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a b s t r a c t 

We present a simple, effective, and scalable approach for significantly accelerating the convergence in 

Topology Optimization simulations. Specifically, treating the design process as a fixed-point iteration, we 

propose employing a recently developed acceleration technique in which Anderson extrapolation is ap- 

plied periodically, with simple weighted relaxation used for the remaining steps. Through selected exam- 

ples in compliance minimization, we show that the proposed approach is able to accelerate the overall 

simulation several fold, while maintaining the quality of the solution. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Topology optimization is finding increasingly widespread use

n a number of different fields, including aerospace engineering,

iomedical engineering, and architecture [1–3] . It consists of a

onlinear programming problem, which can be solved, for exam-

le, by means of sequential convex programming schemes [1,4] ,

uch as the Optimality Criteria (OC) update [1] and the Method of

oving Asymptotes (MMA) [5] . However, the large computational

ost associated with such simulations severely restricts the system

izes that can be studied, and ultimately, the resolution that can

e achieved in the final designs [6] . 

In order to obtain converged designs, the aforemen-

ioned techniques can require a large number (e.g. hun-

reds or even thousands) of optimization steps, with each

tep involving the solution of an ill-conditioned linear sys-

em. To accelerate the convergence of the design process,

 number of techniques have been proposed to incorporate

econd-order information. These include variants of the MMA

7–11] , sequential quadratic programming (SQP) [12,13] , and inte-

ior point algorithms [14] . In spite of significant advances, these

echniques are generally challenging to implement, have relatively

oor scaling with system size, and are associated with larger

omputational time, which makes them unattractive compared to

rst-order methods. 
∗ Corresponding author. 

E-mail address: phanish.suryanarayana@ce.gatech.edu (P. Suryanarayana). 
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In this work, we present a simple, effective, and scalable ap-

roach for accelerating convergence in Topology Optimization sim-

lations. Specifically, in order to accelerate the standard fixed-point

teration employed in such computations, we adopt a recently de-

eloped extrapolation method [15] that has found application in

arge-scale linear [15–17] as well as nonlinear [18–20] problems.

n this technique, Anderson extrapolations [21] are applied peri-

dically in the fixed-point iteration, with standard weighted relax-

tions used for the remaining steps. Through selected examples in

ompliance minimization, we demonstrate that the proposed ap-

roach can significantly accelerate the design process in the frame-

ork of the SIMP (Solid Isotropic Material with Penalization) ap-

roach and the OC update [1] . Notably, we find that the proposed

pproach is able to not only achieve significant speedup, but also

chieve lower objective function values. 

The remainder of this paper is organized as follows. We present

he accelerated fixed-point formulation of Topology Optimization

n Section 2 , verify its accuracy and efficiency through selected ex-

mples in Section 3 , and finally conclude in Section 4 . 

. Accelerated fixed-point formulation of topology optimization

In Topology Optimization, the solution of the design problem is

ypically achieved via a fixed-point iteration of the form 

 k +1 = g (x k ) , k = 0 , 1 , . . . (1)

here g denotes the mapping of the density vector x ∈ R 

N ×1 

etween consecutive iterations. This mapping is typically com-

rised of the solution of the equilibrium equation, filtering of the

https://doi.org/10.1016/j.mechrescom.2019.103469
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
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sensitivity/density, and the application of an update scheme (see

Algorithm 1 ). In the vicinity of the solution, a necessary condition

Algorithm 1 Periodic Anderson accelerated topology optimization

update. 

Initialize: x 0 , s, q, m, α, β, ε, iter max 

for k = 0 , 1 , . . . , iter max do 

Solve: K(x k ) u = d 

Compute and filter sensitivity 

Use an update scheme to compute: ˜ x k and f k 
if || f k || < ε then 

quit 

end if 

if k ≥ s then 

if k/q ∈ N then 

Obtain x k +1 : Anderson extrapolation ( β, m ) 

Restrict x k +1 to [0,1] 

else 

Obtain x k +1 : Weighted relaxation ( α) 

end if 

else 

Obtain x k +1 : x k +1 = ˜ x k 

end if 

Form K ( x k +1 ) 

end for 

for ensuring convergence of the above fixed-point iteration is 

σ (I − J ∗) < 1 , J ∗ = − ∂f 

∂x 

∣∣∣
x = x ∗

, (2)

where σ ( · ) denotes the spectral radius of the associated matrix,

I ∈ R 

N ×N is the identity matrix, and J ∗ ∈ R 

N ×N is the negative Jaco-

bian of the residual function: 

f (x ) = g (x ) − x , (3)

evaluated at the solution x ∗. In general, the condition given in

Eq. (2) is not necessarily satisfied and even in cases where it

holds, the convergence can be extremely slow, particularly when

σ (I − J ∗) ≈ 1 . Indeed, the convergence is faster as the value of

σ (I − J ∗) becomes smaller. 

In order to enhance convergence of the design process in Topol-

ogy Optimization, we propose generalizing the fixed-point iteration

in Eq. (1) to 

x k +1 = x k + B k f k , k = 0 , 1 , . . . , (4)

where f k = f (x k ) , and B k ∈ R 

N ×N are appropriately chosen matri-

ces. The necessary condition for ensuring convergence of the fixed-

point iteration now becomes 

σ (I − B k J 
∗) < 1 , (5)

with faster convergence again achieved for smaller values of the

spectral radius. Therefore, the ideal choice would be B k ≈ J ∗−1 ,

which unfortunately requires knowledge of the solution. 1 More im-

portantly, the calculation of such a matrix and its inverse in topol-

ogy optimization is prohibitively expensive, even for small to mod-

erately sized problems. This provides the motivation for the use of

an extrapolation technique that is not only able to accelerate the

convergence of the fixed-point iteration, but at the same time does

not require Jacobian related information. 

In view of the above discussion, we propose using a recently

developed fixed-point acceleration method [15] in which Anderson
1 It is possible to utilize the Jacobian of the residual function at the current iter- 

ate with the hope that it is sufficiently close to J ∗ . m
xtrapolation [21] is applied periodically within the fixed-point it-

ration, while a simple weighted relaxation is used in the remain-

ng steps. Mathematically, this translates to the matrix B k taking

he form [16] 

 k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

αI if (k + 1) /q �∈ N , 

βI − (X k + βF k )(F T k F k ) 
−1 F T k 

if (k + 1) /q ∈ N , 

(6)

here α ∈ R and β ∈ R are relaxation parameters, q ∈ N is the fre-

uency of Anderson extrapolation, and X k ∈ R 

N ×m and F k ∈ R 

N ×m 

re matrices containing the iteration and residual histories: 

 k = [�x k −m 

�x k −m +1 . . . �x k −1 ] , (7)

 k = [�f k −m 

�f k −m +1 . . . �f k −1 ] . (8)

bove, (m + 1) is the number of iterates used for Anderson ex-

rapolation, �x j = x j+1 − x j , and �f j = f j+1 − f j . Anderson extrap-

lation can be understood as taking the weighted average of the

revious (m + 1) iterates to generate the next iterate, with the

eights chosen so as to minimize the � 2 norm of the vector re-

ulting from the same weighted average of the previous (m + 1)

esiduals. Note that the matrix B k never needs to be calculated, but

ather only its multiplication with f k is required. Therefore, the ac-

eleration step is associated with low computational cost and com-

uter memory requirements. 

In Algorithm 1 , we summarize the above described fixed-point

ormulation for accelerating Topology Optimization simulations.

ach design cycle (i.e., fixed-point map g ) is comprised of solving

he equilibrium equation, computing and filtering the sensitivity 2 ,

nd updating the density field. As discussed above, the design pro-

ess is accelerated by employing Anderson extrapolations periodi-

ally, with weighted relaxation in the remaining steps. The accel-

ration is performed starting from step number s , since we have

bserved that applying the acceleration from the very beginning

an sometimes stagnate the design process. Note that, although the

cceleration step conserves the total volume, some elements of the

ensity vector can occasionally fall outside the range [0,1] after ap-

lying Anderson extrapolation. 3 Therefore, we restrict the elements

f the density vector to [0,1] after this step, which can result in

mall violations of the volume constraint. However, based on the

imulations performed in this work, we have found that such vio-

ations fade out as the iteration heads towards convergence. 

At first glance, it would appear that setting q = 1 , i.e., perform-

ng Anderson extrapolation every iteration is likely to be the opti-

al choice. However, similar to previous observations in the con-

ext of both linear [15,16] and nonlinear problems [18] , we have

ound that applying the Anderson extrapolation periodically pro-

ides substantially faster convergence, an observation that can be

ttributed to the better subspace over which the residual is min-

mized. 4 As is to be expected for nonlinear problems, both large

nd small values of the mixing history (i.e., m ) can negatively im-

act the convergence. In addition, larger values of the relaxation

arameters (i.e., α and β) can result in faster convergence, but at

he cost of the method being less stable/robust. Overall, the pro-

osed approach has the potential to significantly accelerate Topol-

gy Optimization simulations, as demonstrated by selected exam-

les in the next section. 
2 An alternative to filtering the sensitivity is the filtering of the density. 
3 In Topology Optimization, the density typically takes values in the interval [0,1]. 
4 We have also found that the proposed approach demonstrates superior perfor- 

ance compared to other extrapolation techniques such as Broyden mixing [22] . 



W. Li, P. Suryanarayana and G.H. Paulino / Mechanics Research Communications 103 (2020) 103469 3 

Fig. 1. 2D MBB beam with concentrated load. (a) Design domain. (b) Design gener- 

ated by OC. (c) Design generated by PAOC. 
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Fig. 2. Comparison of the performance of OC and PAOC for the 2D MBB beam with 

a concentrated load. (a) Objective function history. (b) Residual history. (c) Timing. 
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. Results and discussion 

In this section, we verify the accuracy and efficiency of the pro-

osed fixed-point formulation in accelerating Topology Optimiza-

ion simulations. Specifically, we consider the following compli-

nce minimization problem in the context of the finite-element

iscretization: 

min 

x 
u 

T K (x ) u 

s . t . 0 ≤ x e ≤ 1 and 

n e ∑ 

e =1 

x e ≤ V , (9) 

ith K (x ) u = d , 

here u = u (x ) denotes the displacement vector, K is the stiff-

ess matrix, x e denotes the component of the density vector x

orresponding to element number e, n e is the total number of

lements, V represents the volume fraction, and d is the force

ector. We implement the proposed acceleration scheme within

he top88 [23] and top3D [24] codes, which are used to study

D MBB (Messerschmitt-Bolkow-Blohm) and 3D cantilever beams

ith concentrated loads, respectively. In both examples, we employ
he modified SIMP approach [25] with the Optimality Criteria (OC)

pdate [1] . In this context, we refer to the proposed acceleration

cheme as PAOC (Periodic Anderson accelerated OC), an abbrevia-

ion we will use henceforth. We have found the following param-

ters to work well in PAOC: m = 3 ∼ 5 , q = 3 ∼ 5 , α = 0 . 8 ∼ 0 . 95 ,

nd β = 2 ∼ 9 . In addition, we have found that continuously in-

reasing the relaxation parameter β with design cycles helps in

ccelerating convergence. 

.1. 2D MBB beam with concentrated load 

We first consider a 2D MBB beam with a concentrated load,

s shown in Fig. 1 a. We choose a 600 × 300 mesh consisting of

-node quad bilinear elements, a volume fraction of V = 0 . 3 , pe-

alization of p = 3 , and sensitivity filter radius of r = 12 . In PAOC,

e select m = 4 , q = 4 , α = 0 . 9 , β = 4 + (k − s ) / 50 , and s = 50 . In

ig. 1 b and c, we present the final designs obtained by the OC
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Fig. 3. 3D cantilever beam with concentrated load. (a) Design domain. (b) Design 

generated by OC. (c) Design generated by PAOC. 
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and PAOC methods, which are practically indistinguishable. In fact,

PAOC is able to achieve lower values of the compliance (i.e., objec-

tive function) and the residual 5 , as demonstrated by the results in

Fig. 2 a and b, respectively. Furthermore, it is clear from the timings

presented in Fig. 2 c that PAOC is able to significantly accelerate the

convergence, demonstrating larger speedup for tighter tolerances.

In particular, PAOC requires a factor of 5 lower time compared to

OC for achieving a tolerance of 10 −6 in the residual. 

3.2. 3D cantilever beam with concentrated load 

We now consider a 3D cantilever beam with a end concentrated

load, as shown in Fig. 3 a. We discretize the design domain with a

160 × 80 × 80 mesh consisting of 8-node hexahedral trilinear ele-

ments, resulting in over 1 million elements. In addition, we choose

a volume fraction of V = 0 . 12 , penalization of p = 3 , and sensitiv-

ity filter radius of r = 8 . In PAOC, we select m = 4 , q = 4 , α = 0 . 9 ,
5 We are denoting the � 2 norm of the residual vector as the residual. 

i  

s  

g  
= 3 + (k − s ) / 50 ≤ 5 , and s = 25 . Given the relatively large size

f the problem, particularly for simulations in Matlab, instead of

sing a direct solver, we use the conjugate gradient (CG) method

26] with IC(0) preconditioner for solving the equilibrium equa-

ion. To further reduce the computational time, we use a contin-

ation strategy for the tolerance of the relative residual, wherein it

s made stricter by one order of magnitude every 50 design cycles,

tarting from 10 −4 up to 10 −8 . Although this leads to larger dis-

lacement errors in the early stages of the design process, it has

een found that the design sensitivity is insensitive to the accu-

acy of the linear system’s solution [6] . 

In Fig. 3 b and c, we present the final designs so obtained by

he OC and PAOC methods. As in the previous example, the de-

igns are indistinguishable and PAOC is able to achieve lower val-

es of the compliance (i.e., objective function) and the residual, as

emonstrated by the results in Fig. 4 a and b, respectively. Further-

ore, it is clear from the CPU times presented in Fig. 4 c that PAOC

s able to significantly accelerate the convergence, again demon-

trating larger speedup for tighter tolerances, requiring a factor of

reater than 3 lower time compared to OC for achieving a toler-
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nce of 10 −5 in the residual. Note that since the residual of the OC

id not reach 10 −6 in even 400 cycles, the corresponding time is

stimated by adopting a linear fit to the data in Fig. 4 b. Indeed,

he linear fit provides a lower bound on the speedup, since the

ncrease in time as a function of residual is worse than linear, as

hown in Fig. 2 . 

.3. Discussion 

We have shown that PAOC significantly accelerates the conver-

ence of the design process in Topology Optimization simulations.

ince the additional time associated with the extrapolation is neg-

igible (less than 0.1% of the total time for the problems investi-

ated), the reduction in the number of iterations required directly

ranslates to the observed speedup. Note that the speedup of PAOC

ver OC reduces as the sensitivity filter radius becomes smaller,

hich is to be expected due to the reduced smoothness of the so-

ution. Interestingly, PAOC is also able to achieve smaller values of

he objective function, an observation that warrants further inves-

igation. Due to the non-convex nature of the problems, PAOC can

ndeed converge to different designs compared to OC, even though

his was not the case for the examples studied here. A limitation

f PAOC that warrants further investigation is the apparent stag-

ation for the choice of a density filter. It is worth noting that

he extrapolation technique employed here can be used to accel-

rate the Richardson/Jacobi fixed-point iteration [16] , resulting in

he AAR linear solver. AAR can outperform state-of-the-art Krylov

ubspace solvers like CG and GMRES [27] , with larger speedups as

he number of processors increase in parallel computing. This has

he potential to further increase the size of problems that can be

tudied using Topology Optimization. 

. Conclusions 

We have presented a new strategy for accelerating convergence

n Topology Optimization simulations. Specifically, viewing the de-

ign process as a fixed-point iteration, we have proposed employ-

ng a recently developed acceleration technique in which Ander-

on extrapolations are applied periodically, with simple weighted

elaxation used for the remaining steps. For the specific problem

f compliance minimization, we have shown through selected ex-

mples that the proposed approach is able to not only accelerate

he complete simulation several fold, but also achieve lower values

f the objective function. Overall, the proposed approach is simple,

ffective, and scalable. Topics for future investigation include ad-

ressing larger-scale problems through parallel computing, and the

tudy of problems other than compliance minimization, e.g. com-

liant mechanisms, multiphysics problems, and problems with lo-

al constraints. 
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