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Origami structures demonstrate great theoretical
potential for creating metamaterials with exotic
properties. However, there is a lack of understanding
of how imperfections influence the mechanical
behaviour of origami-based metamaterials, which, in
practice, are inevitable. For conventional materials,
imperfection plays a profound role in shaping their
behaviour. Thus, this paper investigates the influence
of small random geometric imperfections on the
nonlinear compressive response of the representative
Miura-ori, which serves as the basic pattern for many
metamaterial designs. Experiments and numerical
simulations are used to demonstrate quantitatively
how geometric imperfections hinder the foldability
of the Miura-ori, but on the other hand, increase its
compressive stiffness. This leads to the discovery that
the residual of an origami foldability constraint, given
by the Kawasaki theorem, correlates with the increase
of stiffness of imperfect origami-based metamaterials.
This observation might be generalizable to other flat-
foldable patterns, in which we address deviations
from the zero residual of the perfect pattern; and to
non-flat-foldable patterns, in which we would address
deviations from a finite residual.

1. Introduction and motivation
Mechanical metamaterials exhibit unconventional
behaviour that is rarely found in natural materials
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[1–4]. Their exclusive properties and functionalities arise from carefully architected microscopic
structures, for which origami is a rich source of inspiration [5–26]. Origami-based metamaterials
are able to produce negative Poisson’s ratio [6–11], acoustic bandgaps [12], multi-stability [13–
16,27], programmable thermal expansion [22] and tunable chirality [23]. However, regarding
practical applications of origami-based metamaterials, a few fundamental questions are yet to be answered:
how robust are their special properties, and how these properties may change in the presence of
imperfections? [28–30]. In this paper, we focus on a well-known origami pattern, the Miura-
ori, which, together with its variants, is perhaps the most adopted pattern for origami-
based metamaterial designs [7–14,17–24]. The special properties of the Miura-ori are mainly
programmed in its geometry [7,8]. Consequently, irregularities in the geometry of a Miura-ori can
significantly change its mechanical behaviour [21,31,32]. For instance, the so-called ‘pop-through
defect’ in Miura-ori, as a deterministic, localized interruption of periodic folding, was shown
to affect their stiffness, towards either stiffening or softening [18]. However, in practice, small
random geometric imperfections are perhaps the more likely cause of irregularity in the Miura-ori
geometry. An example of this is reported in Baranger et al. [28], who showed that local inaccurate
crease pattern greatly reduces the global out-of-plane response of an origami-like folded core.
Additionally, Jianguo et al. [29] found that the influence of the imperfections, modelled by the
buckling modes from eigenvalue analysis, strongly affect the folding behaviour of the Kresling
tubular origami structure that shifts the folding sequence. Therefore, in this paper, we conduct
both experiments and numerical simulations to study the statistical influence of small random
geometric imperfections on the mechanical properties of Miura-ori. The type of imperfection
that we are considering is fundamentally different from deterministic variations (or intentional
imperfection) of origami geometry that has been studied in the literature [14,18,24,31]. In this
research, our main interest is to understand how the presence of random imperfections may hinder or
enhance the functionality of origami-based metamaterials, but not to modify the mechanical properties of
origami metamaterials by introducing imperfections.

Geometric imperfections are ubiquitous due to various sources, such as misaligned crease
pattern, non-uniform temperature or deterioration during service. To motivate our study, let us
fold three Miura-ori with different degrees of random imperfection in the crease patterns. The
imperfections are imposed by random perturbations of the nodes on the planar crease pattern
to create misalignment. Since the perturbations are small, the three Miura-ori do not show any
notable difference initially. However, if we try to fold them by compression simultaneously, their
responses deviate significantly, as shown in figure 1a. This example shows that, small random
geometric imperfections seem to hinder the foldability of Miura-ori, but on the other hand,
increase their stiffness, which is different from geometric imperfections in lattice and thin-walled
cellular materials [1,33–35].

2. Geometry and stiffness of standard Miura-ori
A standard Miura-ori unit cell is composed of identical parallelogram panels, defined by panel
edge lengths a, b and sector angle α, as shown in figure 1b. At each vertex of this pattern, the sum
of opposite sector angles equals to π , satisfying a necessary condition for flat-foldability (aka the
Kawasaki theorem) as demonstrated in figure 1c. As a result, the Miura-ori admits a single degree-
of-freedom (d.f.) rigid folding mechanism, which can be parametrized by one of the two dihedral
angles β and θ . The two angles are related by sin 2(β/2) = sin2(θ/2)[cos2α+ sin2αsin2(β/2)] [7,8].
Ideally, when subject to compression, a Miura-ori should deform only at the folding creases,
which is known as rigid origami behaviour. As the functionality of origami-based metamaterials
mainly arise from large folding deformations [5–26], here we focus on the nonlinear response of
imperfect origami under compressive folding. Assuming a simple discretized model (figure 1b) to
represent the Miura-Ori unit cell and considering rigid origami behaviour, which means that there
is no bending deformation and stretching deformation, the reaction force along the the x-direction
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Figure 1. Geometric imperfections in origamimetamaterials. (a) Three origami sheets under the same load.We fold the yellow
one with the perfectly aligned Miura pattern. The blue one is folded from a slightly misaligned Miura pattern, and the red one
is folded from a pattern with relatively strong misalignment. The inset on the upright corner shows the initial configurations of
the three samples. (b) Geometry of the Miura-ori unit cell. The right part of (b) shows the schematic of a bar-and-hinge model
as a simplified discretization of the Miura-ori, which we use later for the numerical simulations in this work. We discretize
each quadrilateral panel into two triangles by its shorter diagonal. The parameters KB, KF and KS are bending, folding and
stretching stiffness, respectively. (c) Introduction of geometric imperfections by random nodal perturbations. At each node,
the perturbation is decomposed into x- and y-directions (denoted as δx and δy). Folding up a perturbed crease patterns results
in an imperfect Miura-ori, whose geometry slightly deviates from the perfect Miura-ori as indicated by magenta dashed lines.
For each vertex, we compute the Kawasaki excess αK . When αK = 0, the vertex is flat-foldable, which is the case for all the
vertex in a standardMiura-ori pattern.However, nodal perturbation leads toαK > 0, inwhichearly contact between twopanels
prevents the whole origami to be flattened, and some dihedral angles (marked by red crosses) cannot reach zero kinematically.
(Online version in colour.)

of a Miura-ori unit cell is derived as [8]

Fx = 2KF
a(θ − θ0)cos2ξ + b(β − β0) cosα

bcos2ξ sinα cos(θ/2)
, (2.1)

where KF is the assigned rotational stiffness of the hinges, ξ = sin−1[sin α sin(θ/2)], β0 and θ0
define the initial partially folded configuration, and a, b are the edge length of panels.

3. Experimental analyses
All experimental samples have 4 × 4 unit cells, with standard geometry defined by a = b = 25 mm
and α= 60°. To quantitatively examine the effect of geometric imperfections, we fabricate and
perform compression tests on Miura-ori samples with different degrees of random geometric
imperfection. As sketched in figure 1c, at each node of the crease pattern, the perturbations
along the x- and y-directions are sampled independently from a Gaussian distribution with
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Figure 2. Zoom-in view of the creases of Miura-ori samples made from craft paper (Mi- Teintes, Canson), polyester film (Grafix
Drafting Film) and composite (Durilla Durable Premium Ice Card Stock). The right-most column shows the deformation of
the creases under compressive folding. We can see that the small gaps between creases being pulled open, especially for the
polyester film samples.

zero mean and standard deviation χ , i.e. N(0, χ ). From such sampling, we make sure that the
nodal perturbations are unbiased in direction. Two representative values of χ are used to prepare
two groups of perturbed patterns: χ = 0.01a and χ = 0.02a. The physical samples are fabricated
using three different materials: (1) craft paper (160 g m−2 Mi-Teintes, Canson, Young’s modulus
ES = 1219 MPa, thickness of 0.24 mm), (2) polyester film (Grafix Drafting Film, ES = 2449 MPa,
thickness of 0.127 mm), and (3) composite sheet (260 g m−2 Durilla Durable Premium Ice Card
Stock, ES = 1303 MPa, thickness of 0.30 mm), as shown in figure 2. The composite sheet is made
of three layers in a ‘paper-film-paper’ construction.

(a) Material characterization
We need to characterize the mechanical properties of the sheet materials that we are going to
use. First, we describe the custom-built mechanical testing device that was developed for this
study. Then we explain the basic tests that are conducted: (a) folding/bending stiffness tests;
(b) compression tests; and (c) standard tensile tests. The first and second set of tests are performed
on the custom-built mechanical testing device.

(i) Mechanical testing device

A custom-built mechanical testing bed, as shown in figure 3a,b, is used to measure the mechanical
properties of origami metamaterials. The mechanical testing bed consists of two main parts: (1) A
testing frame consists of a polished steel bed, two vertical steel plates, two guiding rails, a 50



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200236

..........................................................

string pot

movable
plate

fixed
plate

loading
direction

load cell load cell
fixed plate

DWW
0 

=
 1

52
 m

m

fixed plate

movable plate

movable plate

load
cell

stepper
motor

stepper motor
power supply

microstepping
drive

DAQ hardware
load cell
interface

(a) (b)

(c)

Figure 3. The mechanical testing bed for compression test of origami samples. (a) Testing frame. (b) Hardware components.
(c) Schematics of the compression test. (Online version in colour.)

N load cell with accuracy at 0.015% of its full scale (RSP1, Loadstar Sensors), an I/O module
(DI-1000 U, Loadstar Sensors) and a stepper motor (STP-MTR-23079, SureStep). (2) A control
module that integrates the microstepping drive (STP-DRV-6575, SureStep), the stepper motor
power supply (STP-MTR-23079, SureStep), and the data acquisition device (DAQ) (National
Instruments). A LabVIEW program is used to control the system and acquire data. The procedure
of the compression test of Miura-ori samples is illustrated in figure 3c.

(ii) Folding and bending stiffness

Bending and folding stiffness of the sheet materials are important properties when dealing with
origami metamaterials. To characterize the bending stiffness of the origami panels (denoted as
KB), for each material, we prototype five rectangular panels (50 mm × 25 mm) with folded flanges
that resemble the presence of neighbouring panels in an origami structure, as shown in figure 4a.
The presence of the flanges leads to localized bending curvatures, similar to deformed origami
panels [9]. In a similar manner, we also prototype five samples per material to characterize the
folding stiffness of the paper creases (KF). Each sample has two square panels of dimension
25 mm × 25 mm, jointed by a perforated crease line (figure 4d). The crease lines are first folded
completely and then released to a neutral angle prior to the test.

The samples are tested in an adapted set-up using our custom-built mechanical testing device,
as shown in figure 4. First, we attach a spacer to the movable plate. This spacer holds the sample,
while leaving clearance for the free end of the sample to displace freely in space to some extent.
Second, we mount a three-dimensional printed force arm to the fixed plate with its centre offset
29 mm from the spacer edge. This arm transmits the reaction force from the sample to the load cell.
Figure 4b,e shows the initial set-up of the tests to measure bending stiffness and folding stiffness,
respectively. Figure 4c,f sketches intermediary scenarios during the test.

The moment (M) at the crease/bending lines and the rotational angle (ψ) are calculated by

M = Fdx,ψ = tan−1
(

u0

dx

)
− tan−1

(
u0 −
u

dx

)
, (3.1)
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Figure 4. Schematics of the bending and folding test. (a–c) Characterization of the bending stiffness of the panels, and (d–f )
characterization of the folding stiffness of the perforated crease (fold line). (Online version in colour.)

where dx is the distance between the crease/bending line and the force arm (i.e. dx = 19 mm),
F is the measured force from load cell, and u0 is the initial distance between the force arm
and the spacer in the y-direction. For the measurements of bending stiffness, u0 = 0, while for
the folding stiffness, we see different initial neutral angles after a complete fold. In such cases,
u0 was measured for each sample based on where the force arm touches the sample. Figure 5
shows the moment-rotation diagrams of one bending test and one folding test for the craft paper.
The measured rotational stiffness of all samples and materials are collected in tables 1–3, with
coefficients of determination (i.e. R2

B and R2
F) included. The coefficients of determination (i.e.

R2
F and R2

B) can be used to indicate the linearity of the constitutive relationships of the folding
hinges and bending lines. We observe that while the bending constitutive relationships of all
three materials are quite linear as all R2

B’s are close to 1.0, the linearity of the folding constitutive
relationships is less significant. For the polyester film, the average value of R2

F is 0.88, less than
the other two materials, which indicates a relatively strong nonlinear behaviour of the folding
hinges of polyester films. On the contrary, both bending and folding constitutive of the craft
paper are quite linear, even for a relatively large range of rotation, as implied by the coefficients
of determination, and as shown in figure 5, which is the reason why later we use the properties
of the craft paper to build our numerical models. The mean value of the measured rotational
stiffness is normalized by the bending/folding hinge length (i.e. 25 mm) to obtain the rotational
stiffness per unit length. The ratios between the bending and folding stiffness for the materials
used in the experiments are averaged at KB/KF = 6.4, KB/KF = 1.95 and KB/KF = 10.7 for craft
paper, polyester film, and the composite sheet, respectively. The ratio of KB/KF is a key parameter
that determines whether an origami is close to a mechanism (rigid origami) or not. For example,
when KB/KF → ∞, we approach a situation where rigid panels are connected by frictionless
hinges (rigid origami). When KB/KF = 1, the panel and the fold have the same stiffness (such
as moulded samples).

(iii) Stretching stiffness

To obtain Young’s modulus (ES) of the three sheet materials, we use an Instron model 5566
equipped with a 30 kN load cell to perform tensile tests on five samples per material (figure 6).
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Table 1. Canson Mi-Teintes properties.

ES (MPa) KB (N ·mm(rad ·mm)−1) R2B KF (N ·mm(rad ·mm)−1) R2F
1313.3 0.2513 0.9934 0.0375 0.9226

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1114.3 0.2078 0.9693 0.0322 0.9280
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1287.0 0.2465 0.9923 0.0225 0.9520
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1201.9 0.2141 0.9858 0.0434 0.9621
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1180.5 0.2194 0.9930 0.0445 0.9489
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1219.4 0.2278 0.9868 0.0366 0.9427
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Grafix drafting film properties.

ES (MPa) KB (N ·mm(rad ·mm)−1) R2B KF (N ·mm(rad ·mm)−1) R2F
2476.5 0.0809 0.9896 0.0401 0.8413

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2480.5 0.0765 0.9904 0.0396 0.7753
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2408.6 0.0896 0.9921 0.0466 0.9821
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2423.0 0.0938 0.9839 0.0458 0.9310
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2455.5 0.0900 0.9857 0.0481 0.9077
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2448.8 0.0862 0.9883 0.0441 0.8875
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each sample has a dimension of 20 mm × 100 mm. From those tests, we take the mean of the
results and obtained the Young’s modulus ES. The data are collected in tables 1–3.

(b) Miura-ori sample fabrication
The crease patterns for the samples are generated by a Matlab program. We include a reference
group consisting of six samples folded from standard Miura-ori pattern. For each choice
of standard deviation for random perturbations, a group of 10 different crease patterns are
generated. An electronic cutting machine (Silhouette CAMEO, Silhouette America) is used to
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Figure 6. Tension test on paper material using the Instron machine. (Online version in colour.)

Table 3. Durilla durable premium ice card stock properties.

ES (MPa) KB (N ·mm(rad ·mm)−1) R2B KF ((N ·mm(rad ·mm)−1) R2F
1317.1 0.7667 0.9895 0.0827 0.9797

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1323.5 0.7587 0.9886 0.0623 0.9132
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1298.3 0.7866 0.9892 0.062 0.9323
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1277.2 0.7729 0.9889 0.069 0.9377
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1297.0 0.7952 0.9841 0.0875 0.9032
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1302.6 0.7760 0.9881 0.0727 0.9332
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fabricate samples from the craft paper, and a PLS4.75 laser cutting system (Universal laser
systems) is used to fabricate samples from the polyester film and the composite sheet. Creases
were patterned by cutting perforated lines with equal lengths of material and gaps. All samples
are then carefully folded by hand, according to the same folding procedure. Samples are first
folded to approximately 20% of the full extension of the crease pattern before mechanical testing,
and then fit into a mould of partially folded configuration with width of W0 = 152 mm for
approximately 7 days to release the residual stresses. This results in a nominal rest fold angle
at β0 = 95°.

(c) Experimental tests on the Miura-ori samples
The origami metamaterial samples are placed on the custom mechanical testing device between
the two vertical steel plates by a distance of 152 mm. One of the plates is fixed and mounted on
a high-sensitivity load cell (50 N); the other is controlled by a stepper motor to apply prescribed
displacement load. To reduce friction, we apply some lubricant oil on all plates that have direct
contact with the sample. On the edges of the Miura-ori samples, we also apply some graphite
powder to further reduce friction in the transverse direction of compression. All samples are
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Figure 7. Experimental quantification of the effect of geometric imperfections (see electronic supplementary material, Movie
S1). (a) Snapshots of an unperturbed sample (Craft paper). The blue lines outline a row of vertices. (b) Snapshots from
experiment of a perturbed sample with χ = 0.02a under increasing compressive strain. (c) Bulk stress σ (kPa) versus
compressive strain εx for samples made of different materials. The solid lines represent mean responses. The error bars show
the maximum and minimum values of the measured σ data. Plotting the min max values can show that our data suggests
no significant skewness, as the min and max values are about equidistance from the mean. The dashed line is the response of
ideal Miura-ori according to equation (2.1), where KF is obtained by mechanical test on single creases as elaborated in §3a(iii).
(d) Illustration of the constitutive model. (e) E lin and σ 0.65 for different sample groups, where E lin,ref and σ 0.65,ref refers to
unperturbed sample group. The grey error bars show standard deviations, and the green error bars indicate extrema of data.
(Online version in colour.)

subject to a displacement load of 110 mm with speed of 1 mm s−1. The displacement and force
data are simultaneously recorded by a custom LabVIEW program, and stored for later analysis.

During the experiments, the samples are uniaxially compressed along the x-direction, as
shown in figure 7a,b. The behaviour of the samples is recorded by the compressive strain
(εx =
W/W0) and bulk stress (σ = F/H0L0, where F is the measured force, and H0, L0 and W0 are
dimensions of the initial configuration). As shown in figure 7c, all samples behave almost linearly
up to a small strain around 2%. The metamaterials continue to deform at slowly increasing stress
for a large range of deformation (plateau), until the stress rises with a notably increasing slope
(densification).

To quantitatively compare the constitutive behaviour of Miura-ori, we define the initial linear
modulus Elin, computed as the slope of the stress−strain curve between zero and 2% strain,
and the plateau stress σ 0.65 as the stress at 65% strain, as illustrated in figure 7d. The plateau
stress is defined as the end-of-plateau stress. The representative strain of 65% is based on our
observation on all curves as the approximate end point of the plateau stage before densification.
Let us denote 〈·〉 as the mean value operator. The reference groups of unperturbed samples
have: 〈Elin,ref〉 = 4.93 kPa and 〈σ 0.65,ref〉= 0.52 kPa for the craft paper, 〈Elin,ref〉 = 11.11 kPa and
〈σ 0.65,ref〉= 0.7 kPa for the polyester film, and 〈Elin,ref〉= 18.33 kPa and 〈σ 0.65,ref〉 = 0.92 kPa for
the composite sheet. Based on the results, we see that for all three materials, as χ increases,
the Miura-ori become stiffer, as shown in figure 7c,e. Compared to the reference groups: for the
craft paper samples, 〈Elin〉 increases up to 38% and 〈σ 0.65〉 increases up to 72%; for the polyester
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film samples, 〈Elin〉 remains almost unchanged, but 〈σ 0.65〉 increases by 22%; for the composite
samples, 〈σ 0.65〉 increases by 27%. We notice that the average value of linear moduli of the
three types of experimental samples is less sensitive to geometric imperfections compared to
the plateau stress, however, geometric imperfection increases their variances. This is likely due
to material variabilities, such as the variances of KF (see §3a(iii)). In addition, the edges of the
imperfect Miura-ori samples are jagged, not as straight as the standard pattern. Hence, when the
compression is applied by the moving plate, it is possible that the compression is not applied
uniformly to the sample in the beginning, causing localized deformation of the protrusions first
near the boundary before affecting the entire sample, which may appear a softer response on the
load record.

Besides the difference in the global responses between perturbed and unperturbed samples,
significant difference is also observed at the local level (cf. figure 7a,b). The unit cells of the
unperturbed pattern uniformly deform with lattice structure of vertices remaining relatively
ordered and periodic throughout the compressive folding process. The perturbed samples,
however, display non-uniform deformation among unit cells, with severely distorted lattice
structures, especially under higher compressive strains.

4. Numerical analyses
The variability of the mechanical properties of the physical samples comes from not only random
geometric imperfections, but also material variabilities. To study the pure effect of geometric
imperfections, we would like to exclude material variabilities as much as possible. Hence, we
perform numerical simulations using a reduced order bar-and-hinge model of origami [36,37],
as introduced earlier in figure 1b. The bar-and-hinge model represents the behaviour of an
origami structure by a triangulated bar frame with constrained rotational hinges, capturing three
essential deformation modes of origami structures: in-plane stretching (modelled by KS), folding
(modelled by KF) and panel bending (modelled by KB). With only a few degrees of freedom,
the bar-and-hinge model predicts well the overall mechanical behaviour of elastic origami
structures [7,9,26,35,36], offering the generality and computational efficiency that is needed to
reveal statistical trends of the influence of random geometric imperfections. The numerical
simulations are performed using the MERLIN software [36] that implements the bar-and-hinge
model. Appendix A provides details about the implementation. We use the data collected from
the craft paper to tune KB and KS of the bar and hinge model, and vary KF to assess the effect
of hinge compliance. The folding stiffness KF is calculated based on different prescribed ratios of
KB/KF.

Using numerical models, we are able to assign constant material properties and impose
random imperfections under precise probability distributions. Omitting the process of folding,
we configure the numerical models directly in three dimensions (figure 8a), and impose random
nodal perturbation onto the three-dimensional model. This is to keep the study general because
not all origami metamaterials are made by folding from a flat piece of sheet. Some are
directly assembled to partially folded state by pieces of panels, yet they also carry geometric
imperfections. Moreover, some types of imperfections, such as distortion induced by non-uniform
thermal effect, may display strong spatial correlation. Thus, we introduce spatially correlated
random fields [38] to generate the nodal perturbations. The random perturbations follow zero-
mean Gaussian fields with an exponential covariance function [39] characterized by standard
deviation χ and correlation length :

C(xi, xj) = χ2 exp
(

−||xj − xi||


)
, (4.1)

where ||xj − xi|| is the Euclidean distance between two nodes whose coordinates are xi and xj.
Larger  indicates stronger spatial correlation between random nodal perturbations, as shown
in figure 8a. For the experimental samples presented earlier, the imposed perturbations follow
random fields with = 0. We prepare, in total, 16 groups of perturbed samples with four different
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Figure 8. Numerical quantification of the effect of geometric imperfections (see electronic supplementarymaterial, Movie S2).
(a) Modelling of random geometric imperfections by random fields of nodal perturbations. At each node, the perturbation is
decomposed into x-, y- and z- directions (denoted as δx , δy and δz), as we assume no directional preference of the geometric
imperfections. The perturbations δx , δy and δz are samples independently from three random fields generated by the same
statistical parameters, i.e. mean (= 0), standard deviation χ , and correlation length . The four coloured maps demonstrate
how  affects spatial correlation between nodal perturbations. (b,c) Bulk stress σ versus compressive strain εx for numerical
samples with KB/KF = 10, showing (b) = 0 and (c) = 6a. Each solid line shows the mean response of a group of samples
and the error bars extend to one standard deviation. The stress σ is in units of kPa. (d) E lin and σ 0.65 of sample groups with
different material parameters. Each black error bar extends to one standard deviation. The ratio of KB/KF reflects the relative
stiffness between bending and folding deformations. For all cases, a= b= 25 mm, α= 60° and β0 = 70°. (Online version
in colour.)

χ ’s and four different ’s. We assume that the random field is homogeneous, because typically
spatial variability in isotropic materials follows a homogeneous covariance law (depends only
on spatial separation) [39]. In addition, some imperfections may be non-Gaussian in nature.
Therefore, the adoption of Gaussian random field in this work is an idealized (and first attempt)
approximation that intends to provide some insight into the influence of geometric imperfections.

For a group with a given combination of χ and , the number of samples are determined to
ensure the estimated mean of σ 0.65 has 95% confidence to be within ±0.1 kPa from the true mean,
using the following formula [39]:

N ≥ χ̃2
σ0.65

w2

(
Φ−1

(
1 − h

2

))2
, (4.2)

where w = 0.1, h = 0.05 (for 95% confidence), χ̃σ0.65 is the measured standard deviation of σ 0.65
of the samples, and Φ−1 is the inverse of the standard normal cumulative distribution function.
Based on the variance of the measure samples, the number of samples of each group could be
different. The number of samples increases by multiples of 8 to use parallel computation on eight
cores. Each group has a minimum of eight samples and a maximum of 240 samples. For all cases,
a = b = 25 mm, α= 60°, and β0 = 70°.
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Figure 9. Quantification of geometric imperfections in terms of Kawasaki excess defined in §5. (a) Snapshots from numerical
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excess ||αK || at each vertex. (b) Change of global Kawasaki excess ||αK || asχ and vary. The error bars extend to one standard
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A uniform displacement load is applied to compress the numerical samples (see electronic
supplementary material, movie S2). As shown in figure 8, the σ − εx curves of the numerical
samples display a similar trend as the physical samples. While the change of σ 0.65 due to
imperfection has the same trend as in the experimental data, the influence of imperfection
on the linear modulus Elin is more obviously presented in the numerical data, as shown in
figure 8b,c. The deformation of imperfect numerical samples also displays obvious local disorder,
as shown in figure 9a. The variances shown by the error bars come from the complex effect of
random imperfections on origami-based metamaterials, as each numerical sample in the same
group is imposed with different nodal perturbations drawn as one realization from the same
underlying random field. We remark that the larger the standard deviation of the input random
nodal perturbations, the larger the variances of the observed properties of the imperfect origami
metamaterials, in agreement with the experimental data.

5. Relation between geometry and mechanical response
Both the experimental and numerical results reveal that the magnitude of nodal perturbations
positively correlates to the stiffness of Miura-ori (see figures 7e and 8d). Furthermore, the
numerical samples show that the spatial correlation between nodal perturbations contributes
negatively to the increase of stiffness, as shown in figure 8d. To quantitatively describe geometric
imperfections, we need a parameter that provides a consistent and continuous measure that
reflects the effects of magnitude and spatial correlation. We could use (/χ ) as the measure of
geometric imperfection, as shown in figure 10. This ratio is independent of the size of the origami
(quantified by panel edge length a), however, such measure may lead to ambiguities among
sample groups with = 0.

Owing to its simplicity and relevance, the Kawasaki excess [40] offers a good measure of the
random geometric imperfection (as introduced in figure 1c). The Kawasaki theorem states that
the flat-foldability of an origami vertex is equivalent to αK = 0 [40]. For a multi-vertex origami,
we collect the vertex-wise αK into a vector αK, and define the Kawasaki excess of an multi-
vertex origami as the L2-norm of the Kawasaki excess vector (i.e. ||αK||). It is sufficient that if
||αK|| �= 0, the pattern loses global flat-foldability. As shown in figure 9b, ||αK|| increases as χ
increases, and decreases as  increases, reflecting similar effect of χ and  on Elin and σ 0.65. For an
imperfect Miura-ori, as we keep compressing, the origami metamaterial becomes very stiff before
it can be folded flat, indicating that its flat-foldability is destroyed by the random imperfections.
Furthermore, as shown in figure 9a, at the local level, we can clearly see that origami vertices with
higher Kawasaki excess appear to be stiffer in folding than vertices with smaller Kawasaki excess,
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contributing to the increase of global stiffness. Therefore, we may conjecture that flat-foldability is a
geometric feature that causes the change of mechanical properties of imperfect Miura-ori metamaterials.

Indeed, we discover that both Elin and σ 0.65 (normalized by the reference values based on unperturbed
samples) correlate with the square of Kawasaki excess ‖αK‖2, as shown in figure 11. The slope of
each line reflects the sensitivity of samples made with the same materials to random geometric
imperfections. Therefore, the average compressive modulus and plateau stress of geometrically
imperfect Miura-ori can be estimated as

〈Elin〉
Elin, ref

= sE||αK||2 + 1,
〈σ0.65〉
σ0.65,ref

= sσ ||αK||2 + 1. (5.1)

The samples with higher KB/KF ratio are more sensitive to geometric imperfections. The
response of the craft paper samples (with KB/KF = 6.8) is expected to be between the lines of



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200236

..........................................................

(a) (b)

||aK||2
0.60.50.40.30.20.10

||aK||2
0.60.50.40.30.20.10

0.90.9

1.0

1.1
polyester film
composite

1.0

1.1

1.2

1.3

1.4

E
lin

/·E
lin

,r
ef

Ò

s 0.
65

/·s
0.

65
,r

ef
Ò

c = 0.01a

c = 0.02a

Figure 12. The normalized mean values of (a) E lin and (b)σ 0.65 versus the square of Kawasaki excess ||αK ||2 for the polyester
film samples and composite samples. The linear regression is performed on all data points of a material, however, the dots only
show the means of the clusters. (Online version in colour.)

KB/KF = 1 and KB/KF = 10 from the numerical data (tuned by the properties of the craft paper),
which is true for 〈σ 0.65〉 of the craft paper samples. However, the sensitivity of experimental
samples is generally lower than what we expected for both 〈σ 0.65〉 and 〈Elin〉. There are several
possible reasons. First, in the numerical models, the creases always hold their continuity, while
in the physical models, the perforated creases (especially their intersecting nodes) can be pulled
apart by small gaps, which compensate for the violation of strong kinematic constraint imposed
by the geometric continuity, and thus mitigate the effect of geometric imperfection (figure 2).
Second, the numerical models are elastic while the physical models are inelastic. Lastly, the
material variabilities could also be a contributing factor for this discrepancy, as it reduces the
statistical significance of observations related to geometric imperfections.

Although not compared with the numerical model as the material parameters (i.e. KS and KB)
in the numerical models are tuned only with the craft paper, similar linear correlation is seen in
the polyester film samples and composite samples, as shown in figure 12. For the experimental
samples made with three different materials, the correlations between the pair of 〈Elin〉 and ||αK||2
are not as strong as the pair of 〈σ 0.65〉 and ||αK||2, while the numerical samples present clear
correlations for both pairs. This discrepancy seems to suggest that the influence of geometric
imperfections is more obvious at larger strains in practice.

The statistical correlation between Elin (or σ 0.65) and ||αK||2 does not imply the cause and
effect relation between flat-foldability and stiffness of the Miura-ori. In an effort to explain such
correlation, we conjecture that the violation of flat foldability causes the increase of compressive
stiffness, and we derive that the amount of extra stored energy due to imperfection is proportional
to ||αK||2. Hence, the linear relationship between Elin and ||αK||2 (or σ 0.65 and ||αK||2) follows.

To make sense of the correlation between Elin (or σ 0.65) and ||αK||2, we consider the following
deformation procedure to achieve a certain amount of compressive folding (figure 13a–d):
(i) enforce the geometry of the distorted panels to the standard panel shapes by in-plane
deformation; (ii) compress the origami structure by pure folding; (iii) release the in-plane strains
and allow the structure to find new equilibrium between folding, bending and stretching. In
step (ii), the structure deforms following the same kinematics as an ideal rigid origami, thus the
extra strain energy in the system after this step comes from the deformation in step (i). In step
(iii), finding the new equilibrium leads to a lower or equal energy state compared to step (ii).
Considering continuum elastic panels with small geometric imperfection, we may approximate
the extra strain energy compared to the ideal pattern around a vertex k as (considering a circular
disc of radius r),


Uk = ηk

∫ a

0

1
2

ESt
∑

m

(
(δmαK)2r
αm

)
dr, (5.2)
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Figure 13. Schematic of a hypothetical deformationprocess of imperfect origami. (a) Thepurple pattern indicates the imperfect
geometry, and the grey lines indicate the ideal geometry. (b–d) Step (i) to (iii). The orange arrows imply the enforced
deformation field, which confines the imperfect geometry to the ideal geometry. The pink arrows imply applied displacements
on the pattern. (e) An imperfect single vertexwith angular deficit (δmαK ). (f ) Additional strain energy induced by imperfection
when εx ≤ εlin. (g) Additional strain energy induced by imperfection when εlin<εx ≤ εden. (Online version in colour.)

where t is the thickness of panels, and (δmαK) is the angular excess or deficit of each sector angle
m around vertex k (figure 13e). The relaxation factor ηk is a factor depending on both material and
geometric properties of the system, such as KB/KS, KB/KF, and folding angles between panels, etc.
In equation (5.2), αK, δm and ηk are random variables. We assume that δm and ηk are independent
from αK. Taking the expectation (〈.〉) of both sides of equation (5.1), we can obtain that:

〈
Uk〉 ≈ 〈α2
k 〉
〈
ηk

∫ 1

0

1
2

ESt
∑

m

(
δ2

mr
αm

)
dr

〉
∝ 〈α2

k 〉. (5.3)

The actual deformation of imperfect Miura-ori is more complex than the aforementioned
three steps, and thus equation (5.3) is only hypothetical. Nevertheless, assuming elasticity, the
simplified procedure helps to shed some light on the linear correlation between 
UK and α2

K.
Since equation (5.3) applies to all vertices within an origami, we can take a sum over a finite
number of k, which leads to:

∑
k

〈
Uk〉 =
〈∑

k


Uk

〉
∝
∑

k

〈α2
k 〉 = 〈||αK||2〉, (5.4)

where
∑
k

Uk is the global (total) strain energy difference.

Denoting
Elin = Elin − Elin,ref, for εx ≤ εlin (assuming εlin = 0.02), on the global scale we obtain:

1
2
〈
Elin〉ε2

x ≈
〈∑

k 
Uk

W0H0L0

〉
=
〈∑

k 
Uk
〉

W0H0L0
, (5.5)

where W0H0L0 is the initial volume of the Miura-ori, and Elin,ref is obtained from the reference
pattern without geometric imperfections (figure 13f ). Therefore, we may conclude that for a group
of samples with the same geometric feature and material properties, under random geometric
imperfections, 〈
Elin〉 ∝ 〈||αK||2〉.

Similarly, when εlin<εx ≤ εden (assuming εden = 0.65), we have

〈
σ0.65(εx − εlin)〉 ≈
〈∑

k 
Uk

W0H0L0
− 1

2

Elinε

2
lin

〉
=
〈∑

k 
Uk
〉

W0H0L0
− 1

2
〈
Elin〉ε2

lin. (5.6)
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Figure 14. Examples of unstable strain softening, highlighted by red boxes, on perturbed Miura-ori metamaterials from (a)
numerical and (b,c) experimental measurements. For perturbed samples with small χ or large , this phenomenon is rarely
seen. Instability seems to be induced by relatively large geometric imperfections. (Online version in colour.)

(a) (b)

Figure 15. Purposely induced local deformation concentration by random perturbations. (a) The crease pattern. The blue lines
are valley folds and the red lines are mountain folds. The purple region represents unperturbed portion. (b) The folded pattern
under compression. Notice that the unperturbed region contracts more in the lateral direction than the perturbed portion
because of the negative Poisson’s ratio of Miura-ori. (Online version in colour.)

where 
σ 0.65 = σ 0.65 − σ 0.65,ref (figure 13g). Based on observation from both experiments and
numerical simulations, it seems that εlin (= 0.02) is independent of ||αK||, 
Elin, and 
σ 0.65. Now
we can derive that:

〈
σ0.65(εx − εlin)〉 = 〈
σ0.65〉(εx − εlin) =
〈∑

k 
Uk
〉

W0H0L0
− 1

2
〈
Elin〉ε2

lin, (5.7)

which suggests that 〈
σ0.65〉 ∝ ||αK||2.

6. Other observations related to geometric imperfections
Another interesting phenomenon that we observed is that a relatively large degree of random
geometric imperfections may lead to instability, as we observe strain softening from some
polyester film samples, composite sheet samples, and numerical samples (figure 14). Such
phenomenon shows a connection with the observations by Dudte et al. [20] that the flat-
foldability residual (defined similarly to the Kawasaki excess) enables energy barrier between
two configurations during form-find of curved Miura patterns.

In addition, we find no significant change of effective global in-plane Poisson’s ratio due to
imperfections, based on the numerical analyses. However, it is difficult to make a clear argument
about the effect on Poisson’s ratio, as the local distortion can be quite large (figures 5 and 7). As a
result, based on the size of the local region over which Poisson’s ratio is defined, we could reach
at different conclusions. However, we remark that these are not the main focus of this paper, they
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are mentioned here to demonstrate the complex influence of random geometric imperfections on
the behaviour of origami-based metamaterials.

7. Conclusion and outlook
In conclusion, small random geometric imperfections change the mechanical properties of
origami-based metamaterials. In this work, quantitative investigation is carried out by a
representative case study on the popular Miura-ori, which serves as the building block for
many origami-based metamaterials. Therefore, our results have direct implication on all Miura-
ori based metamaterials. Moreover, the conceptual framework introduced in this research can
potentially be extended to other patterns, such as the metric of Kawasaki excess for flat-foldable
patterns. For non-flat-foldable pattern, the Kawasaki excess maybe rewritten as the difference
between the Kawasaki excess of an imperfect pattern and its standard version. However, to obtain
the exact properties of a piece of imperfect origami-based metamaterial, a thorough case study is
always needed.

We conduct experimental and numerical analyses to reveal that small geometric imperfections
may significantly increase the compressive stiffness of Miura-ori. Owing to the random nature
of the geometric imperfections, we notice relatively large standard deviations in observations,
which is part of the physics of the problem being investigated. Because it is not representative
to look at specific properties of each individual imperfect sample, in this research, we focus on
the statistical average behaviour of imperfect samples. Indeed, we are able to find shared trends
among imperfect samples made with different materials, both experimentally and numerically,
which helps us to make general predictions on the influence of geometric imperfections. In
particular, we find that the increases of the linear modulus and plateau stress of imperfect Miura-ori
metamaterial correlate to the square of its Kawasaki excess, which is a purely geometric metric based on
the vertex sector angles that reflects the degree of imperfections.

In addition, the induced large variance of performance by random geometric imperfections in
origami-based metamaterials is another important point that we would like to draw attention.
We notice that, a higher degree of random geometric imperfections significantly amplifies the
variance of the mechanical properties of origami-based metamaterials, which is in general
undesirable, and has to be considered cautiously in applications. However, for applications
such as energy storage and dissipation [41,42], geometric imperfections may be beneficial as
they generally raise stored energy (i.e. area below the σ − εx curve) in the material under the
same amount of deformation. Furthermore, one may exploit random geometric imperfections
to purposely modify the behaviour of origami-based metamaterials, similar to intentional
imperfections [18,31]. For example, we can introduce unevenly distributed imperfections to
achieve functionally graded stiffness (like figure 1a), or create designated local deformations
(figure 15). Moving forward, much work remains to be done, for instance, investigating the effect
of geometric imperfections modelled by different random fields, for other deformation modes and
origami patterns, in order to bring the theoretical advantages of origami [43] to real applications.
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Appendix A. Nonlinear analysis using the bar-and-hinge model
The main goal of this appendix is to explain the nonlinear solver for displacement loading, as it is
first documented in this paper, which is quite different from the solver for force loading published
before [36]. In addition, we would like to provide details about the implementation of MERLIN in
this research, to provide guidance to later research about the influence of geometric imperfections
in origami metamaterials and structures.

The bar-and-hinge model can represent generically any origami structure by properly assigned
constitutive models for stretching, folding and bending, regardless of the system being continuum
or discrete. Here, we briefly describe the nonlinear elastic formulation of the bar-and-hinge
method [36,37,44]. We consider a discretized origami structure as an elastic system. The total
stored energy (Π ) of the system has contributions from the bars (US), bending hinges (UB) and
folding hinges (UF), which is written as:

Π (u) = US(u) + UB(u) + UF(u). (A 1)

All terms are nonlinear functions of the nodal displacements u. Equilibrium is obtained when
Π is local stationary, and therefore the internal force vector (T) and the tangent stiffness matrix
(K) can be derived as [9,36]:

T(u) = TS(u) + TB(u) + TF(u) (A 2)

and
K(u) = KS(u) + KB(u) + KF(u), (A 3)

where

TS(u) = ∂US(u)
∂u

, TB(u) = ∂UB(u)
∂u

, TF(u) = ∂UF(u)
∂u

(A 4)

and

KS(u) = ∂2US(u)
∂u2 , KB(u) = ∂2UB(u)

∂u2 , KF(u) = ∂2UF(u)
∂u2 . (A 5)

As customary, the system equilibrium and tangent stiffness are summations of elemental
contributions.

(a) Constitutive models
For each bar element, we define its stored energy as:

ϕS = ALbW(Exx), (A 6)

where A denotes member area, Lb denotes member length, and W is the energy density as a
function of the one-dimensional Green−Lagrange strain Exx. We adopt a one-dimensional Ogden
model [45] for W such that

W(Exx) = ES

γ1 − γ2

(
λ1(Exx)γ1 − 1

γ1
+ λ1(Exx)γ2 − 1

γ2

)
, (A 7)

where ES is the initial modulus of elasticity, γ 1 and γ 2 are material constants taken as 5 and 1
[36]. The principle stretch λ1 is a function of Exx given by λ1 = (2Exx + 1)−1/2. For small strains,
the constitutive model approximates a linear elastic behaviour (figure 16a), which occurs in our
simulations, as the strains of bar elements are very small. However, a nonlinear constitutive model
is more robust for numerical computation [36]. In the numerical simulations, we use Young’s
modulus ES of the Craft paper material, measured experimentally as described in §3a(iii).

Bar areas are defined uniformly considering average hinge width as shown in figure 16b:

A = (a + b)t sinα
2

, (A 8)

where t = 0.24 mm, which is measured from the craft paper material we used for the experiments.
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Figure 16. Constitutive models for bars and hinges. (a) Hyperelastic constitutive model for bar elements, shown by Sxx
(normalized by the initial modulus of elasticity ES) versus Exx diagram. (b) Average width of the tributary area of bar elements,
used to approximate the area of bars. (c) Enhanced linear elastic constitutive model for rotational springs, including bending
and folding, plotted asM versusψ diagram. The two black circles indicate the corresponding behaviour atψ 1 andψ 2. (Online
version in colour.)

Bending and folding hinges are unified as rotational spring elements for which we adopted
an enhanced linear constitutive model [36]. The expression for the resistive moment M per unit
length (along axis) of the rotational spring is given as a function of rotational angle ψ , plotted in
figure 16c:

M(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k0(ψ1 − ψ0) +
(

2k0ψ1

π

)
tan

[
π (ψ − ψ1)

2ψ1

]
, 0<ψ <ψ1;

k0(ψ − ψ0), ψ1 <ψ <ψ2;

k0(ψ2 − ψ0) +
(

2k0(2π − ψ2

π

)
tan

[
π (ψ − ψ1)

2ψ1

]
, ψ2 <ψ < 2π .

(A 9)

Extremely high stiffness occurs when the dihedral angle approaches 0 or 2π , which prevents
local penetration of panels. The stiffening effect when two adjacent panels are close to contact can
be experienced in practice. In this work, we assume that ψ1 =π/4 and ψ2 = 7π/4. The bending
and folding hinges are distinguished by different values of the linear stiffness k0.

(b) Solving the nonlinear equilibrium problem
In the case of displacement loading, we denote the displacement load as up, which is imposed
on some d.f. of the system p. Some other d.f. (denoted as r) are fixed to provide support to the
structure, and the corresponding displacement is ur, which is always a zero vector. The other d.f.
in the system are free to move, denoted as f. Therefore, we partition the displacement field of the
system into three groups: up, ur and uf . Among the three, up and ur are boundary conditions and
thus have fixed values. Notice that up is fixed but non-zero, while ur is fixed to a zero vector.

We can also divide the internal force vector T into three parts by their corresponding d.f.: Tr,
Tp and Tf . In an equilibrium state of the system, Tf = 0 while the other two parts shall not be zero.
The reaction forces of the supports are equal to −Tr, and the external forces required to achieve
the prescribed displacement up are given by −Tp. After a displacement load up is applied, our
goal is to find a proper uf , such that Tf (u) = 0, that is, all the internal free nodes are balanced.

We use a numerical algorithm to solve the nonlinear system of equations Tf (u) = 0. A large
displacement load cannot be applied at once, otherwise a numerical algorithm would likely
fail to converge. Hence, we divide the total displacement load into small increments. At each
increment, we solve for the equilibrium using the Newton−Raphson method iteratively. Let i be
the increment number, and j be the iteration number, denoted as ui,j. The prescribed amount of
displacement load is up, and the small displacement load applied at each increment is λiup. When
one or more partitions of u (i.e. up, ur and uf ) are changed, u updates accordingly with the other



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200236

..........................................................

components remaining the same. We summarize the process in algorithm 1. The parameters λ0,
tol, jmax, and Natt,max are predefined with values equal to 0.002, 10−6, 50 and 5, respectively. The
adaptive control over incremental step λi and damping factor υ is based on heuristic rules.
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