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Supporting Information Text

1. Kresling Pattern Geometry and Design

A. Geometry. In this paper, we engineer the Kresling pattern (1, 2) to obtain desired mechanical properties and precise
actuation. From a geometry perspective, the Kresling pattern is nonrigid origami and presents two stable states per unit cell.
That means that each unit cell cannot transition between those two stable states through folding of the hinges alone. Each
unit cell is tessellated with triangulated panels of equal geometry, that is, same panel angle α and lengths a and b (Fig. S1). In
terms of geometrical assemblage, it is composed of multiple unit cells N , with the same or distinct geometries, that behave
independently from each other. In fact, because each unit cell has two stable states, we can have 2N stable states.

The vertices of the triangles, when folded, all lie on the top and bottom polygon circumscribed circles. Those polygons
twist in relation to each other, and the angle between them is the twisting angle (ψ). This angle varies from ψ1 (deployed) to
ψ2 (folded) as the unit cell is folded, showing the coupling between rotation and axial displacement. The Kresling pattern is
designed based on the height of the unit cell in the two stable states, number n of polygon edges, and corresponding edge
lengths, b. From those parameters, we compute the design parameters of the crease pattern, that is panel length a and angle α,
as provided in (3)
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where H0 and H are the heights in the stable states [0] and [1], respectively, and
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The twisting angles in the two stable configurations are computed as

ψ1 = 2 tan−1 x1, ψ0 = 2 tan−1 x0 [S6]

When the twisting angle between bottom and top vertices of a valley fold is equal to 180◦, that is ψ0 = π − 2π/n, the valley
folds meet at the center, making this a critical design. If ψ0 > π − 2π/n, the pattern will experience contact among its panels
and will not be able to reach the folded stable state. This angle restriction results in a design constraint on the choice of the
height difference between stable states (3),

|H2 −H2
0 | ≤ cot2(π/n) [S7]

In this paper, because we work with compact assemblies that have large changes in geometry, we opt for flat-foldable designs,
that is, we design the unit cells to have zero height at the folded state (H0 = 0). In addition, all the designs are based on
hexagons (n = 6) with sides length b = 13 mm, resulting on height restriction of Hcrit = 22.52 mm. Respecting this design
constraint, we investigate unit cells with H = 15.6 mm, 16.9 mm, 18.2 mm, and 20.8 mm (see Table S1). For each unit cell, we
define the folded and deployed stable states as state [0] and state [1], respectively (Fig. S1A).

B. Mechanics. Geometrically, the Kresling pattern always presents bistability, with an energy barrier correlated to the height
of the unit cell. However, this statement is only valid under the assumption of zero stiffness hinges. In reality, the crease lines
store energy as we fold the pattern, making the existence of bistability dependent on the material properties of both hinges and
panels. To guide our design, we simulate the unit cells with distinct heights (Fig. S2) using the MERLIN software (4). This
software uses a nonlinear formulation combined with the modified generalized displacement control method (5), which allows
tracking of the complete equilibrium path, even for structures displaying snap-type behavior, as is the case of the Kresling
pattern. The MERLIN software uses a reduced order model (6, 7) that considers the crease lines as bars with rotational springs
along them. For non-triangular (quadrilateral) panels, this model adds an extra bar along the panels’ shortest diagonals to
avoid mechanisms and to approximate the bending of the panels. However, because the Kresling pattern is already tessellated
by triangles, the simulation will not consider any bending of the panels and consider that all the deformation occurs either by
the folding of the hinges or stretching of the crease lines and panels. The reduced order model provides information on the
global behavior of the unit cell and how the geometry is correlated with the energy barrier between stable states (4).
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2. Samples Fabrication

We fabricate each unit cell of the Kresling pattern by perforating and cutting the pattern on Tant origami paper (0.1mm thick)
with the PLS4.75 laser cutting system (Universal laser systems). The Kresling pattern is modified to a flower-like shape (Fig.
S1B) to accommodate the cuts along the mountain folds. Those cuts avoid kinks in the mountain folds, creating samples with
similar response on multiple folding cycles (8). After the pattern is folded, we use 3M Scotch double sided tape to attach the
top and bottom polygons (Fig. S1C). These polygons are made of 160g/m Canson Mi-Teintes paper (0.2 mm thick), a thicker
paper meant to provide stiffness and avoid bending of the polygons.

To the top of each unit cell, we attach the magnetized plate using Sil-Poxy silicone adhesive. We fabricate the magnetized
plates by first mixing Ecoflex 00-30 silicone rubber and NdFeB particles into a homogeneous mixture with 30% NdFeB volume.
This mixture is poured into a circular 3D-printed mold with 22mm of diameter and 3mm of depth and cured for one hour at
60◦C. Next, we magnetize the plates using a magnetizer with an 1.5T impulse magnetic field. In Table S2, we provide the
magnetization directions of the magnetic plates at the folded state with respect to the x axis and the geometries of the unit
cells for the Kresling assembly presented in the main text.

We investigate the variability of the mechanical properties over multiple compression cycles. In Fig. S3, we show the
force-displacement response of a design 3 unit cell (see Table S1) up to its 500th folding cycle. We observed that the mechanical
response stabilizes around the cycle 300. Thus, for consistent results, all the samples were folded and deployed up to 300 times
prior to performing the magnetic actuation and mechanical tests reported in this work.

3. Mechanical Test

We test the mechanical properties of the Kresling unit cells under compression using a customized testing bed (Fig. S4) that
was previously reported in (9). The setup consists of a metallic frame that integrates two steel plates. One plate is fixed and is
connected to a 50N capacity load cell (RSP1, Loadstar Sensors) with accuracy to 0.02% full scale. The other plate is movable
and is controlled by a stepper motor (STP-MTR-23079, SureStep). The testing bed has a safety mechanism that limits the
distance between the two plates to be no smaller than 15mm, which is about the size of our samples. To overcome this size
limitation, we add a 3D-printed sample holder to the setup.

From the experiments, we observe that the stable states of the samples differ from the geometric folded stable state. In
reality, the folded stable state is not equivalent to the flat-foldable state (that is, H0 > 0). Similarly, the rotational angles δθ
are also different from those geometrically computed ∆ψ and reported in Table S1. This difference comes from the fact that
the fabricated samples have panels with thickness and hinges with stiffness, while the geometric model assumes panels with
zero thickness and hinges with zero stiffness.

A. Setup #1: Folding of the Unit Cell. For each unit cell design in Table S1, we test five samples under compression. For the
tests, we attach one end of the unit cell to the sample holder, while leaving the other end completely free (Fig. S4). The free
end is compressed against the fixed plate. To reduce the friction between the sample and the fixed plate, we lubricate the
fixed plate before each test. Note that because the sample has no physical connection to the fixed plate, once the sample
snaps, the free end loses contact with the load cell (see snapshots in Fig. S3). This results in the region with zero load in the
force-displacement curves. Once the free end reaches the load cell again, we see the load increasing (Fig. 3A).

B. Setup #2: Folding and Deployment of the Unit Cell. Because we need to measure the required forces to both fold (compress)
and deploy (pull) the unit cell, we modified the boundary conditions of the testing setup. For deployment, we need to constrain
both ends of the unit cell, while allowing for rotation of the end in contact with the fixed plate. Thus, we use a wire to attach
the crease pattern to a pre-lubricated acrylic plate (Fig. S5A). In the acrylic plate, we laser cut a hole and a slot, allowing for
the wire to pass through the plate and to be folded into the slot. This wire connection is enough to constraint the unit cell to
the plate, while allowing for it to freely rotate. Once the attachment is done, we fold the unit cell, as described previously (Fig.
S1C). Next, we attach the acrylic plate to the testing bed fixed plate and attach the bottom of the unit cell to the sample
holder (Fig. S5B,C). We first compress (fold) each unit cell from the deployed to the flat-folded state. Because both ends
of the unit cell are constrained, the sample will not lose contact with the load cell. Thus, we obtain the entire equilibrium
path between the stable states (Fig. S6) in which we observe a change in the direction of the axial load (from compression to
tension). Once the unit cell reaches the stable state [0], the load changes direction again (from tension to compression) and the
unit cell is compressed until it reaches the flat-folded state. After reaching the flat-folded state, we start the deployment of the
unit cell. At first, the unit cell deploys without any force being applied (i.e., the unit cell experiences unloading). After a stable
state is reached, the unit cell starts to experience tension. Similarly to the folding process, we capture the entire equilibrium
path and we observe a change in the direction of force (from tension to compression). Once the unit cell reaches another stable,
further deployment is only possible under tension (Fig. S6).

C. Mechanical Properties of the Four-Cell Kresling Pattern. We investigate the mechanical tunability of the four-cell Kresling
pattern (Fig. 3D,E) by axial compression of the assembly at all sixteen stable states. The assembly is composed of unit cells
with designs 1 to 4 (top to bottom) presented in Table S1. However, because the folded unit cells (state [0]) are not completely
flat-folded during the experiments, we decided to remove them for a better quantification of the stiffness of the assembly in
each state. Thus, we test only the unit cells that are deployed. For example, the quantification of the stiffness of the stable
state [1001] involves testing the assembly using only the unit cells with design 1 and 4.
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For each one of the sixteen stable states, we test the same assembly sample under compression three times using the
experiment setup #1 described in SI Section 3A. That is, the assembly has one end attached to the sample holder, and the
other end is free. The legend in Fig. S7 refers to the stable state of the unit cells (from bottom to top), and it is in this figure
that we show the averaged force-displacement curves for all three tests in each of the stable states. By comparing those curves,
we observe a dramatic change in the mechanical behavior between some of the stable states, showing that we can use our
actuation method to tailor the mechanical properties of a Kresling metamaterial.

From the force-displacement curves, we obtain the stiffness K. This stiffness is defined as the slope of the first linear region
of the force-displacement curves. In Fig. 3E, we compare theoretical values of the equivalent modulus for each state with the
measured values. The theoretical values are obtained from the simplification of the four-cell assembly to a system of springs in
series, where the stiffness of each spring corresponds to the stiffness of each unit cell that is obtained from the compression test.
Thus, we compute the theoretical stiffness Keq as

1
Keq

=
N∑

i=1

1
Ki

[S8]

where Ki is the stiffness of each spring (i.e., unit cell) i in the deployed state and N is the number of deployed unit cells.
Because the values of Ki are obtained experimentally, in Fig. 3E, we provide the theoretical values computed with the
averaged (columns), maximum and minimum (error bars) stiffness values. The averaged measured values for single unit cells
are K1 = 0.25 N/mm, K2 = 0.39 N/mm, K3 = 0.59 N/mm, and K4 = 1.26 N/mm.

In Fig. S8, we provide a comparison of the modulus E of each state, which is defined as the slope of the first linear region of
the stress-strain (σ-ε) curves, being expressed as

E = σ

ε
= F

A

H

∆H [S9]

where F is the measured force, A is the area of the unit cell polygon, ∆H is the applied displacement, and H is the sum
of the heights of the deployed unit cells. The averaged measured values for single unit cells are E1 = 0.86 × 10−2 N/mm2,
E2 = 1.4× 10−2 N/mm2, E3 = 2.4× 10−2 N/mm2, and E4 = 5.9× 10−2 N/mm2.

4. Magnetic Actuation Experiment

A. Electromagnetic Coil. The Kresling patterns with magnetic plates are actuated within a customized electromagnetic coil
system, which can generate a two-dimensional (2D) uniform magnetic field (Fig. S9). Two sets of standard Helmholtz coils are
configured perpendicularly to each other in the xy-plane. The in-plane magnetic field direction and intensity can be accurately
controlled by the current in the coils. The coils can generate 2.7 mT/A and 3.3 mT/A uniform magnetic fields with 60mm and
80mm spacing for the x and y axes, respectively.

B. Uniformity of Magnetic Field. In order to quantitatively study the magnetic field distribution, finite element analysis is
performed to show that the magnetic field generated by the two pairs of Helmholtz coils are sufficiently uniform in both axial
direction and perpendicular direction. The 2D Helmholtz coil used for magnetic actuation is shown in Fig. S9. Defining the
central point in the 2D coils as the origin of the xyz coordinate system, the simulation results of the magnetic field distribution
with 10A current in the coils are shown in Fig. S10. Here we define the uniformity of the magnetic field in any axis as
1− (Bmax −Bmin)/Bcenter, where Bmax, Bmin, and Bcenter are the maximum, minimum, and central fields within the defined
range, respectively.

The magnetic field used to actuate the origami is in the xy plane. The distances between two coils in the x and y axes are
80mm and 60mm, respectively. The field in x direction is denoted by Bx, which is generated by a pair of coils along the x axis.
The field in y direction is denoted by By, which is generated by a pair of coils along the y axis. The uniformities of Bx along
the x axis and z-axis are 98.8% and 99.9%, respectively, for the working space between -40 mm and 40 mm. The uniformities
of By along the y-axis and z axis are 99.0% and 99.8%, respectively, for the working space between -30 mm and 30 mm. The
simulation results indicate that the magnetic field generated by the two pairs of Helmholtz coils are sufficiently uniform in all
directions.

The origami assemblies in this paper are more sensitive to the uniformity of the magnetic field along the z axis, especially
when the number of the unit cells is large. The maximum height of the origami assembly in this paper is about 85 mm as
shown in Fig. 2 and Fig. S10. For this height, the uniformity of the magnetic field can be larger than 98.5% in both xy plane
and z axis. Even when the height increases to 120 mm, the uniformity can still reach 93.2%, which is sufficiently high for this
application.

C. Magnetic Actuation. All Kresling unit cells and multicell assemblies are tested in the 2D electromagnetic coils. The Kresling
samples are attached to an acrylic support (Fig. S9), so that only the bottom polygon is constrained against any type of
displacement, and the other end is completely free. All magnetic plates are placed parallel with the xy plane of the coils. The
induced magnetic torque can fold and deploy the patterns along the z axis. Then, a specific direction of the magnetic field is
set, and the amplitude increases from 0 mT to 30 mT at a rate of 1 mT/s. When the Kresling patterns change states, the
corresponding magnetic field is recorded. This is the minimum required magnetic field to actuate the Kresling pattern in this
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specific direction. Then, we change the magnetic field direction and repeat the same procedure. A step of 5◦ is used to scan
the xy-plane from 0◦ to 360◦. We fit the recorded magnetic field direction and amplitude data using the Fourier series and plot
the corresponding experimental contours of magnetic actuation (Fig. 1C and E, Fig. 2D, Fig. 3C, Fig. S11C, Fig. S12, and
Fig. S13).

5. Distributed Actuation

A. Unit cell Actuation. Each Kresling pattern can be locally actuated (i.e., folded and deployed) under a magnetic field B. In
Fig. 1A-C and Fig. S11, we show the actuation process and required actuation parameters (θB and B) for the folding and
deployment a design 3 (Table S1) unit cell, respectively. We define Tr+ and Tr− as the required torques to fold and deploy,
respectively, the unit cells. Because of rotation and displacement coupling of the Kresling pattern (SI Section 6), the required
torques are obtained from the uniaxial test with displacement control described in SI Section 3B.

B. Assembly Actuation. From the individual actuation allowed by the attached magnetic plates, a local torque can be induced
in each unit cell. In Fig. S12, we show the contour plots with the required actuation parameters (B and θB) for the two-cell
Kresling assembly (Fig. 1D) from, and to, any stable state. Following, we discuss the actuation from the [00] to the states [01],
[10], and [11] for the assembly shown in Fig. 1D:

• From Global State [00] to [10]: The change of state occurs under a magnetic field with intensity B = 20 mT and
direction θB = 120◦. The magnetic field induces a counterclockwise magnetic torque, which is enough to deploy the
bottom unit cell, but not the top unit. Thus, only the bottom unit cell deploys, rotating by δθ1. The top unit cell remains
in the folded configuration, rotating by δθ1 as a rigid body with the bottom unit cell.

• From Global State [00] to [01]: The change of state occurs under a magnetic field with intensity B = 20 mT and
direction θB = 240◦. In the bottom unit cell, the magnetic field induces a clockwise magnetic torque that is opposite to
the rotation direction for deployment, preventing the state change (δθ1 = 0). While, in the top unit cell, the magnetic field
induces a counterclockwise torque larger than the required torque (i.e., T < Tr−), leading to the unit cell deployment
with a rotation δθ2.

• From Global State [00] to [11]: The change of state occurs under a magnetic field with intensity B = 20 mT and
direction θB = 180◦. In both bottom and top unit cells, the magnetic field induces a counterclockwise torque larger than
the required torque (i.e., T < Tr−). Thus, the bottom unit cell rotates by δθ1 and the top unit cell rotates by δθ1 + δθ2.

6. Rotation and Displacement Coupling

Because the Kresling pattern displays a coupling between compression and torsion, we can obtain the required torque to
fold the unit cells from the uniaxial compression test. Thus, we use a compression test setup to measure the force needed to
transition between the two stable states of the pattern (Fig. 3A). From the measured results, we obtain the stored energy. The
derivative of the stored energy with respect to the rotation angle variation δθ results on the torque (Tr+) required to fold the
unit cells. Thus, we express the stored energy as a function of δθ, instead of ∆H (Fig. S14). With the torque, we compute the
parameters (B and θB) needed to actuate each one of the unit cell designs (Table S1), which are provided in Fig. S13.

Although the Kresling pattern has a coupling between rotation and axial displacement, the relationship between the two
is not available from kinematic equations. Because the Kresling pattern is a nonrigid origami, we only have a geometrical
relationship between height and rotation angle δθ at the stable states. Thus, we approximate this relationship from the
simulation of each unit cell under axial load using the MERLIN software (4). From the displacement history of the nodal
coordinates, we obtain both the axial and rotational displacements of the unit cell. We approximate this data by a polynomial
function and use this function to plot the stored energy as a function of the rotation angle.

7. Material Characterization

A. Mechanical Properties. To measure the stiffness of the hinges, we test samples with a primary hinge manufactured with the
same process as the valley folds of the Kresling unit cell samples. That is, the hinge is cut with a dashed line pattern and is
folded and deployed for 300 cycles. Parallel to the primary hinge, we add secondary hinges that are made weaker than the
primary one, making the stiffness at those hinges close to zero.

Each end of the sample is attached to an acrylic plate. Those plates have a slit cut, allowing for the edges of the sample to
pass through it and be folded and taped on the other side. The acrylic plates are assembled to the test bed shown in Fig. S4,
such that one plate is attached to the sample holder and the other to the fixed plate (Fig. S15). From the experiment, we
measure the displacement d and force F , and with this information, we calculate the bending moment Mb and the change in
folding angle δφ as

Mb = Fδ`, δφ = 2 sin−1(d0/2b)− 2 sin−1(δd/2b) [S10]
where δ` is the vertical distance between the edges and the hinge, b = 13 mm is the panel size, d0 = 21 mm is the initial
opening of the hinge, and δd = d0 − d (Fig. S15B). From the slope of the bending moment versus folding angle curves, we
obtain the rotational stiffness of the hinges. This value is divided by the length of the hinge, that is 50 mm, resulting on an
average stiffness of kf = 2.4× 10−3 N·mm(rad·mm)−1.
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B. Magnetic Properties. The magnetic properties of the magnetic material for the plates are measured on a Vibrating Sample
Magnetometer (VSM, 7400A series, Lake Shore Cryotronics, Inc., Chicago, IL, USA). The magnetic moments of the material
under external magnetic field (B) from -1.5 T to 1.5 T are scanned and recorded. The corresponding magnetic moment
densities (M) are calculated from the magnetic moments by dividing by the sample volume. From the measured M-B curve in
Fig. S16, the remanent magnetic moment density (Mr) is 177.39 kA/m and will be used as the magnetization intensity M for
analyzing the magnetic actuation performance in the next section.

8. Analytical Calculation for Magnetic Actuation

Under a uniform magnetic field, the magnetic torque (T ) will be induced to align the magnetization direction of the magnetic
material to the external magnetic field and is calculated as

T = BMV sin(θM − θB) [S11]
where V is the volume of the magnetic plate, B is the magnetic field intensity, θM and θB are the directions of the magnetization
and the external magnetic field, respectively. With the folding process of a Kresling pattern as an example in Fig. 1A, the
Kresling pattern will rotate clockwise. The angles of δθs and δθ are defined as the angle difference between two stable states
and the real-time rotation angle during the actuation process, respectively. The Kresling pattern can be changed to state [0]
(folded) when the magnetic torque (T ) is larger than the required torque (Tr+) at any angle δθ (Fig. 1B). In the analytical
calculations, 0.1◦ is chosen as the angle step.

The state of the Kresling pattern under a specific magnetic field direction and amplitude will be determined as in the
flowchart shown in Fig. S17, and the states of the Kresling patterns under different magnetic field directions can be predicted
numerically with the same flow. The analytical results shown in Fig. 1C, Fig. S11C, and Fig. S13 display good agreement
with the experimental results.

9. LED Circuit

A. Fabrication. In the modified crease pattern (Fig. 4B), we glue a layer of foam to the unit cell, followed by a layer of copper
tape (0.1 mm thick). Next, we connect the copper tape to a copper wire and finally fold and assembly the unit cells and
magnetized plates.

B. Schmitt trigger circuit. Schmitt trigger is a frequently used analog-to-digital converter circuit, which exhibits the same
bistable characteristic as the designed Kresling patterns. The applied magnetic torque can be used to change the states of
the Kresling pattern between state [0] and state [1]. In correspondence, the input voltage of the Schmitt trigger can be used
to change its output between UH and −UH , which are regulated by reverse connected Zener diodes. Therefore, the applied
magnetic torque can be considered as the input of the “origami Schmitt trigger”. Fig. S18A shows the typical hysteresis loop of
the “origami Schmitt trigger”. To show the similar characterization between Schmitt trigger and a Kresling pattern unit cell, a
demonstration of two LEDs with different colors showing the different states is designed and its comprehensive circuit is shown
in Fig. S18B. When the applied magnetic torque is larger than the positive required torque of the specific Kresling pattern, the
output voltage is UH , which can be used to drive controllable switches. The green LED is short-circuited by Switch 1 and the
blue LED is turned on to indicate the state [0] of the unit cell. In contrast, when the applied magnetic torque is smaller than
the negative required torque, the output voltage will snap to −UH . In this case, the controllable switch will be opened. The
green LED is turned on to indicate state [1] of the unit cell. The Zener diodes D1 and D2 with Zener voltage of UH are used to
regulate the output voltage U0. The reference input Tref and resistances R1 , R2 are used to reflect the mechanical properties
of the Kresling pattern. As we have already measured the positive and negative required torque of the specific Kresling pattern,
Tref and the ratio between R1 and R2 can be calculated as

Tref = UH(Tr+ + Tr−)
2UH + Tr+ − Tr−

,
R1

R2
= Tr+ − Tr−

2UH
[S12]

C. LED demonstration for Kresling pattern assembly. For the LED circuit in Fig. 4, we use designs 1,3 and 4 (green, yellow
and red unit cells, respectively) to create the logic circuit. Fig. S18(C) shows the schematic of the LED demonstration for
Kresling assembly. As the three unit cells have different mechanical properties, the corresponding “Origami Schmitt trigger”
has different input references and resistance ratios. And their input torques can be calculated as

T1 = TM1 + TM2 + TM3, T2 = TM2 + TM3, T3 = TM3 [S13]

where TM1, TM2, and TM3 are the applied magnetic torques of each unit cell.
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Fig. S1. Kresling pattern (A) geometry, (B) crease pattern, and (C) fabrication steps.
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Fig. S2. Simulation of the Kresling unit cell used to guide the geometric design. (A) Bar-and-hinge model representing the unit cell. Valley folds (blue lines) are modeled by bars
with area A ≈ t × b, where the paper thickness t = 0.1 mm and b = 13 mm, and rotational springs with stiffness kf = 2.4 × 10−3 N·mm(rad·mm)−1. Mountain folds
with slit cuts (dashed lines) are modeled as bars with area Aslit ≈ 0.5A and rotational springs with stiffness kslit ≈ 0.01kf . Arrows represent the direction of applied
displacement 0.9Hi (i = 1..4). (B) Stored energy vs. displacement curve. Force-displacement curves for (C) Design 1 (H1 = 15.6 mm), (D) Design 2 (H2 = 16.9 mm),
(E) Design 3 (H3 = 18.2 mm), and (F) Design 4 (H4 = 20.8 mm).
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Fig. S3. Kresling pattern (Design 3, H = 18.2 mm) responses up to 500 compression cycles and snapshots of the experiment. Points a, b, and d are contact points, while
point c is a non-contact point. Note that once the unit cell snaps, it loses contact with the load cell (e.g. point c), resulting on null forces until the contact is restored (e.g. point d).
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Fig. S4. Compression test (setup #1). (A) Compression test bed and (B) Schematic of the test with fixed-free boundary conditions.
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Fig. S5. Compression and Tension test (setup #2). (A) Modified sample with a wire connection to an acrylic plate. (B) Sample assembled in the test bed. The sample is directly
attached to the sample holder and the acrylic support to the fixed plate. (C) Schematic of the test setup.
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Fig. S6. (A) Force-displacement curve obtained from the compression/tension test (setup #2) of the Design 3 unit cell. (B) Torque-rotation curve obtained from the derivation of
the stored energy. (C) Snapshots of the experiment. Note that the left side of the sample is fixed to the sample holder and the right side uses a wire connection that constrains
the unit cell while allowing for free rotation. The constraints at both ends permit the measurement of the entire equilibrium path. Contact at the right-hand-side of the setup is
maintained at all times (points a, b, c, d).

12 of 31 Larissa S. Novelino, Qiji Ze, Shuai Wu, Glaucio H. Paulino, Ruike Zhao



Fig. S7. Average force-displacement curves of the sixteen stable states of the four-cell Kresling assembly, where H1 = 15.6 mm, H2 = 16.9 mm, H3 = 18.2 mm, and
H4 = 20.8 mm. For this test, we use setup #1 (Fig. S4). Legend refers to the state of each unit cell (bottom to top).
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Fig. S8. Tunable mechanical response of the four-cell Kresling assembly. From multiple consecutive testing cycles, we obtain the average (columns) and maximum/minimum
(error bars) values of the modulus E (Eq. S9)
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Fig. S9. Magnetic actuation setup with electromagnetic coils. Bottom schematic shows the boundary conditions of the sample inside the coils.

Larissa S. Novelino, Qiji Ze, Shuai Wu, Glaucio H. Paulino, Ruike Zhao 15 of 31



Fig. S10. The magnetic field distributions of 2D Helmholtz coils. (A) Bx along x axis. (B) Bx along z axis. (C) By along y axis. (D) By along z axis.

16 of 31 Larissa S. Novelino, Qiji Ze, Shuai Wu, Glaucio H. Paulino, Ruike Zhao



Fig. S11. Magnetic actuation of the Kresling pattern (H = 18.2 mm) from folded state [0] to deployed state [1] (A) Schematic of the actuation process, where θB = 240◦ is
the direction of the magnetic field B, and the magnetization M has direction θM = 129◦ . (B) Torque Tr− is required to switch the unit cell stable state, and the torques
produced by the magnetic actuation versus the rotation angle δθ (C) Contour plot of the experimental and analytical (dashed lines) results for the deployment, showing if the
unit cell will switch from stable state [0] to stable state [1], depending on the direction of the magnetic field θB and intensity of the magnetic field B.
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Fig. S12. Contour plots for the experimental measurements of the magnetic actuation of the two-cell Kresling pattern with same crease direction (Fig. 1). Actuation results from
global (A) state [00], (B) state [01], (C) state [10], and (D) state [11].
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Fig. S13. Magnetic actuation contours for unit cells with geometries in Table S1. (A) Design 1 (H1 = 15.6 mm). (B) Design 2 (H2 = 16.9 mm). (C) Design 3 (H3 = 18.2
mm). (D) Design 4 (H4 = 20.8 mm).
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Fig. S14. Mechanical response obtained from the average of the force-displacement curves (Fig. 3A) of the unit cells tested with fixed-free boundary condition, i.e., setup #1
(Fig. S4). (A) Stored energy and (B) Torque required to fold each designed unit cell, where δθ is the rotation angle. Dashed lines represent the region in which the unit cell
loses contact with the load cell.
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Fig. S15. Characterization of the rotational stiffness of the hinges. (A) Testing setup and (B) schematics. (C) Tested sample, where b = 13 mm. (D) Measured bending
moment vs. rotation at the primary hinge, with each curve corresponding to one tested sample. From those curves, we obtain an average rotational stiffness kf = 2.4 × 10−3

N·mm(rad·mm)−1
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Fig. S16. The M-B curve of the magnetic material
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Fig. S17. Flowchart of the analytical calculation algorithm for the magnetic actuation of single unit cell with initial state [1]. Inset shows three different stages of the Kresling
Pattern.
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Fig. S18. (A) Hysteresis loop and (B) schematic of the Origami Schmitt Trigger for a Kresling unit cell. (C) Schematic of the LED demonstration for Kresling pattern assembly
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Fig. S19. Movie 1: Controlled origami actuation.
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Fig. S20. Movie 2: Distributed actuation of a two-cell Kresling assembly.
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Fig. S21. Movie 3: Distributed actuation of Kresling assemblies with reverse creases
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Fig. S22. Movie 4: Multifunctional Kresling assembly for digital computing
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Table S1. Geometry of the Kresling Unit Cells

Design H (mm) α c (mm) a (mm) ψ1 ψ2 ∆ψ

1 15.6 107.72◦ 16.66 17.34 35.44◦ 84.56◦ 49.12◦

2 16.9 105.40◦ 17.60 18.26 30.80◦ 89.20◦ 58.40◦

3 18.2 102.77◦ 18.61 19.08 25.54◦ 94.46◦ 68.92◦

4 20.8 96.18◦ 20.87 20.99 12.35◦ 107.65◦ 95.30◦

Larissa S. Novelino, Qiji Ze, Shuai Wu, Glaucio H. Paulino, Ruike Zhao 29 of 31



Table S2. Unit cells design and actuation

Structure Geometry Magnetization direction
(Fixed to Free end) Folded

Unit cell (Fig. 1A-C, Fig. S11) Design 3 θM = 129◦

Two-cell assembly (Fig. 1D-E, Fig. S12) Design 3 (bottom) θM = 0◦

Design 3 (top) θM = 90◦

Reversed creases assembly (Fig. 2) Design 3 (orange) θM = 0◦

Design 3 (blue) θM = −90◦

LED assembly (Fig. 4) Design 1 (green) θM = 0◦

Design 3 (yellow) θM = 90◦

Design 4 (red) θM = 180◦
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Movie S1. Controlled origami actuation.

Movie S2. Distributed actuation of a two-cell Kresling assembly.

Movie S3. Distributed actuation of Kresling assemblies with reverse creases.

Movie S4. Multifunctional Kresling assembly for digital computing.
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