and the density is 1. Because of near incompressibility, the B-bar method is utilized using the scalar-based
stabilization scheme (𝛼s = 𝜇). Then, the VEM with the B-bar method is compared with the standard VEM (ie, without
the B-bar method), as shown in Figure 35. The two approaches provide the converged solution of the vertical dis-
placement, whereas the VEM with the B-bar method provides a more accurate solution than the standard VEM for
nearly incompressible solids. Additionally, the horizontal and vertical stresses at t = 5 are plotted in Figures 36A and
36B, respectively. The number of elements is 400, and the smooth stress fields are obtained for nearly incompressible
solids.



28 PARK ET AL.

(A) 

(B) 

Constant elastic modulus of particles

Stronger elastic modulus of particles at the support

Weaker elastic modulus of particles at the support

0 0.5 1 1.5 2
Normalized time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t

FIGURE 33 A, Five cases of elastic moduli of particles along the longitudinal direction; B, Computational results of each case [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 34 Geometry of Cook's beam example 48
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FIGURE 35 Convergence of the vertical displacement under mesh refinement. A, Virtual element method (VEM) with the B-bar method;
B, Standard VEM (ie, without the B-bar method). CVT, centroidal Voronoi tessellation

(A) (B)

FIGURE 36 Stress fields at t = 5 with nearly incompressible solids. A, Horizontal stress; B, Vertical stress

6 CONCLUSIONS

The VEM is utilized to solve 2D and 3D elastodynamic problems with explicit time integration. Convergence and sta-
bility of the numerical solution are addressed for arbitrary convex/nonconvex polygonal and polyhedral elements. The
key findings from our numerical recipes for an elastodynamic VEM with explicit time integration are summarized
as follows.

• Regardless of the stability term and element shapes, the VEM provides an optimal rate of convergence under mesh
refinement for elastodynamic problems.

• For the analysis of nearly incompressible solids, the VEM with the B-bar method is suggested. To construct a B-bar
formulation in the VEM setting, the stability term is modified to stabilize only the deviatoric part of the stiffness matrix,
which requires no additional computational effort. Computational results demonstrate that the VEM with the B-bar
method provides more accurate results than the standard VEM (ie, without the B-bar method).

• To approximate the critical time step in an elastodynamic VEM with explicit time integration, two approaches are
suggested, ie, the maximum eigenvalue of a local system and the effective element length. These two approaches con-
servatively estimate the critical time step obtained from the maximum eigenvalue of a global system, whereas the
estimated time steps are within the same order of magnitude.
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• The effective element length for polygonal elements is determined using the minimum element edge length and the
minimum length from the centroid to the nodes of an element. Computational results demonstrate that small edges in
polygons do not significantly affect the critical time step for convex elements, ie, CVT and RVT.

• In general, the diagonal matrix–based stabilization schemes with 𝛼0 = 1/3 for 2D and with 𝛼0 = 1/9 for 3D problems
provide the most accurate results in this study. According to the choice of the stability term in the stiffness matrix,
nonconvex meshes are more sensitive to the accuracy of the VEM solution than convex meshes.

• Diagonal scaling provides positive nodal masses in the VEM. However, the row sum technique does not guarantee
positive nodal masses with nonconvex elements, even for the linear polynomial space. Numerical instability is observed
when negative nodal mass appears with the row sum technique. Additionally, the nodal mass distribution with the
row sum technique is wider than the distribution with diagonal scaling.

• For the computation of the consistent mass matrix, as well as the lumped mass matrix obtained from the diagonal
scaling technique, a second-order numerical integration of polynomials within a polygon (or polyhedron) is needed for
the linear VEM. When the row sum technique is used to construct the lumped mass matrix, a first-order integration
is needed. The first-order integration can be efficiently achieved by a one-point rule, with the integration point and
weight being the centroid and volume of each element, respectively.

• The computational results of the VEM are compared with those of the FEM for convex elements (ie, CVT and RVT).
The VEM with the diagonal matrix–based stabilization can provide more accurate results than the FEM for CVT and
RVT meshes. For regular meshes (eg, CVT meshes), the critical time step is similar for both the VEM and the FEM.
For irregular meshes (eg, RVT meshes), the VEM can achieve a larger critical time step as compared to the FEM.
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