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Abstract
We address material nonlinear topology optimization problems considering the Drucker–Prager strength criterion by means of a
surrogate nonlinear elastic model. The nonlinear material model is based on a generalized J2 deformation theory of plasticity.
From an algorithmic viewpoint, we consider the topology optimization problem subjected to prescribed energy, which leads to
robust convergence in nonlinear problems. The objective function of the optimization problem consists of maximizing the strain
energy of the system in equilibrium subjected to a volume constraint. The sensitivity analysis is quite effective and efficient in the
sense that there is no extra adjoint equation. In addition, the nonlinear structural equilibrium problem is solved through direct
minimization of the structural strain energy using Newton’s method with an inexact line search strategy. Four numerical
examples demonstrate features of the proposed nonlinear topology optimization framework considering the Drucker–Prager
strength criterion.
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1 Introduction

Robert Hooke was one of the greatest scientists of the seven-
teenth century and his discovery of elasticity (he described the
finding in the anagram “ceiiinosssttuv,” whose solution he
later published as “Ut tension, sic vis” which translates to
“As the extension, so the force” (Davidson 2010)) had a re-
markable influence in the world since then, and continues to
impact the world that we live today, including various fields of
science and technology (Marsden and Hughes 1983, Holmes

2019, Hooke Public Lecture Series at the Univ. of Oxford
2014). For instance, the use of elastic springs permeates mod-
ern technology, from toys to mechanical components in cars
and airplanes. In terms of materials, nonlinear elasticity can
describe the behavior of soft materials, including elastomers
and gels that can undergo large deformations (Marsden and
Hughes 1983). Following and building upon Hooke’s ubiqui-
tous legacy, we make use of nonlinear elasticity to investigate
topologically optimized structures and to compare our results
with the existing literature using dissipative models such as
elastoplasticity. In essence, we verify numerically that the to-
pologically optimized nonlinear elastic solution (based on de-
formation theory of plasticity) is equivalent to the plastic so-
lution (based on flow theory of plasticity) under proportional
loading.

Naturally, most papers in the literature that investigate topol-
ogy optimization with the Drucker–Prager elastoplastic mate-
rials use a plasticity-based formulation (Swan and Kosaka
1997; Bogomolny and Amir 2012; Alberdi and Khandelwal
2017). However, the role that elastic nonlinearity plays has
not been investigated independently in terms of optimal design.
To address this issue, we propose a material nonlinear topolo-
gy optimization approach using the Drucker–Prager criterion
with a surrogate nonlinear elastic constitutive model.
Essentially, we want to verify to which extent a purely elastic
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theory can reproduce some (or most) of the results in the liter-
ature, which are based on plasticity.

We utilize a nested optimization formulation, which
consists of maximizing the strain energy of the system
in equilibrium subjected to a volume constraint. To solve
the nonlinear state equations in the formulation, we use an
energy control approach. This approach prescribes a cer-
tain value of energy C0 in all optimization design cycles
until the optimal design is reached. The energy control
approach is illustrated in Fig. 1 assuming a generalized
two degrees of freedom problem (more detailed
explanation about this problem is given in Appendix A).
When we use the energy control approach, an appropriate
prescribed energy C0 can be chosen which depends on the
expected nonlinear behavior. Choosing a value of C0 can
also be considered as a way of controlling when the ma-
terial model reaches the limit stage.1 In addition, numer-
ical examples show that the energy control approach leads
to robust convergence in solving the nonlinear state
equations.

The remainder of this paper is organized as follows.
Section 2 details the nonlinear elastic constitutive model.
Section 3 presents the optimization formulation and related
sensitivity analysis. Section 4 contributes four representative
numerical examples. Section 5 presents the conclusions. Six
Appendices complement the paper: one demonstrates the en-
ergy control approach using a simple truss example; one esti-
mates the limit value of the prescribed energy for a design
optimization problem with a fixed volume fraction; one illus-
trates the relationship between the increment of principal
stress on the Drucker–Prager strength surface and the incre-
ment of principal strain; one shows how to solve the nonlinear
state equations using Newton’s method with an inexact line
search; one provides the ABAQUS® user subroutine UMAT
for the present nonlinear elastic constitutive model consider-
ing the Drucker–Prager criterion; and another presents the
nomenclature.

2 Equivalent nonlinear elastic constitutive
model

The behavior of inelastic materials that exhibit pressure-
dependent yielding (e.g., concrete and soils) is character-
ized by elastic nonlinearity and path-dependency (i.e.,
physical processes such as energy dissipation and
unloading). The commonly used theory to capture the full

path-dependent response of plastic materials is the so-
called flow theory of plasticity (Hill 1950; Lubliner
1990). Since the overall response is history-dependent, it
is determined incrementally by integrating the rate-type
constitutive equations along a given path of loading
(Lubarda 2000; Souza Neto et al. 2008).

There exists an early theory of plasticity proposed by
Hencky (1924), known as the deformation theory of plas-
ticity, in which the constitutive equations are the equa-
tions of a nonlinear elastic body under proportional load-
ing (Kachanov 1971). Adopting a generalized J2 deforma-
tion theory (Chen and Han 1988), Sonato et al. (2015)
suggested a nonlinear elastic model for deriving the non-
linear transmission conditions of pressure-dependent in-
terphases. They verified that the deformation theory for
Drucker–Prager material with linear hardening is equiva-
lent to the flow theory for several monotonic loadings.
Here, we explore this deformation theory based nonlinear
elastic model for Drucker–Prager materials and integrate
it in the context of topology optimization.

The present material nonlinear elastic model is
governed by the Drucker–Prager strength criterion.
Inspired by Hooke’s law (1678) and subsequent develop-
ments (Timoshenko 1934), we use a generalized nonlinear
elastic constitutive relationship in the following form:

σ ¼ λJ 1 ɛð ÞI þ 2μɛ ð1Þ
where I is the second-order identity tensor, σ and ɛ are the
stress and strain tensors, while λ and μ are usual Lame’s
parameters. However, we assume that both Lame’s param-
eters are functions of two invariants of the strain tensor:

λ ¼ λ J 1 ɛð Þ; J 2 ɛdð Þð Þ;μ ¼ μ J 1 ɛð Þ; J 2 ɛdð Þð Þ ð2Þ

where the invariants of the strain tensor are defined by:

J 1 ɛð Þ ¼ trace ɛð Þ; J 2 ɛdð Þ ¼ 1

2
ɛd : ɛd ð3Þ

with ɛd = ɛ − (1/3)trace(ɛ)I, and we denote : as the double
tensor contraction operator, as usual. The J2 deformation
theory (Hencky 1924) is generalized to the case of
pressure-sensitive materials so that the first invariant J1 is
included in the constitutive model. In this case, the Lame’s
parameters can be conveniently written as (Sonato et al.
2015):

λ ϕ1;ϕ2ð Þ ¼ 3υþ ϕ2−ϕ1ð ÞE
3 1þ υþ ϕ2Eð Þ 1−2υþ ϕ1Eð Þ E;

μ ϕ2ð Þ ¼ E
2 1þ υþ ϕ2Eð Þ

ð4Þ

respectively, where E is Young’s modulus, υ is Poisson’s
ratio, and ϕ1 and ϕ2 are functions which represent the

1 For several inelastic constitutive models, the energy control has better con-
vergence behavior than the load control method. For instance, Crisfield (1991)
pointed out that load control is not preferable when a small addition to the load
causes a relatively large additional displacement or when limit points are
encountered. The energy control approach overcomes this difficulty in regions
where the stress state tends to reach the strength limit.
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hardening behavior of the material. In the case of linear
elastic loading, ϕ1 = ϕ2 = 0, while in the case of nonlinear
elastic loading ϕ1 ≠ 0 and ϕ2 > 0. We assume that ϕ1 and ϕ2

are functions of the two invariants of the strain tensor, and
define ϕ2 as non-negative, i.e.:

ϕ1 ¼ ϕ1 J 1 ɛð Þ; J 2 ɛdð Þð Þ; ϕ2 ¼ ϕ2 J 1 ɛð Þ; J 2 ɛdð Þð Þ≥0 ð5Þ

Sonato et al. (2015) obtained the functions ϕ1 and ϕ2 con-
sidering a material obeying the Drucker–Prager strength cri-
terion (Drucker and Prager 1952) in the following form:

f σð Þ ¼ β J 1 σð Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
J 2 sð Þ

p
−ks ð6Þ

where the first invariant of the stress tensor J1(σ) and the
second invariant of the deviatoric stress tensor J2(s) are
expressed, respectively, as:

J 1 σð Þ ¼ trace σð Þ; J 2 sð Þ ¼ 1

2
s : s ð7Þ

where s =σ − (1/3)trace(σ)I. In (6), β and ks are assumed to be
positive constants for an elastic-perfectly-plastic material in
the case of uniaxial stress tests. The two parameters β and ks
are defined as:

β ¼ 1

2
ffiffiffi
3

p 1−2υpð Þ
1þ υpð Þ ; ks ¼ β þ 1ffiffiffi

3
p

� �
σy ð8Þ

where υp is the plastic Poisson’s ratio and σy is the uniaxial
strength stress of the material. The function ϕ1 is derived as:

ϕ1 J 1 ɛð Þ; J 2 ɛdð Þð Þ

¼ 6β 3β 1þ υð ÞEJ 1 ɛð Þ þ 1−2υð Þ 3E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 ɛdð Þp

− 3β þ ffiffiffi
3

p� �
1þ υð Þσy

� �	 

E 3E J 1 ɛð Þ−6β ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J 2 ɛdð Þp� �þ 6β 3β þ ffiffiffi
3

p� �
1þ υð Þσy

� �
ð9Þ

Similarly, the function ϕ2 is obtained as:

ϕ2 J 1 ɛð Þ; J 2 ɛdð Þð Þ

¼ 3β 1þ υð ÞEJ 1 ɛð Þ þ 1−2υð Þ 3E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 ɛdð Þp

− 3β þ ffiffiffi
3

p� �
1þ υð Þσy

� �
E 18β2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 ɛdð Þp

−3β EJ 1 ɛð Þ− 1−2υð Þσy
� �þ ffiffiffi

3
p

1−2υð Þσy
	 


ð10Þ

Note that the function ϕ2 has two limit states, i.e.:

1. linear elastic limit when the numerator is equal to zero
(ϕ2 = 0);

2. singular limit as the denominator approaches zero (the
singular point at the apex of the Drucker–Prager cone).

Next, we mathematically quantify the two limits, which are
essential to define the stress states and the strain energy den-
sity function of the constitutive model. For the sake of nota-
tion, let us define five constant scalars a, b, c, d, and e as
follows:

a ¼ 3β 1þ υð ÞE; b ¼ 3 1−2υð ÞE; c ¼ − 3β þ
ffiffiffi
3

p� �
1þ υð Þ 1−2υð Þσy ;

d ¼ −3βE2; e ¼ 18β2E2; f ¼ 3β þ
ffiffiffi
3

p� �
1−2υð ÞEσy

ð11Þ
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Fig. 1 Illustration of the proposed energy control approach. The approach
prescribes a certain value of energy C0 (i.e., C0 =C01 +C02, where C01

and C02 are the area of the shaded triangles) for all design cycles until the
optimal design is obtained. In this example with two degrees of freedom
(which generalizes to multi-dof), we assume that two reference forces
(i.e., f 01 < f 02 ) are applied at each of the two dofs, respectively, and

that χk > 1, which refers to the load factor at the k-th design cycle. a and b
are reaction force (T) versus displacement (u) diagrams for each dof. The
shaded area represents the prescribed energy at the initial optimization
iteration (yellow), 1st iteration (green), generic k-th iteration (red), and the
final optimal design (blue). The sum of the shaded area with the same
color is a constant which is the prescribed energy C0
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Then, we rewrite (10), in simplified form, as:

ε ε
ε

ε

ε

ε
ð12Þ

Now, we introduce a non-negative scaling factor t and write
the strain tensor and the deviatoric strain tensor as follows:

ɛ
0 ¼ tɛ; ɛ

0
d ¼ tɛd ð13Þ

By substituting (13) into (12), we obtain ϕ2 as the ratio of
two functions, M(t) and N(t), as follows:

ϕ2 J 1 ɛ
0

� �
; J 2 ɛ

0
d

� �� �
¼

aJ 1 tɛð Þ þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
�
tɛd

�r
þ c

d J 1 tɛð Þ þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
�
tɛd

�r
þ f

¼
taJ 1 ɛð Þ þ tb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
�
ɛd
�r
þ c

td J 1 ɛð Þ þ te

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
�
ɛd
�r
þ f

¼ M tð Þ
N tð Þ ð14Þ

We obtain the two limit states of function ϕ2 by defining
M(t) and N(t) equal to zero, respectively:

M tL
� � ¼ 0⟹tL ¼ −

c

aJ 1 ɛð Þ þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
�
ɛd
�r

N tN
� � ¼ 0⟹tN ¼ −

f

d J 1 ɛð Þ þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
�
ɛd
�r ð15Þ

where tL defines the limit point of linear elastic loading, and tN

is the singular limit point of the function ϕ2. The functionM(t)
is always non-negative, while the function N(t) can be either
positive or negative, which is related to the scaling factor t,
i.e.:

N tð Þ > 0⟹t < tN

N tð Þ < 0⟹t > tN
ð16Þ

Therefore, the singular state of the function ϕ2 is expressed
as:
lim
t→tNþ

ϕ2 ¼ lim
N→0−

ϕ2 ¼ −∞ lim
t→tN−

ϕ2 ¼ lim
N→0þ

ϕ2 ¼ ∞ ð17Þ

We numerically verify that the singular state of ϕ2 never
happens during the numerical simulation of all the exam-
ples in this paper. Furthermore, note that the expression of
ϕ2 in (10) is only valid when ϕ2 ≥ 0 because we define ϕ2

as non-negative in (5). For any strain state that causes a
negative ϕ2, the corresponed stress state is a constant de-
fined as follows:

σN ¼ ks
3β

I ð18Þ

We remark that the constant stress state in (18) occurs at the
apex of the Drucker–Prager cone, which is commonly ob-
served in the flow theory of plasticity.

We summarize the stress state update scheme for the non-
linear elastic model using the graphical representation of
Fig. 2. In the coordinates of stress invariants, the space is
divided into three regions based on the function ϕ2. The cor-
responding stress states can be updated as follows:

Region #1: linear elastic loading if f(σtr) ≤ 0 (i.e.,ϕ1 = ϕ2 = 0),

σ ¼ σtr∈ 0 σL
� � ð19Þ

where σtr is the linear elastic trial stress state, and f(σtr) ≤ 0
indicates that the current trial stress state is in the linear elastic
region. Moreover, σL is the linear elastic limit of the stress
tensor reached in the direction of strain ɛ.

Region #2: nonlinear elastic loading if f(σtr) > 0 and ϕ2 > 0,

σ ¼ σ
0
ϕ1;ϕ2ð Þ∈ σL σN

� � ð20Þ

where the stress stateσ′ is based on the functions ϕ1 and ϕ2. In
addition, σN is the nonlinear elastic limit of the stress tensor
reached in the direction of strain ɛ.

Region #3: apex zone if f(σtr) > 0 and ϕ2 < 0,

σ ¼ σN ð21Þ

and σN is constant, as defined in (18).
To better illustrate the proposed nonlinear elastic constitu-

tive model, we plot its principal stress state in Fig. 3. In the
principal stress coordinates, the yellow cone represents the
analytical Drucker–Prager strength surface and the blue dots
are the principal stress state generated from the surrogate non-
linear elastic model. Since all the blue dots are located on the
surface of the yellow cone, then the proposed constitutive
model satisfies the Drucker–Prager strength criterion. In addi-
tion, Fig. 4 illustrates the projection of the trial inadmissible
linear elastic stress state on the strength surface. The red dots
represent the trajectory of the elastic trial stress state, and the
blue dots are the projected plastic stress state on the strength
surface. The red and blues dots are connected by the green
lines, which are parallel and equally spaced. Those green lines
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indicate that the increment of the principal stresses on the
strength surface is constant with respect to the increment of
the principal strain (see Appendix C).

2.1 Analytical strain energy density function φ

The nonlinear elastic constitutive model in (1) can be charac-
terized by the strain energy density function φ(J1(ɛ), J2(ɛd))
such that:

σ ¼ ∂φ J 1 ɛð Þ; J 2 ɛdð Þð Þ
∂ɛ

ð22Þ

We revisit the equivalent stress states of Fig. 2 in terms of
the corresponding strain energy density function and obtain
the expression of φ(J1(ɛ), J2(ɛd)) in three different regions as
follows:

Region #1: linear elastic loading if f(σtr) ≤ 0 (i.e.,ϕ1 = ϕ2 = 0),

ð23Þ

Region #2: nonlinear elastic loading if f(σtr) > 0 and ϕ2 > 0,

φ ¼ φL þ ∫10σ
0
ɛ

0
tð Þ

� �
dt : ɛ−ɛL

� � ð24Þ

where φL is the linear elastic strain energy density defined as:

φL ¼ 1

2
σL : ɛL ð25Þ

and σL and ɛL are, respectively, the linear elastic limit of the
stress and strain tensor reached in the direction of strain ɛ. In

Hydrostatic axis

Principal stress state

Fig. 3 Principal stress state
representation. The yellow cone
portrays the analytical Drucker–
Prager strength surface, and the
blue dots are the principal stress
states of the surrogate nonlinear
model. Notice that all the blue
dots are located on the surface of
the yellow cone, which verifies
the model put forward by (1)

Drucker-Prager function 

Linear elastic region

0

Nonlinear elastic region

0

0

The trial linear 

elastic stress 

tensor for a 

given strain 

tensor 

Fig. 2 A graphical representation
of the stress state update scheme
for the surrogate nonlinear elastic
constitutive model
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(24), ɛ′, the interpolation of ɛL and the strain tensor ɛ, is de-
fined as follows:

ɛ
0 ¼ 1−tð Þ ɛL þ t ɛ ð26Þ
Since the increment of the stress components on the

Drucker–Prager strength surface is constant with respect to the
increment of the strain components (see Appendix C), we have:

σ
0 ¼ 1−tð Þ σL þ t σ ð27Þ

where σ′ is the interpolation of σL and the stress tensor σ.
Substituting (27) into (24), then we obtain the explicit expres-
sion of the strain energy density as:

φ ¼ 1

2
σL : ɛ þ σ : ɛ−σ : ɛL
� � ð28Þ

We know that both σL and ɛL in (28) can be expressed
using the scalar tL defined in (15) as:

σL ¼ tLσtr; ɛL ¼ tLɛ ð29Þ
Substituting (29) into (28), we rewrite the strain energy

density φ in a more compact format as:

ð30Þ

Region #3: apex zone if f(σtr) > 0 and ϕ2 < 0,

φ ¼ 1

2
σL : ɛL þ ∫ε

N

εL σ
0
: dɛ

0 þ σN : ɛ−ɛN
� � ð31Þ

where σN and ɛN are, respectively, the nonlinear elastic limit
of the stress and strain tensor reached in the direction of strain
ɛ. σ′ and ɛ′ in (31) are defined as:

ɛ
0 ¼ tɛ; σ

0 ¼ σN−σL

tN−tL
t−tL
� �þ σL ð32Þ

By substituting (32) into (31) and recalling the two scaling
factors tL and tN in (15), we obtain:

φ ¼ 1

2
σL : ɛL þ ∫t

N

tL
σN−σL

tN−tL
t−tL
� �þ σL

 �
: ɛdt þ

σN : ɛ−ɛN
� � ð33Þ
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Fig. 4 Projection of the trial
inadmissible elastic stress on the
Drucker–Prager strength surface.
The red line is the trajectory of the
linear elastic trial stress state, and
the blue line is the projected
plastic stress state on the strength
surface. The green lines
connecting the red and blues dots
are parallel and equally spaced.
Those parallel lines indicate that
the increment of the principal
stresses on the strength surface is
constant with respect to the
increment of the principal strain
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The integral in (33) can be solved analytically. Then, we
obtain the explicit expression of the strain energy density as:

φ ¼ 1

2
σL : ɛL þ 1

2
tN−tL
� �

σN þ σL� �
: ɛ þ σN

: ɛ−ɛN
� � ð34Þ

Recall that we know σL = tLσtr, ɛL = tLɛ, and ɛN = tNɛ, then
the strain energy density in (34) can be rewritten compactly as:

ð35Þ

In summary, we have derived the analytical strain energy
density functions, i.e., (23), (30), and (35), for the three pos-
sible stress states corresponding to three regions (i.e., linear
elastic loading, nonlinear elastic loading, and apex zone).
Those compact and explicit strain energy density functions
contribute to a better understating of the nonlinear elastic con-
stitutive model. In addition, the functions are associated with
the objective (strain energy) of the optimization formulation in
Section 3.

2.2 Material parameters transformation

From the aforementioned derivation, the material parameters
υp and σy are required to define the nonlinear elastic constitu-
tive model. However, from a practical point of view, these
material parameters may not be convenient as some materials
may be characterized by a given cohesion c and friction angle
ψ, while some other materials may be defined by a given
compressive strength σc and tensile strength σt. Therefore,
transforming the given material parameters into the required
parametric space is necessary.

2.2.1 Material model in terms of cohesion c and friction angle
ψ

We derive the expression of υp and σy, respectively, in terms
of c and ψ. The Drucker–Prager strength function can be de-
fined in an alternative format such as:

F σð Þ ¼ η
3
J 1 σð Þ þ

ffiffiffiffiffiffiffiffiffiffiffi
J 2 sð Þ

p
−ζc ð36Þ

where c is the cohesion, and the parameters η and ζ are defined
based on the required approximation to the Mohr–Coulomb
criterion. We adopt the approximation which forces both
Drucker–Prager and Mohr–Coulomb criteria to predict identi-
cal collapse load under plane strain conditions (Souza Neto
et al. 2008). In this case, the parameters η and ζ are obtained as:

η ¼ 3tanψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12tan2ψ

p ; ζ ¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12tan2ψ

p ð37Þ

By comparing (6) and (36), we have:

β ¼ η
3
; ks ¼ ζc ð38Þ

According to (38), (37), and (8), we can express υp and σy,
respectively, in terms of c and ψ:

υp ¼ 1

2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12tan2ψ

p
−6tanψffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12tan2ψ
p

þ 3tanψ

σy ¼ 9cffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12tan2ψ

p
þ 3tanψ

ð39Þ

2.2.2 Material model in terms of σc and σt

We express υp and σy, respectively, in terms of σc and σt.
Inspired by Luo and Kang (2012), we substitute two specific
principal stress states (σ1 = σ2 = 0 & σ3 = − σc) and
(σ1 = σt& σ2 = σ3 = 0) into the strength condition, i.e., (6), as
follows:

−βσc þ σcffiffiffi
3

p − ks ¼ 0; βσt þ σtffiffiffi
3

p − ks ¼ 0 ð40Þ

By solving (40), we obtain that:

β ¼ σc−σtffiffiffi
3

p
σc þ σtð Þ ; ks ¼ 2σcσtffiffiffi

3
p

σc þ σtð Þ ð41Þ

According to (41) and (8), we can express υp and σy, re-
spectively, in terms of σc and σt as follows:

υp ¼ 3σt−σc

4σc
; σy ¼ σt ð42Þ

3 Optimization formulation and sensitivity
analysis

We present our topology optimization framework based on a
nested formulation for maximizing the structural strain energy
with prescribed energy input. Moreover, we point out the sim-
plicity, efficiency, and accuracy of sensitivity evaluation using
our formulation.

3.1 Nested formulation: maximizing structural strain
energy

We consider a nested formulation for the optimization prob-
lem by maximizing the structural strain energy with pre-
scribed energy in the nonlinear state equations:
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max
ρ

JU ρð Þ≔U ρ; u ρð Þð Þ

s:t:
∑
n

e¼1
ρeve≤Vmax

0 < ρmin≤ρe≤1

(

with
T ρ; u ρð Þð Þ ¼ χ ρ; u ρð Þð Þ f 0

f T0u ρð Þ ¼ 2C0

� ð43Þ

In the optimization problem, the objective function
U(ρ, u(ρ)) is the structural strain energy, given by the in-
tegration of the strain energy density function φ (see
Section 2.1) over the domain. The design variable ρ is a
vector of element material densities. The parameter n rep-
resents the number of elements used to discretize the de-
sign domain, ve is the volume of element e, Vmax is the
maximum material volume (constraint), and ρmin denotes
the lower bound of the design variable (e.g., 10−4), which
is introduced to prevent numerical singularity in the design
domain (Bendsøe and Sigmund 2003). In the state prob-
lem, T(ρ, u(ρ)) is the internal force vector, χ(ρ, u(ρ)) is
the reaction load factor, f0 is the vector of given external
forces, and C0 is the prescribed energy in the structural
system. For structures subjected to prescribed energy and
given fixed supports, maximizing the structural strain en-
ergy is equivalent to maximizing the load capacity, i.e.,
reaction load factor (Zhao et al. 2019), which is verified
through the numerical examples later in this paper (see
Sections 4.2 and 4.3). In the case of linear elasticity, we
could achieve the same results as the maximum structural
stiffness problem (Niu et al. 2011).

We adopt a unified optimization scheme both for the solu-
tion of the state equation and for the topology optimization
phase. Finding a solution of the state equations in (43) is
equivalent to solving the following equality constrained min-
imization problem (Boyd and Vandenberghe 2004):

min
u

U ρ; u ρð Þð Þ
s:t: f T0 u ¼ 2C0

(
ð44Þ

which can be solved, for example, using Newton’s method
with an inexact line search strategy (see Appendix D).

We introduce a set A to replace the constraint in (44),
which is given by:

A ¼ u j f T0 u¼2C0

	 
 ð45Þ

Then, the state problem (44) can be rearranged using un-
constrained optimization:

min
u∈A

U ρ; u ρð Þð Þ ð46Þ

Now, we can reformulate the objective function JU(ρ) in
(43) as the min-max formulation described in (Klarbring and

Strömberg 2012):

ð47Þ

where the inner optimization statement (min) refers to the state
equation solution phase and the outer one (max) refers to the
topology optimization phase. The sensitivity of this objective
in (47) can be simply calculated as:

ð48Þ

which is quite elegant. Notice that there is no need for
introducing an extra adjoint problem because the formu-
lation of maximizing structural strain energy is self-ad-
joint. When compared with the standard approach (see,
for example, Alberdi and Khandelwal 2017), the sensi-
tivity analysis utilized here is simple, effective, and
efficient.

The structural strain energy function U(ρ, u(ρ)) is defined
using the following expression:

U ρ; u ρð Þð Þ ¼ ∑
n

e¼1
∫Veφe ρ; u ρð Þð ÞdV ð49Þ

where φe(ρ, u(ρ)) is the strain energy density function of ele-
ment e. Substituting (49) into (48), the sensitivity of the ob-
jective is obtained as follows:

d JU ρð Þ
dρe

¼ ∑
n

e¼1
∫Ve

∂φe ρ; u ρð Þð Þ
∂ρe

dV ð50Þ

Recall that from the analytical strain energy density
functions in (23), (30), and (35), we need to calculate
the corresponding derivatives considering three different
regions. First, in the region of linear elastic loading, the
derivative of the strain energy density function in (23)
is:

∂φ
∂ρe

¼ 1

2

∂σtr

∂ρe
: ɛ ð51Þ

Second, considering nonlinear elastic loading, the deriva-
tive of (30) is:

∂φ
∂ρe

¼ 1

2

∂tL

∂ρe
σtr−σð ÞþtL

∂σtr

∂ρe
−
∂σ
∂ρe

� �
þ ∂σ
∂ρe

 �
: ɛ ð52Þ

Third, we obtain the derivative of the strain energy density
function in (35) as:

∂φ
∂ρe

¼ 1

2
−
∂tL

∂ρe
−
∂tN

∂ρe

� �
σN þ ∂tL

∂ρe
tN þ tL

∂tN

∂ρe

� �
σtr þ tLtN

∂σtr

∂ρe

 �
: ɛ

ð53Þ
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3.2 Verification of sensitivity analysis

In this section, we verify the sensitivity analysis by comparing
the solutions obtained from (50) with the results calculated
using the central finite difference method (CFDM).
Considering CFDM, we obtain the sensitivity of the strain

energy function U with respect to a design variable ρe:

dU ρð Þ
dρe

≈
U ρþΔρð Þ−U ρ−Δρð Þ

2Δρe
ð54Þ

where Δρ is a vector containing all zero components except at
the element related to ρe. The only non-zero component Δρe is
taken as 10−6 in this verification study. We consider a half-
beam domain, which is discretized into a 20 by 10 mesh. The
element numbers of the mesh are shown in Fig. 5(a). We use a
uniform value of 1 for the densities in all of the elements, and
no density filter is used. A reference distributed load with the
magnitude ofw = 15 kN/m is applied on a 0.2 m portion of the
bottom of the beam. The material properties used in the veri-
fication are listed in Table 1.
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Fig. 5 Verification of the sensitivity analysis. a Half-beam domain with
element numbers, boundary, and loading conditions. b Structural
behavior of the beam: applied pressure versus magnitude of the vertical
displacement at point A in the domain. The two representative states, i.e.,
a linear elastic state and a nonlinear elastic state, are indicated in the plot. c

Strain energy sensitivities at the nonlinear elastic state: adjoint-free
solution (i.e., (50)) matches the one obtained using CFDM. d Contour
plots of the normalized sensitivity vector obtained from the adjoint-free
method when the structure is in either the linear elastic state or the
nonlinear elastic state

Table 1 Material properties used in the sensitivity verification example

Property Symbol Magnitude

Young’s modulus E 6.5 × 104 kPa

Poisson’s ratio υ 0.3

Friction angle ψ 20°

Cohesion stress c 50 kPa
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We define the value of the prescribed energy as C0 =
0.15 kJ. The structural response in Fig. 5(b) indicates that
the beam undergoes nonlinear deformation. In the nonlinear
elastic state highlighted in Fig. 5(b), we calculate the strain
energy sensitivities using both the adjoint-free method and
CFDM for each element. Figure 5(c) compares the results
obtained from the two approaches. To quantify the compari-
son, we set up a measurement using the relative error defined
as follows:

Relative error ¼
dU
dρe

� �
adjoint−free

− dU
dρe

� �
CFDM

���� ����
1þ dU

dρe

� �
CFDM

��� ��� ð55Þ

It is shown that adjoint-free sensitivities closely match
those obtained using CFDM with relative errors in the order
of 10−9. In Fig. 5(d), we compare the contour plots of the
normalized sensitivities for two different states, i.e., linear
elastic state and the nonlinear elastic state, respectively. The
comparison indicates that the strain energy sensitivities vary

as the structure behavior switches from the linear state to the
nonlinear state. Furthermore, different sensitivities will lead to
various optimal solutions (see examples in Section 4).

4 Numerical examples

Four numerical examples demonstrate the key features of the
present material nonlinear topology optimization approach
considering the Drucker–Prager strength criterion. A summa-
ry of the examples is provided in Table 2.

4.1 Corner-supported square

We first present a corner-supported square example to
illustrate the behavior of the proposed nonlinear topology
optimization framework considering the Drucker–Prager
criterion. Figure 6(a) shows the geometry and dimensions
of the square domain. A reference point load with a mag-
nitude of 1 MN is applied to the center of the square. Due
to symmetry, only half of the square shown in Fig. 6(b) is
considered as a design domain with the symmetry bound-
ary conditions. The design domain is discretized with
6272 quadrilateral elements under plane strain conditions.
The material properties used in the numerical simulation

Table 2 Brief description of the numerical examples

Example Description Remarks

1 Corner-supported square
(Swan and Kosaka 1997)

• Optimized topology agrees with the benchmark problem considering the Drucker–Prager
criterion

• Proper convergence in both optimization and FEM
• Advantage of inexact line search in solving nonlinear state equations
• The particular case of identical material strength in compression and tension is investigated,

which simplifies to the von Mises criterion

2 Clamped beam • Nonlinear solutions are obtained with different prescribed energy C0

• Convergence plot for maxU formulation exhibits smooth behavior

3 Structural performance of the optimized
clamped beams

• Verification of topologically optimized structures using commercial FEA software
• Comparison of structural performance using the standard Drucker–Prager plasticity and those

considering the nonlinear elastic model
• The nonlinear elastic solution is analogous to the plasticity solution

4 Beams with pin/roller supports • Nonlinear solutions are investigated with two types of support conditions

1 m

1 m

0.5 m

1 m

(a) (b)

Fig. 6 a Idealized geometry, loading, and support conditions of the
corner-supported square problem. b A half of the square is used as a
design domain with symmetry boundary conditions

Table 3 Material properties used in the corner-supported square
problem

Property Symbol Magnitude

Young’s modulus E 1 × 105 MPa

Poisson’s ratio υ 0.3

Tensile strength σt 10 MPa or 40 MPa

Compressive strength σc 40 MPa

T. Zhao et al.3214



are listed in Table 3. In this problem, we utilize the solid
isotropic material with penalization (SIMP) model
(Bendsøe 1989; Rozvany et al. 1992; Bendsøe and
Sigmund 1999; Rozvany 2009) with constant penalization
parameter using p = 3. The other optimization parameters
are given as follows: volume fraction VolFrac = 15% , and
a linear density filter (Borrvall and Petersson 2001;
Bourdin 2001) radius R = 0.018 m. As usual, the SIMP
design optimization problem is solved by the optimality
criteria (OC) approach.

Figure 7 presents the optimized topologies for the
corner-supported square problem considering different
prescribed energy C0 and different material strength (i.e.,
σt & σc). Considering a small value of the prescribed en-
ergy C0 = 8 × 10−6 MJ, the optimized topology is shown
in Fig. 7(a). As expected, this topology is identical to the
result obtained considering a linear elastic material con-
stitutive model. When a lager prescribed energy is utilized
(i.e., C0 = 2 × 10−4 MJ), Fig. 7(b), (c) and (d) show the
nonlinear solutions considering the material strength
σc = 4σ t = 40 MPa, σc = σ t = 40 MPa, and σc = σ t =
10 MPa, respectively. When the compressive strength
and tensile strength are the same, the proposed nonlinear
elastic model obeys the von Mises criterion. In addition,
the final topologies considering linear elastic and von
Mises cases (i.e., Fig. 7(a), (c), and (d)) present symmetry
with a horizontal line, while the final topology (i.e., Fig.
7(b)) accounting for different material strength in com-
pression and tension does not have the horizontal line of

symmetry. The optimized topology of Fig. 7(b) agrees
with the results by Swan and Kosaka (1997) considering
the standard plasticity formulation. Furthermore, Table 4
includes the objective (i.e., strain energy U) and the cor-
responding load factor χ obtained in the solution.
Considering the same prescribed energy, i.e., C0 = 2 ×
10−4 MJ, we observe that the load factors are quite differ-
ent for the three cases because of the different material
strengths.

The proposed nonlinear topology optimization frame-
work considering the Drucker–Prager criterion has good
convergence behavior in both optimization and FEM
schemes. For example, Fig. 8 illustrates the convergence
of optimization using the prescribed energy C0 = 2 ×
10−4 MJ. The intermediate topologies at iteration #6,
#70, and #608 are shown in Fig. 8. It is clear that the
convergence curve is smooth. Moreover, the nonlinear
FEM iterations at optimization iteration no. 6 are shown
in Table 5. The case with the line search approach con-
verges within 13 FEM iterations, while the case without
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Fig. 7 Optimized solutions of the
corner-supported square problem
considering (a) C0 = 2 × 10

−6 MJ,
σt = 10 MPa, σc = 40 MPa; (b)
C0 = 2 × 10

−4 MJ, σt = 10 MPa,
σc = 40 MPa; (c) C0 = 2 ×
10−4 MJ, σt = σc = 40 MPa; (d)
C0 = 2 × 10

−4 MJ, σt = σc =
10 MPa. The horizontal-dashed
lines represent line of symmetry

Table 4 Results of the square problem considering different prescribed
energy C0

C0 (MJ) σt (MPa) σc (MPa) U (MJ) χ

2 × 10−6 10 40 4.65 × 10−8 2.33 × 10−2

2 × 10−4 10 40 4.06 × 10−4 2.01

2 × 10−4 40 40 3.40 × 10−4 1.39

2 × 10−4 10 10 1.72 × 10−4 5.82 × 10−1
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Fig. 8 Convergence of optimization considering maxU formulation with
the prescribed energy C0 = 2 × 10

−4 MJ, and material strength σc = 4σt =
40 MPa
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the line search fails to converge. Thus, this example high-
lights the relevance of the line search method. As a com-
parison, a path-dependent model often tends to have dif-
ficulty in convergence. Utilizing the present nonlinear
elastic constitutive model, we can solve both the optimi-
zation problem and the nonlinear state problem and
achieve converged results.

4.2 Clamped beam

The clamped beam example is presented next to further illus-
trate the behavior of the proposed material nonlinear topology
optimization framework. Figure 9 shows the geometry and
dimensions of the beam, which is fixed at both left and right
ends. A distributed load with the magnitude of w = 80 MN/m
is applied on a 0.25-m portion of the bottom of the beam. Only

half of the clamped beam is considered for the design domain
as symmetry boundary conditions are considered. We adopt a
mesh discretization with 6272 quadrilateral elements under
plane strain conditions. The material properties of the beam
are listed in Table 6. The optimization parameters are given as
follows: a volume fraction VolFrac = 25%, a linear filter radi-
us R = 0.01429 m, and the SIMP model with a constant pe-
nalization parameter p = 3.

Figure 10 shows the optimized topologies with differ-
ent prescribed energy C0. Figure 10(a) presents the opti-
mized result considering a small prescribed energy C0 =
8 × 10−4 MJ. As expected, this topology is identical to the
linear elastic result obtained using the educational code
PolyTop (Talischi et al. 2012). Figure 10(b) and (c) show
the nonlinear solutions considering C0 = 1.1 × 10−2 MJ
and C0 = 1.3 × 10−2 MJ, respectively. Moreover, as we
further increase the prescribed energy C0, the topology
of the optimized solution remains the same as the one in
Fig. 10(c), and thus, we can estimate a limit value of C0

for a given volume fraction (see details in the Appendix
B). With different values of the prescribed energy, the
material can be in various states, which leads to different
sensitivities. Thus, the corresponding optimized topolo-
gies in Fig. 10 are quite different. Table 7 shows that
the topology in Fig. 10(c) has larger reaction load factor
than the topologies in Fig. 10(b) and (c). This observation
verifies that the physical meaning of the objective func-
tion is to maximize the structural loading capacity.

We further investigate the stress state of the nonlinear
solution obtained with C0 = 1.3 × 10−2 MJ, as shown in

Table 5 Convergence of FE solutions for the square problem at
optimization iteration no. 6 considering C0 = 2 × 10−4 MJ and σc =
4σt = 40 MPa. Note the influence of the inexact line search approach. If
the line search is not used, then the Newton’s method does not converge

Newton’s method with line search

FEM iter. Step size Δuk k
1þ uk k

1 4.37 × 10−1 1.65 × 10−3

2 4.09 × 10−1 8.66 × 10−4

3 4.31 × 10−1 5.98 × 10−4

4 1.00 9.25 × 10−4

5 1.00 9.80 × 10−5

6 1.00 3.35 × 10−5

7 1.00 1.23 × 10−5

8 1.00 1.36 × 10−5

9 1.02 × 10−1 1.73 × 10−6

10 3.55 × 10−1 4.73 × 10−6

11 1.00 2.80 × 10−6

12 3.92 × 10−2 1.61 × 10−7

13 9.31 × 10−10 3.75 × 10−15

2 m

0.5 m
0.25 m

1 m

0.5 m
0.125 m

(a) (b)

Fig. 9 a Geometry, loading, and
support conditions of the clamped
beam problem. bHalf of the beam
is used as a design domain with
symmetry boundary conditions

Table 6 Material properties used in the clamped beam problem

Property Symbol Magnitude

Young’s modulus E 1.8 × 105 MPa

Poisson’s ratio υ 0.3

Tensile strength σt 144 MPa

Compressive strength σc 1440 MPa
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Fig. 11(a). The distribution of the (absolute) maximum
principal stress in Fig. 11(b) shows the structural mem-
bers either in compression or tension. By plotting the
contour of the Drucker–Prager strength function (i.e.,
(6)) in Fig. 11(c), we observe that the stress state of
tension members reaches the strength limit while the
stress state of compression members remains in the lin-
ear elastic region. This observation is supported by the
nature of the selected Drucker–Prager material, which
has high compressive strength but low tensile strength.

Figure 12 illustrates the convergence history of the
clamped beam problem with the prescribed energy C0 =

1.3 × 10−2 MJ. The intermediate topologies at iteration #10,
#50, and #300 are shown in the figure. This study indicates
that the present nonlinear elastic optimization framework has
proper convergence behavior.

4.3 Structural performance of the three optimized
clamped beams

We verify the structural performance of the three topo-
logically optimized clamped beam structures (which are
obtained in the previous Section 4.2) in ABAQUS®
composed of two different material constitutive models,
namely the built-in Drucker–Prager plasticity model and
the present surrogate nonlinear elastic model (the
UMAT file is provided in Appendix E).

At first, three optimized topologies are digitized and
converted to CAD models in ABAQUS®. To define the
solid boundaries of topologies, we consider densities
(i.e., design variables) ρ > 0.5 (cutoff) to be solid
(Zegard and Paulino 2016). This approach allows us to
represent the boundaries of the topologies by contour
lines while satisfying the volume constraint. The con-

(a) (b) (c)
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= 8×10-4 MJ C

0 
= 1.1×10-2 MJ C

0 
= 1.3×10-2 MJ

Fig. 10 Optimized topologies of the clamped problem considering (a) C0 = 8 × 10−4 MJ, (b) C0 = 1.1 × 10
−2 MJ, and (c) C0 = 1.3 × 10

−2 MJ

Table 7 Results of clamped beam problem considering different
prescribed energy C0

C0 (MJ) U (MJ) χ

8 × 10−4 4.50 × 10−5 5.68 × 10−2

1.1 × 10−2 7.12 × 10−3 6.36 × 10−1

1.3 × 10−2 9.49 × 10−3 7.21 × 10−1
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Fig. 11 (a) Nonlinear solution obtained consideringC0 = 1.3 × 10
−2 MJ. (b) The distribution of the (absolute) maximum principal stress. (c) The contour

plot of the Drucker–Prager (DP) strength function in (6)
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tour lines can be imported into AutoCAD as polylines
and then exported as a standard ACIS file, which later
can be imported into ABAQUS®. Figure 13 shows the
CAD models in ABAQUS®, named as topologies I, II,
and III with volumes 0.2462, 0.2466, and 0.2454, re-
spectively. Notice that the volume fraction is 25% (i.e.,
the upper bound volume is 2 × 0.5 × 25% = 0.25) in this
optimization of the clamped beam problem. In
ABAQUS®, topologies I, II, and III are discretized by
6145, 6106, and 6171 linear triangular elements of type
CPE3, respectively, under plane strain conditions.

Secondly, we define the material properties for the plastic-
ity model and nonlinear elastic model, respectively. In
ABAQUS®, we choose the built-in Drucker–Prager plasticity
model with the hardening behavior type defined by the linear
shear criterion. We assume associated flow (i.e., the friction
angle is identical to the dilation angle), and the flow stress
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Fig. 12 Convergence of optimization for the clamped beam using maxU
formulation under the prescribed energy C0 = 1.3 × 10
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Fig. 13 The optimized clamped beam structure considering (a) linear
elastic material, (b) Drucker–Prager material with the prescribed energy
C0 = 1.1 × 10−2 MJ, and (c) Drucker–Prager material with C0 = 1.3 ×
10−2 MJ. The second row shows the digitized structures which are

converted to CAD models in ABAQUS®. The corresponding
topologies on the second row are named topologies I, II, and III,
respectively
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ratio is equal to 1. Given the material tensile strength and
compressive strength (i.e., σt = 144 MPa, σc = 1440 MPa)
which are the same as the ones defined in the second numer-
ical example, we can calculate the input data for the Drucker–
Prager plasticity model with the associated flow in
ABAQUS®, i.e., friction angle ψ = 67.83°, shear (cohesion)
strength stress c = 261.82MPa, and select “linear” as the shear
criterion. On the other hand, based on (42), we obtain the input
data for the nonlinear elastic model in the UMAT file as υp =
− 0.175 and σy = 144 MPa. For both the plasticity and the
nonlinear elastic models, we define E = 1.8 × 105 MPa and
υ = 0.3.

Lastly, the general static algorithm is used for a solution
under prescribed pressure load. The simulation is performed
under small deformation, so the Nlgeom option in
ABAQUS® is turned off. Increasing pressure is applied to
these three topologies until the magnitude of the vertical dis-
placement at point A (as shown in Fig. 14) reaches 0.015 m.
The structural performance of the topologies is investigated,
considering both the plasticity model and the nonlinear elastic
model. For the plasticity model, we obtain the behavior of the
structures shown as solid curves in Fig. 14. Each curve repre-
sents the applied pressure versus the vertical displacement at
point A of the clamped beam. For the nonlinear elastic model,
the behavior of the structures is represented by the small cir-
cles shown in Fig. 14. The limit pressures for topology I, II,
and III, considering the two different material constitutive

models, are listed in Table 8.We notice that the limit pressures
obtained using the nonlinear elastic model are similar to those
obtained using the plasticity model.

4.4 Beams with pin/roller supports

In this section, a beam with two types of support conditions
(i.e., pin-pin and pin-roller) is investigated by the present non-
linear topology optimization framework considering the
Drucker–Prager criterion. The geometry, dimensions, loading,
and support conditions are shown in Fig. 15(a) and (b). The
magnitude of applied distributed loads is w = 55 MN/m. The
material properties used in the numerical simulation are listed
in Table 9. By applying the symmetry boundary conditions,
only half of the beam is considered as a design domain, which
is discretized with 5000 quadrilateral elements under plane
strain conditions. We use the following optimization parame-
ters: volume fraction is VolFrac = 30%, linear density filter
radius R = 0.06 m, and the SIMP model with constant penal-
ization parameter, p = 3.

For the pin-pin support conditions, the optimized topolo-
gies are presented in Fig. 16. Figure 16(a) shows the result
considering a small prescribed energy C0 = 5 × 10−5 MJ. As
expected, this topology is identical to the linear elastic result
obtained using the educational code PolyTop (Talischi et al.
2012). When a larger prescribed energy C0 = 0.2 MJ is ap-
plied, we obtain a nonlinear solution as shown in Fig. 16(b),
which has a different topology than the linear solution. The

(a) (b)

Fig. 15 Geometry, loading, and support conditions of the beam problem with (a) pin-pin supports and (b) pin-roller supports

Table 9 Material properties used in the beam problemwith two types of
support conditions

Property Symbol Magnitude

Young’s modulus E 1.8 × 105 MPa

Poisson’s ratio υ 0.3

Tensile strength σt 144 MPa

Compressive strength σc 1440 MPa

Table 8 The limit pressure for topologies I, II, and III considering the
Drucker–Prager plasticity model and the surrogate nonlinear elastic
model

Topology Limit pressure (MPa)

Drucker–Prager plasticity Nonlinear elastic

I 30.464 30.362

II 58.200 57.900

III 72.298 72.075
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objective (i.e., strain energy U) and related load factor χ of
those solutions are listed in Table 10.

For the pin-roller support condition, Fig. 17 shows the op-
timized solutions considering different prescribed energy. The
topology in Fig. 17(a) is the same as the one obtained using
PolyTop (Talischi et al. 2012), considering a linear elastic
material. Figure 17(b) and (c) illustrate the nonlinear solutions
considering C0 = 0.16 MJ and C0 = 0.22 MJ, respectively. We
observed that the topologies obtained using different pre-
scribed energy are quite distinct. Table 10 includes a compar-
ison of the objective (U) and related load factor (χ) for those
solutions.

5 Concluding remarks

This paper addresses material nonlinear topology optimization
problem considering the Drucker–Prager criterion using a

surrogate nonlinear elastic model. With this nonlinear elastic
model, the sensitivity analysis is quite effective and efficient
in the sense that there is no extra adjoint equation (since the
problem is self-adjoint). A nested optimization formulation by
maximizing the structural strain energy (maxU) is presented.
We consider the topology optimization problem subjected to a
certain prescribed energy—we prescribe a certain value of
energy C0 for all design cycles until an optimal design is
reached. This prescribed energy approach leads to robust con-
vergence in all the nonlinear problems investigated. The non-
linear state equations are solved using direct minimization of
the structural strain energy employing Newton’s method with
an inexact line search strategy, which improves the conver-
gence of the nonlinear FEM. Four numerical examples dem-
onstrate the features of the approach. All the optimization
problems accounting for the Drucker–Prager criterion have
smooth convergence when considering the present nonlinear
elastic formulation.

Table 10 Results of the beam problem with two types of support conditions

Support condition Case 1 Case 2 Case 3

C0 (MJ) U (MJ) χ C0 (MJ) U (MJ) χ C0 (MJ) (MJ) χ

Pin-pin 5 × 10−5 1.3 × 10−7 2.5 × 10−3 0.2 2.13 10.64 –

Pin-roller 5 × 10−5 5.3 × 10−8 1.1 × 10−3 0.16 0.27 1.20 0.22 0.41 1.31

(a) (b) (c)

C
0 
= 5×10-5 MJ C

0 
= 0.16 MJ C

0 
= 0.22 MJ

Fig. 17 Results of the beam with pin-roller support conditions. The optimized topologies considering (a) C0 = 5 × 10−5 MJ, (b) C0 = 0.16 MJ, and (c)
C0 = 0.22 MJ

C
0 
= 5×10-5 MJ C

0 
= 0.2 MJ

(b)(a)

Fig. 16 Results of the beam
problem with pin-pin support
conditions. The optimized
topologies considering (a) C0 =
5 × 10−5 MJ and (b) C0 = 0.2 MJ
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Replication of results In Section 4, we provide the detailed parameters
used for obtaining the results of the four numerical examples. In addition,
we include the ABAQUS® user subroutine UMAT as supplementary
material, which can be used to reproduce results presented in the paper.

Appendix A. Illustration of the energy control
approach

Let us consider a ground structure-based elastic formulation
(Bendsøe and Sigmund 2003; Christensen and Klarbring
2009; Sanders et al. 2017), in which (43) can be written as:
max
x

U x; u xð Þð Þ

s:t:
∑
n

e¼1
LTe xe−Vmax≤0

xmin
e ≤xe≤xmax

e ; e ¼ 1;…; n

with
T x; u xð Þð Þ ¼ χ x; u xð Þð Þ f 0

f T0u xð Þ ¼ 2C0

�
ð56Þ

The vector x is a vector of design variables, with
component xe being the cross-sectional area of truss
member e—it is subjected to lower bound xmin

e and upper
bound xmax

e . In addition, n is the number of truss mem-
bers in the ground structure, Le is the length of truss
member e, Vmax is the upper bound on the total volume,
and u(x) is the displacement vector. For illustrative pur-
pose, we assume the particular case of linear elasticity.
In the following, we solve a simple three-bar truss ex-
ample to explain how to estimate a proper value for the
prescribed energy C0 and demonstrate that C0 remains
constant at each design iteration during the entire
optimization process.

The three-bar example shown in Fig. 18(a) is made of a
linear elastic material with the Young’s modulus E =
200 GPa. The structure has two degree of freedoms (dofs),

and two reference forces are applied at each dof, respec-
tively. The magnitudes of the two reference forces are
f01 = 40 N and f02 = 80 N. The displacements at each of
the two dofs are u1 and u2.

Let us assume that the designer suggests that the magnitudes
of initial displacements at each of dofs are the same, i.e., u1 =
u2 = 10

−5 m. Based on this assumption, we estimate C0 as:

C0 ¼ C01 þ C02 ¼
1

2
f 01u1 þ

1

2
f 02u2 ¼ 6� 10−4 N �m ð57Þ

This three-bar optimization problem converges with 72 it-
erations. As an example, we plot the topologies at optimiza-
tion iteration #1, #35, and #72 in Fig. 18(b), (c), and (d),
respectively. Table 11 shows the prescribed energy C0 at each
optimization design iteration, which is composed of the ener-
gy C01 and C02 at each dof, respectively. As expected, C0

remains a constant in each optimization iteration. The data in
Table 11 can be visualized in Fig. 19(a) and (b), which illus-
trate the energy control approach during the optimization
process.

Appendix B. Estimating the limit value of the
prescribed energy C0

Here, we provide a rational approach to estimate the limit
value of the prescribed energy C0 for a design optimization
problem given a fixed volume constraint. This approach in-
cludes two phases as follows:

Phase #1: Calculate an initial guess of the C0
0 based on an

approximated displacement vector u

C0
0 ¼

1

2
f T0u ð58Þ

Phase #2: Estimate the limit value of the prescribed energy
Ci

0

� �
lim

for the given optimized topology corresponding

to the prescribed energy Ci
0.

& At step i (i = 0, 1, 2…), perform FEM analysis of the
optimized topology obtained with Ci

0, and plot the curve
that represents the relationship between the prescribed en-
ergy C0 and the reaction load factor χ.

& Select two points on the curve (i.e., C0 versus χ). One of
the two points is Ci

0; χi
� �

, and the other point

Ci
0

� �
k ; χið Þk

h i
is obtained iteratively such that:
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χið Þk− χið Þk−1
Ci

0

� �
k− Ci

0

� �
k−1

≤βK0 ð59Þ

where K0 is the slope of the curve as C0 is close to zero, and β
is a small ratio (e.g., 4 × 10−2 as appropriate).

& Based on the two selected points Ci
0; χi

� �
and

Ci
0

� �
k ; χið Þk

h i
, build an asymptotic function with the

functional format as follows:

χ C0ð Þ ¼ aC0

bþ C0
ð60Þ

& Calculate the limit value of the prescribed energy Ci
0

� �
lim

at the current step i as follows:

Ci
0

� �
lim

¼ b
1ffiffiffiffi
α

p −1
� �

ð61Þ

where α is a small ratio (e.g., 2 × 10−2 as appropriate).

Table 11 Calculation of the prescribed energy at each optimization iteration

Optimization Iteration # u1
(×10−5m)

u2
(×10−5m)

C01 ¼ 1=2ð Þ f 01u1
(×10−5N ∙m)

C02 ¼ 1=2ð Þ f 02u2
(×10−5N ∙m)

C0 =C01 +C02

(×10−5N ∙m)

0 1 1 20 40 60

1 0.2436 1.3782 4.872 55.128 60

35 0.4288 1.2856 8.576 51.424 60

72 0.6 1.2 12 48 60

1 m

x

y

0

1 m

dof #1

dof #2

Opt. design #35 Opt. design #72 Opt. design #1

(b)

(a)

(c) (d)

Fig. 18 The three-bar truss example. aDesign domain and boundary conditions. b, c, and d are the topologies at optimization iteration #1, #35, and #72,
respectively. Blue bars are in tension and red bars are in compression
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& Proceed to step i + 1. Stop, if the following criterion is
satisfied

Ciþ1
0

� �
lim
− Ci

0

� �
lim

�� ��
Ci

0

� �
lim

≤5% ð62Þ

& Then, Ciþ1
0

� �
lim

is the estimated limit value of the pre-

scribed energy for the given a fixed volume constraint.

For example, we investigate the limit value of the pre-
scribed energy for the clamped design optimization prob-
lem in Section 4.2 using the approach mentioned above. In
Fig. 20(a), the red curve represents the structural response

of the optimized topology obtained with C0
0 ¼ 0:013 MJ

(see Fig. 20(b)), and the black curve is an asymptotic ap-
proximation based on (60). From (61), we can obtain the
limit prescribed energy for this topology (Fig. 20(b)) as

Step #0: C
0

0 = 0.013 MJ

Step #1: C
0

1 = 0.05 MJ

Step #2: C
0

2 = 0.13 MJ

0 0.01 0.02 0.03 0.04 0.05

Prescribed Energy [MJ]
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0.2

0.4

0.6
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1
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R
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to
r

Structural response

Approximated curve

(a) (d)

[0.013, 0.721]

[0.040, 0.986]
(b)

(c)

Fig. 20 (a) Structural response and its approximation for the optimized topology in (b) with C0
0 ¼ 0:013 MJ. (c) Optimized topology with

C1
0 ¼ 0:05 MJ. (d) Optimized topology with C2

0 ¼ 0:13 MJ
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Fig. 19 Displacement versus reaction force diagrams at (a) dof #1 and (b) dof #2, respectively. The shaded area represents prescribed energy at
optimization iteration #0 (yellow), #1 (green), #35 (red), and #72 (blue), i.e., optimal design
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C0
0

� �
lim

¼ 0:05 MJ. With this value of the prescribed ener-

gy, the corresponding optimized topology is shown in Fig.
20(c). Similarly, we estimate the limit value of the pre-

scribed energy for this topology as C1
0

� �
lim ¼ 0:13 MJ.

We repeat the procedure until (62) is satisfied, and then,
the limit value of the prescribed energy for this clamped

problem is obtained as C2
0

� �
lim

¼ 0:134 MJ. As the pre-

scribed energy increases, the corresponding topologies
shown in Fig. 20(b), (c), and (d) are not changing.
Instead, we note that the shape of those topologies is
different.

Appendix C. Relationship
between the increment of principal stress
on the strength surface and the increment
of principal strain

A reference principal strain tensor of the deformation at a
material point can be written as:

εref
� �¼ εref1 0 0

0 εref2 0
0 0 εref3

24 35 ð63Þ

and the principal strain tensor controlled by a positive scaling
factor ξ is denoted by:

ε½ � ¼ ξ εref
� � ð64Þ

Then, the first invariant of the principal strain tensor is:

J 1 ¼ ξJ ref1 ð65Þ

By making reference to (1), we can calculate the principal
stress components as:

σi ¼ ξ λ J ref1 þ 2 μ εrefi
� �

; i ¼ 1; 2; 3 ð66Þ

where λ and μ can be obtained from (4), (9), and (10) consid-
ering the Drucker–Prager criterion.

Next, by taking the derivatives of the principal stresses com-
ponents with respect to the scaling factor ξ, we obtain that:

dσi

dξ
¼ λþ ξ

dλ
dξ

� �
J ref1 þ 2 μþ ξ

dμ
dξ

� �
εrefi ð67Þ

We then check that the terms in parentheses in (67) are
independent of the scaling factor ξ, i.e.,

λþ ξ
dλ
dξ

¼
1−6β2
� �

J ref1

ffiffiffiffiffiffiffiffi
J ref2

q
−β 6J ref2 −J ref1

2
� �

3J ref1

ffiffiffiffiffiffiffiffi
J ref2

q
6β2 1þ υð Þ þ 1−2υ
� � E ð68Þ

and

μþ ξ
dμ
dξ

¼
6β

ffiffiffiffiffiffiffiffi
J ref2

q
−J ref1

2
ffiffiffiffiffiffiffiffi
J ref2

q
6β2 1þ υð Þ þ 1−2υ
� � βE ð69Þ

Therefore, we conclude that the increment of principal
stress on the Drucker–Prager strength surface is constant for
each reference strain tensor with respect to the increment of
the principal strain.

Appendix D. Solving the nonlinear state
equations: Newton’s method with line search

We solve (44) using Newton’s method with a backtracking
line search strategy. We start with the Lagrangian function.

L u;χð Þ ¼ U uð Þ þ eχ 2C0− f T0u
� � ð70Þ

where eχ is the Lagrangian multiplier, which is also the reac-
tion load factor in (43). According to the KKT optimality
conditions, we readily obtain:

∂L
∂u

u*; �*� � ¼ ∇U u*
� �

−�* f 0 ¼ 0

∂L
∂χ

u*; �*� � ¼ 2C0− f T0u
* ¼ 0

8><>: ð71Þ

At iteration k, we interpret the Newton step Δuk, and the
associated multiplier χk + 1, as the solutions of a linearized
approximation of the optimality conditions in (71). We sub-
stitute uk + Δuk for u∗ and χk + 1 for χ

∗, and replace the gradi-
ent by its linearized approximation near uk, to obtain the equa-
tions:

∇U uk þ Δukð Þ−χkþ1 f 0≈∇U ukð Þ þ ∇∇TU ukð ÞΔuk−χkþ1 f 0 ¼ 0
2C0− f T0 uk þ Δukð Þ ¼ 0

�
ð72Þ

Since ∇∇TU(uk) = K(uk) and ∇U(uk) = T(uk), then, (72) be-
comes:

T ukð Þ þ K ukð ÞΔuk−χkþ1 f 0 ¼ 0
2C0− f T0 uk þ Δukð Þ ¼ 0

�
ð73Þ
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Solving for Δuk using the first equation in the system (73),
we obtain:

Δuk ¼ K−1 ukð Þ −T ukð Þ þ χkþ1 f 0
� � ð74Þ

By means of the equality f T0uk¼2C0, the second equation
in the system (73) becomes:

f T0 Δuk¼0 ð75Þ
Substituting (74) into (75), and solving for χk + 1, we ob-

tain:

χkþ1 ¼
f T0Δu

0
k

fT0Δu′′k
;Δu

0
k ¼ K−1 ukð ÞT ukð Þ ;Δu′′k ¼ K−1 ukð Þ f 0

ð76Þ

By substituting the expression of χk + 1 in (76) into (74), we
finally obtain the expression of the Newton step Δuk as:

Δuk¼−Δu
0
kþχkþ1Δu′′k ð77Þ

For the sake of completeness, the detailed algorithm for
Newton’s method, as employed in the present work, is

provided in Table 12. The stiffness matrix might become sin-
gular near the limit state which can cause numerical difficul-
ties. To prevent the possibility of a singular stiffness matrix,
we add a Tikhonov regularization (Tikhonov and Arsenin
1977; Ramos Jr and Paulino 2016) parameter tTK into the
tangent stiffness matrix as shown in lines 5 and 6 of
Table 12. Through the testing of the numerical examples, we
verify that the Tikhonov regularization technique is effective.

Appendix E. ABAQUS® UMAT subroutine
(ESM)

The ABAQUS® user subroutine UMAT for the surrogate non-
linear elastic constitutive model considering the Drucker–Prager
criterion is provided as ESM (Electronic Supplementary
Material). A representative example of the supplementary mate-
rial is presented here. For the Abaqus/CAE usage, please follow
this sequence: Property module → Material Editor → General
→ User Material → Mechanical Constants → Input the user-
defined material properties in the sequence of Young’s modulus,
Poisson’s ratio, plastic Poisson’s ratio, and uniaxial strength
stress. Run analysis with the present UMAT subroutine:
Analysis→ Edit job→ General→ User subroutine file.

Table 12 Newton’s algorithm for solving nonlinear state equations
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Appendix F. Nomenclature

σ stress tensor
ɛ strain tensor
s deviatoric stress tensor
ɛd deviatoric strain tensor
I second-order identity tensor
σi principal stress components
εi principal strain components
λ, μ Lame’s parameters
ϕ1, ϕ2 functions representing the hardening behavior of the

material
J1(ɛ) first invariant of the strain tensor
J2(ɛd) second invariant of the deviatoric strain tensor
J1(σ) first invariant of the stress tensor
J2(s) second invariant of the deviatoric stress tensor
σL linear elastic limit of the stress tensor
ɛL linear elastic limit of the strain tensor
σN nonlinear elastic limit of the stress tensor
ɛN nonlinear elastic limit of the strain tensor
E Young’s modulus
υ Poisson’s ratio
υp plastic Poisson’s ratio
σy uniaxial strength stress
β, ks positive constants for an elastic-perfectly-plastic material
φ strain energy density
φL linear elastic strain energy density
c Cohesion
ψ friction angle

η, ζ parameters defined based on the approximation to the
Mohr–Coulomb criterion

σc material compressive strength
σt material tensile strength
U structural strain energy
C0 prescribed energy
f0 vector of given applied forces
u nodal displacement vector
ρ vector of element density variables
p constant penalization parameter
Vol Fracvolume fraction
R linear density filter radius
n number of elements discretizing the design

domain
ve volume of element e
Vmax maximum material volume
T internal force vector
χ reaction load factoreχ Lagrangian multiplier
KT tangent stiffness matrix
Δu Newton step
α step size by backtracking line search
J objective function
L Lagrangian function
w magnitude of distributed load
x vector of the cross-sectional area for truss members
Le length of truss member e
κ a factor used in the inexact line search approach
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