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Abstract
Structures containing tension-only members, i.e., cables, are widely used in engineered structures (e.g., suspension and
cable-stayed bridges, tents, and bicycle wheels) and are also found in nature (e.g., spider webs). We seek to use the ground
structure method to obtain optimal cable network configurations. The structures are modeled using principles of nonlinear
elasticity that allow for large displacements, i.e., global configuration changes, and large deformations. The material is
characterized by a hyperelastic constitutive relation in which the strain energy is nonzero only when the axial stretch of
a member is greater than or equal to one (i.e., tension-only behavior). We maximize the stationary potential energy of
the equilibrated system, which avoids the need for an additional adjoint equation in computing the derivatives needed for
the solution of the optimization problem. Several examples demonstrate the capabilities of the proposed formulation for
topology optimization of cable networks. Motivated by nature, a spider web–inspired cable net is designed.

Keywords Tension-only cable nets · Topology optimization · Ground structure method · Finite deformations

1 Introduction and approach

Frei Otto’s visionary use of tensile components (e.g., cable
nets and membranes) pioneered design and construction of
lightweight structures and continues to influence minimal
design today (Otto and Trostel 1967; Otto and Schleyer
1969; Glaeser 1972; Otto and Rasch 1995; Nerdinger 2005).
Inspired by Otto’s work, we present a formulation for
topology optimization of structures composed of tension-
only members, i.e., cable structures, that may undergo large
displacements and deformations. Seeking cable networks
of maximum stiffness and limited total material volume,
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we maximize the stationary potential energy subject to a
volume constraint (Klarbring and Strömberg 2012):

min
A

f (A) = −�min (A,u (A)) (1)

s.t. g (A) = LT A − V max ≤ 0 (2)

0 ≤ Ai ≤ Amax
i (3)

with u (A) = arg min
u

�(A,u (A)) (4)

In (1)–(4), A is the vector of design variables representing
the cross-sectional areas of the cable members in the
undeformed configuration, u is the vector of nodal
displacements, � is the total potential energy of the system,
�min is the stationary potential energy of the system, L
is the vector of cable member lengths in the undeformed
configuration, V max is a limit on the total volume of the
cable network in the undeformed configuration, and Amax

i

is the upper bound on the undeformed cross-sectional area
of member i. Note that the cable cross-sectional areas are
allowed to reduce to zero and the resulting singular system
of equilibrium equations is solved using a damped Newton
method (Madsen and Nielsen 2010).

The formulation in (1)–(4) is applicable to structures with
both linear and nonlinear elastic material behavior as well as
both small and large displacements and deformations. In this
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Fig. 1 Hyperelastic constitutive
model for cable members.
a Strain energy density function.
b Corresponding axial
stress-strain curve for a linear
strain measure

a b

work, we consider large displacement and large deformation
kinematics and distinguish tension-only behavior through
the selected hyperelastic constitutive model with strain
energy density function:

�i =
{

Ei

2 [εi (λi)]2 if λi ≥ 1
0 otherwise

(5)

In (5), �i is the stored strain energy per unit volume of
cable member i (see Fig. 1), Ei is a material parameter
relating stress to strain for cable member i, εi is the axial
strain of cable member i, and λi is the axial stretch of cable
member i. When coupled with a linear strain measure and
assuming uniaxial strain (i.e., no transverse deformation),
the hyperelastic strain energy density function selected here
leads to a piecewise linear relation between Cauchy stress
and strain. The hyperelastic strain energy density function
and stress-strain curves are illustrated in Fig. 1a and b,
respectively.

The proposed formulation often leads to nonintuitive
results. For example, the expected solution for a problem
considering a pair of self-equilibrated compression loads
(Fig. 2a) is a single bar in compression (Fig. 2b). Using our
tension-only material model, this compression-only solution
is not a feasible design. However, the single-member, self-
equilibrated topology is in the feasible space, and in fact, is a

solution in the case of a tension-only design space (Fig. 2c).
A similar example is explored further in Section 8.1.

2Motivation and background

The ground structure method, developed by Dorn et al.
(1964), is a numerical technique that uses mathematical
programming to extract optimal trusses, i.e., trusses that
approximate Michell solutions (Michell 1904), from dense
truss networks. Although shown to be extremely efficient
for finding minimum volume trusses with bounded member
stresses (Gilbert and Tyas 2003; Sokół 2011, 2015; Zegard
and Paulino 2014, 2015), the plastic formulation, which
enforces only nodal equilibrium, is limited in the scope
of design problems that it can address (e.g., material and
geometric nonlinearities cannot be handled). Using the
elastic formulation (see, e.g., Christensen and Klarbring
(2008)), which considers compatibility and constitutive
relations in addition to equilibrium, Ramos Jr. and Paulino
(2015), Zhang et al. (2017), and Zhang et al. (2018) used
the ground structure method to design stiff truss systems
composed of nonlinear materials.

Adopting the bi-linear material model used by Zhang
et al. (2017) for design of optimal trusses with different
stiffnesses in the tension and compression members, we

a b

compression tension

c

Fig. 2 Self-equilibrated solutions. a Domain, ground structure,
and boundary conditions. b Self-equilibrated compression structure
obtained using a linear model. c Self-equilibrated tension structure

(displayed in the undeformed configuration) obtained using our non-
linear model with tension-only constitutive relation. (color online)
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seek to design structures with members that have a finite
stiffness in tension and zero stiffness in compression
(i.e., cable structures). However, in order to ensure that
we obtain equilibrated structures when no members can
take compression forces, we consider finite displacements
and deformations, in addition to the nonlinear material
model. For example, in Fig. 3, we design a simply
supported beam subjected to a midspan point load on its
top surface. When considering the cable material model
illustrated in Fig. 1, but only small displacements and
deformations, we cannot obtain any solution since a tension-
only configuration does not exist for the given ground
structure and boundary conditions (Fig. 3b). In contrast,
if we consider the cable material model and include finite
displacements and deformations, we obtain a tension-only
structure that reaches an equilibrium configuration in the
deformed shape (Fig. 3c and d). This example provides the
motivation for our work.

A number of researchers have explored topology opti-
mization with nonlinear elastic material behavior and finite
displacements and/or finite deformations, but most have
focused their efforts in the continuum setting (Neves et al.
1995; Jog 1996; Buhl et al. 2000; Sekimoto and Noguchi
2001; Gea and Luo 2001; Jung and Gea 2004; Yoon and
Kim 2005; Kemmler et al. 2005; Kawamoto 2009; Klar-
bring and Strömberg 2013; Wang et al. 2014; Gomes and
Senne 2014; van Dijk et al. 2014; Luo et al. 2015; Luo
and Tong 2016). In contrast, we seek to optimize the lay-
out of cable networks. Nevertheless, our problem shares
some of the same challenges faced in the continuum set-
ting, while others are inherently avoided. One challenge that

arises when nonlinearities are included in the analysis is
how to define the objective function for maximum stiffness
structures. Buhl et al. (2000) confirmed that minimizing
the end-compliance for a fixed load leads to structures that
are inefficient for different load magnitudes. As a remedy,
they minimized the weighted sum of end-compliance for
multiple loads and ultimately found that minimizing the
complementary elastic work was the most effective way
to ensure that the structure could withstand all loads tra-
versed by the load-displacement curve. In addition to these
objectives, Kemmler et al. (2005) also minimize the strain
energy of the final structure and maximize end-stiffness,
which corresponds to the tangent of the load-displacement
diagram. All of these objective functions require solution of
an extra adjoint equation. Du et al. (2019) recently derived
the sensitivities for compliance considering bi-linear mate-
rials that satisfy a scaling property without the need for
an extra adjoint solve. Further, Klarbring and Strömberg
(2013) show that no extra adjoint equation is needed in the
case of maximizing the total stationary potential energy,
which is equivalent to minimizing compliance for linear
problems, minimizing complementary energy for material
nonlinear problems (Ramos Jr. and Paulino 2015), and min-
imizing complementary energy for cable networks under
finite deformations (Kanno and Ohsaki 2003). For this rea-
son, the total potential energy objective was adopted for
optimization of trusses with nonlinear material behavior by
Ramos Jr. and Paulino (2015) and Zhang et al. (2017) and
Zhang et al. (2018), and is also adopted in this work for opti-
mal layout design of tension-only (cable) structures under
finite displacements and deformations.

a b c

tension (deformed)
tension (undeformed)

no
solution

small displacement 
kinematics

large displacement kinematics

d

Fig. 3 Illustration of the need for large displacement kinematics with
the use of the cable material model. a Domain, ground structure,
and boundary conditions. b Unbounded solution for the cable mate-
rial model with small displacement kinematics. c Undeformed and d

deformed solution for the cable material model with large displace-
ment kinematics in which equilibrium is achieved in the deformed
configuration. (color online)
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Another challenge in topology optimization problems
that consider large displacements and deformations is the
possibility of critical points in the equilibrium path (e.g.,
buckling, snap-through, and snap-back behavior), which
require special techniques (e.g., arc-length methods) to tra-
verse the full nonlinear load-displacement curve (Sekimoto
and Noguchi 2001; Kemmler et al. 2005; Leon et al. 2011).
However, tension-only structures designed using our cable
topology optimization formulation inherently avoid these
situations since, by construction, the selected strain energy
density function, which does not allow compression, pre-
vents limit points in the equilibrium path. Thus, standard
Newton-Raphson iterations are sufficient to capture the
desired behavior. Another difficulty avoided in our problem
is handling the numerical difficulties (non-convergence)
caused by excessive deformations in low-density regions of
the domain, which may lead to an indefinite or negative
definite tangent stiffness matrix (Buhl et al. 2000). Many
authors (Neves et al. 1995; Yoon and Kim 2005; van Dijk
et al. 2014; Wang et al. 2014; Luo et al. 2015; Luo and Tong
2016) have circumvented the problem in various ways. For
example, Wang et al. (2014) interpolate between the non-
linear and linear strain energy density functions so that the
low-density elements behave linearly and avoid numerical
issues. Our formulation naturally avoids this problem since
excessive deformations of 1D elements with the selected
strain energy density function does not pose a concern. In
fact, we show that the tangent stiffness matrix is guaranteed
to be positive semi-definite, which, in addition to preventing
numerical difficulties in solution of the nonlinear equilib-
rium equations, also has implications on the convexity of the
optimization problem (Ramos Jr. and Paulino 2015; Zhang
et al. 2017).

In the following, we detail our ground structure–based
topology optimization formulation for cable structures
undergoing possibly finite displacements and deformations.
Large deformation kinematics for the case of 1D truss mem-
bers is presented in Section 3 and the piecewise linear,
tension-only constitutive model used to describe the cable
members is presented in Section 4. In Section 5, we derive
the nonlinear and linearized equilibrium equations describ-
ing our system and provide an expression for the tangent
stiffness matrix. The optimization formulation is detailed
in Section 6 along with a derivation of the sensitivities
and a brief discussion on convexity and optimality con-
ditions for our problem. In Section 7, we discuss some
aspects related to the numerical implementation, including
solving the possibly singular system of equilibrium equa-
tions using a damped Newton solution scheme with line
search, the design variable update, and the maximum end
filter used to remove unnecessary thin members remaining
at convergence. Finally, in Section 8, we present four numer-
ical examples that highlight the key features of the cable

formulation. Additionally, Appendix A includes a full
derivation of the element tangent stiffness matrix, Appendix
B elaborates on positive semi-definiteness of the element
tangent stiffness matrix, Appendix C provides the full
damped Newton and line search algorithms, Appendix D
includes additional details on the optimality criteria design
variable update scheme, Appendix E investigates the poten-
tial use of other strain measures, and Appendix F defines the
nomenclature used throughout the manuscript.

3 Large deformation kinematics

The kinematics considered here is similar to that of the
uniaxial, large displacement, large deformation, pin-jointed
truss member provided by Bonet and Wood (2008) (see
Fig. 4). In what follows, we use the terminology “large
deformations” to encompass both large displacements and
finite strains. We adopt the notation in which upper-case
letters are used to describe the undeformed configuration
and lower-case letters are used to describe the deformed
configuration. As such, the positions of cable member i are
described for the undeformed and deformed configurations,
respectively, as

Xi =
nd∑

j=1

X
j
i E

j ; xi =
nd∑

j=1

x
j
i e

j (6)

where nd is the number of spatial dimensions and we have
defined the coordinate frames for the undeformed (Ej , j =
1, . . . , nd ) and deformed (ej , j = 1, . . . , nd ) configurations
to coincide. Also, in Fig. 4, we have introduced the
displacement, ui = ∑nd

j=1 u
j
i E

j , of member i. For later

Fig. 4 Kinematics for 3D cable member i (Bonet and Wood 2008)
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use in our solution scheme, we also define incremental
displacements �up

i and �uq
i at ends p and q of deformed

member i.
Based on the coordinates of ends P (p) and Q (q) of the

member, the lengths of member i are computed as

Li =
[(

XQ
i − XP

i

)
·
(
XQ

i − XP
i

)]1/2 ;
�i = [(xq

i − xp
i

) · (xq
i − xp

i

)]1/2
(7)

where Li and �i denote the lengths of member i in
the undeformed and deformed configurations, respectively.
Similarly, the orientations of member i in the undeformed
and deformed configurations, respectively, are defined by
unit vectors along their axes:

Ni = XQ
i − XP

i

Li

;ni = xq
i − xp

i

li
(8)

We assume uniaxial strain such that the transverse principal
stretches, λ2

i and λ3
i , are unity and the fundamental measure

of deformation in each cable member is the axial stretch,
λ1

i = λi = �i/Li . The Jacobian, Ji = λiλ
2
i λ

3
i = λi , gives

the ratio of the volume in the deformed configuration to the
volume in the undeformed configuration:

dvi = JidVi → Ji = vi

Vi

= ai�i

AiLi

(9)

where the cross-sectional areas of member i are denoted
Ai and ai in the undeformed and deformed configurations,
respectively, and the volumes of member i are denoted
Vi = AiLi and vi = ai�i in the undeformed and deformed
configurations, respectively. Note that since Ji = λi , the
deformed and undeformed cross-sectional areas are equal
(i.e., ai = Ai).

We define a measure of instantaneous strain in member i

as the ratio of the instantaneous change in member length to
the original member length:

dεi = d�i

Li

(10)

from which we derive our linear strain measure1 by
integrating over the entire deformation from Li to �i :

εi =
∫ �i

Li

dεi = λi − 1 (11)

4 Cable constitutive model

Defining ti = σiai as the magnitude of the internal force in
member i, where σi is the axial component of Cauchy stress

1Other strain measures are explored in Appendix E

in member i, we can compute the stored strain energy per
unit volume in member i as

�i = 1

Vi

∫ �i

Li

tidli =
∫ εi

0
σi

vi

Vi

Li

�i

dεi =
∫ εi

0
σi

Ji

λi

dεi

(12)

which defines our constitutive relationship to be

σi = λi

Ji

∂�i

∂λi

= ∂�i

∂λi

(13)

where we have used the facts that the axial strain defined in
(11) is a linear function of the axial stretch and Ji = λi .

Introducing a material parameter, Ei , which turns out to
be the standard Young’s modulus of linear elasticity, we
choose the following strain energy density function:

�i =
{

Ei

2 (λi − 1)2 if λi ≥ 1
0 otherwise

(14)

It is noted that �i is a function of both Li and �i , and thus,
is a path-independent hyperelastic constitutive model. Then,
according to (13), the Cauchy stress is expressed as

σi =
{

Ei (λi − 1) if λi ≥ 1
0 otherwise

(15)

Although the constitutive relation in (15) is non-smooth,
in general, it does not cause problems in the optimization
of tension-only cable structures (Klarbring and Rönnqvist
1995).

5 Nonlinear equilibrium equations

Equilibrium of the cable network is enforced by requiring
the total potential energy, � (u), to be stationary. We write
�(u) as the sum of internal strain energy, U (u), and
potential of externally applied loads, 
 (u), where

U (u) =
N∑

i=1

∫
Vi

�i (u) dV =
N∑

i=1

Vi�i (u) (16)

and


(u) = −FT u (17)

In (16) and (17), N is the number of cable members in the
model and F is the vector of external loads. Then,

∂� (u)

∂u
= 0 = ∂U (u)

∂u
+ ∂
 (u)

∂u

=
N∑

i=1

Vi

∂�i (u)

∂u
− ∂

(
FT u

)
∂u

=
N∑

i=1

Vi

∂�i (u)

∂λi

∂λi

∂u
− F (18)

Topology optimization of tension-only cable nets under finite deformations 563



Using (13), the derivative of the stored strain energy
function in (18) can be written in terms of the Cauchy stress
and we only need to compute

∂λi

∂u
= 1

Li

∂�i

∂u

= 1

Li

∂�i

∂x
∂x
∂u

= 1

Li

∂�i

∂x
∂(X + u)

∂u

= 1

Li

bi (19)

where

bi =
{

. . .
∂�i

∂xp
. . .

∂�i

∂xq
. . .
}T = { · · · − ni . . .ni . . .

}T
(20)

and the dots indicate zeros. Plugging (15) and (19) into (18),
we write the stationary condition of the potential energy as

∂� (u)

∂u
= 0 =

N∑
i=1

Ai

Ji

λi

σibi − F

=
N∑

i=1

Ai

vi

Vi

Li

�i

σibi − F

=
N∑

i=1

aiσibi − F

0 = T (u) − F = R (u) (21)

where we have noted that the magnitude of the internal force
in member i is ti = aiσi and we have defined the vector
of member internal forces, T (u), and the vector of residual
nodal forces, R (u). Note that T (u) is a function of the
deformed configuration, i.e., the equilibrium equations in
(21) are nonlinear and thus, need to be linearized and solved
iteratively.

5.1 Linearization

Given a solution to (21), uk at iteration k, a new value,
uk+1 = uk + �uk , is obtained in terms of an increment,
�uk , by establishing a linear approximation of the residual

R (uk+1) = R (uk) + DR (uk) [�uk] = 0 (22)

where the directional derivative is determined using the
chain rule

DR (uk) [�uk] = d

dε
[R (uk + ε�uk)]

∣∣∣∣
ε=0

= ∂R
∂u

∣∣∣∣
uk

∂(uk + ε�uk)

∂ε

∣∣∣∣
ε=0

= Kt (uk) �uk (23)

In (23), we have defined the global tangent stiffness matrix,
Kt , as the derivative of the unbalanced forces with respect

to the displacement field. Now, the linear set of equations to
solve at each iteration k is

Kt (uk)�uk = −R (uk) = F − T (uk) (24)

5.2 Tangent stiffness matrix

Since the external force vector is not a function of the
deformed configuration, Kt is derived as the derivative of
the internal member forces with respect to the displacement
field:

Kt = ∂T
∂u

∣∣∣∣
uk

(25)

and can be assembled from the element tangent stiffness
matrices:

kt
i (uk) =

⎡
⎢⎢⎣
(
∂tpi /∂up

i

) ∣∣∣∣
uk

(
∂tpi /∂uq

i

) ∣∣∣∣
uk(

∂tqi /∂up
i

) ∣∣∣∣
uk

(
∂tqi /∂uq

i

) ∣∣∣∣
uk

⎤
⎥⎥⎦ =

[
kpp

i kpq
i

kqp
i kqq

i

]

(26)

where kt
i (uk) denotes the element tangent stiffness matrix

of element i and the element internal force vector and
element displacement vector are, respectively,

ti (ui ) =
{
tpi
tqi

}
= ti

{−ni

ni

}
;ui =

{
up

i

uq
i

}
(27)

for member i with end nodes p and q. In (26), it is noted
that kpp

i = kqq
i = −kpq

i = −kqp
i , and therefore, we

can derive kt
i (uk) using only one of the four partitions (see

Appendix A for the full derivation):

kqq
i = ∂tqi

∂uq
i

∣∣∣∣
uk

= ai

Li

∂2�i

∂λ2
i

ninT
i + ti

�i

(
I − ninT

i

)
(28)

where I is an nd × nd identity matrix.

6 Topology optimization formulation

We seek to maximize the structural stiffness of cable net-
works. To do so, we choose to maximize the stationary total
potential energy (see (1)), which has been shown equiv-
alent to minimizing end-compliance for linear problems
(Klarbring and Strömberg 2012), complementary energy
for nonlinear problems with small strains (Ramos Jr. and
Paulino 2015), and complementary energy for cable net-
works under large deformations (Kanno and Ohsaki 2003).
Next, we derive the sensitivities of this objective func-
tion without the need for an adjoint vector, make some
remarks regarding convexity of the formulation, and state
the optimality conditions.
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6.1 Sensitivity analysis

The sensitivities of the linear constraint in (2) with respect
to the design variables are

∂g

∂Ai

= Li, i = 1, . . . , N (29)

and the sensitivities of the objective function in (1) with
respect to the design variables are

∂f (A)

∂Ai

= −∂�min (A,u (A))

∂Ai

−∂�min (A,u (A))

∂u
∂u (A)

∂Ai

, i = 1, . . . , N (30)

Due to the equilibrium conditions, the second term in (30)
goes to zero. Writing �min as the sum of the internal strain
energy, U (A,u (u)), and potential of externally applied
loads, 
(u (A)), and noting that 
(u (A)) is (explicitly)
independent of Ai (Klarbring and Strömberg 2012), we
write the sensitivity of the objective as

∂f (A)

∂Ai

= −∂U(A,u (A))

∂Ai

= −Li�i (u (A)) i =1, . . . , N

(31)

Note that there is no need to calculate an adjoint
vector for the selected objective function. Additionally,
Li�i (u (A)) ≥ 0, i.e., the sensitivities of the objective
are always non-positive, an observation that demonstrates a
clear parallel between the current formulation for maximum
stationary potential energy and that of minimum end-
compliance. Note also that although the constitutive model
is discontinuous at zero strain (see Fig. 1b), the sensitivity
of the objective function is continuous everywhere since
it depends only on the continuous strain energy density
function (see Fig. 1a) and not on its derivative.

6.2 Convexity

In their work focusing on material nonlinearities, Ramos
Jr. and Paulino (2015) proved convexity of the objective
function in (1) for a positive definite tangent stiffness matrix
and Zhang et al. (2017) generalized the proof to include
positive semi-definite tangent stiffness matrices. Noting
that the global tangent stiffness matrix is guaranteed to
be positive semi-definite if the element tangent stiffness
matrices from which it is assembled are positive semi-
definite, they analyzed the element tangent stiffness matrix
and determined that the optimization problem in (1) – (4)
is convex for (non-strictly) convex hyperelastic material
models. Since our tangent stiffness matrix contains a
geometric stiffness term that did not exist in the previous
small deformation cases, we need to investigate the criteria

needed for a positive semi-definite tangent stiffness matrix
in the case of finite deformation kinematics.

Again, we study only the element tangent stiffness
matrix, which is a partitioned matrix (see (26)) that satisfies
some conditions that allow us to check only the lower left
partition, kqq

i , for positive semi-definiteness (Kreindler and
Jameson 1972). In (28), kqq

i is a sum of two terms. The
first term is analogous to the small deformation case and
is positive semi-definite given that strain energy density
function has non-negative curvature, i.e., ∂2�/∂λ2

i ≥ 0.
Additionally, in the second term, the matrix,

(
I − ninT

i

)
,

can be shown to be positive semi-definite using the principal
minors test (Strang 2006) (see details in Appendix B). Thus,
for tension-only structures in which ti/�i ≥ 0, the stiffness
matrix is guaranteed to be positive semi-definite and we
arrive at the same criterion for convexity as in the small
deformation case, i.e., the optimization problem in (1) –
(4) is convex for (non-strictly) convex hyperelastic material
models. This criterion is satisfied for the selected strain
energy density function, linear strain measure2, and uniaxial
strain assumption.

6.3 Optimality conditions

The KKT optimality conditions for the convex optimization
problem in (1)–(4) have been derived previously and are
stated here for completeness (Ramos Jr. and Paulino 2015;
Zhang et al. 2017):

�i

(
u
(
A∗)) ≥ φ∗ if A∗

i = Amax
i (32)

�i

(
u
(
A∗)) = φ∗ if 0 < A∗

i < Amax
i (33)

�i

(
u
(
A∗)) ≤ φ∗ if A∗

i = 0 (34)

where A∗ and φ∗ are the solution and Lagrange multiplier,
respectively, at the optimum. Note that when the box
constraints are inactive at the optimal point, all cable
members have equal strain energy, analogously to full
stressed design in the linear case with end-compliance
objective.

7 Details of the numerical implementation

In this section, we provide some details related to imple-
mentation of the topology optimization formulation for
structures composed of tension-only members. Specifically,
we review the damped Newton algorithm with line search
used for efficient solution of the possibly singular nonlin-
ear equilibrium equations, summarize the design variable

2Convexity of other strain measures is explored in Appendix E
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update scheme, detail how we reduce the size of the prob-
lem during the optimization, and discuss a maximum end
filter used to extract clean solutions (after convergence) that
satisfy global equilibrium.

7.1 Damped Newton with line search

Typically, Newton-Raphson iterations are used to solve
the nonlinear equilibrium equations according to the
linearization scheme in Section 5.1; however, due to the zero
lower bound in (3), the tangent stiffness matrix may become
singular, preventing us from solving (24). Thus, we adopt a
damped Newton method (Madsen and Nielsen 2010) so that
the linearized equilibrium equation of the nonlinear system
becomes

Kt,η�uk = −R (uk) = F − T (uk) (35)

where Kt,η = Kt + ηI and η is the damped Newton
parameter defined as η0 ≈ 10−12 to 10−8 multiplied by the
mean of the diagonal of Kt (a similar regularization scheme
is adopted by Ramos Jr. and Paulino (2016), Zhang et al.
(2017) and Sanders et al. (2017)). The damped Newton
scheme using (35) and considering a load control approach
is provided in Algorithm 1 of Appendix C. It is noted that
Newton methods only converge locally and depending on
the constitutive model, the algorithm may diverge (Madsen
and Nielsen 2010). Although our constitutive model will not
lead to divergence, we seek to improve the convergence of
the first several iterations of the damped Newton algorithm
by taking strategically sized steps such that our update
becomes (see e.g., Ascher and Greif (2011), Wriggers
(2008), and Wright and Nocedal (1999)):

uk+1 = uk + ξk�uk (36)

We use backtracking line search with an Armijo condition
(inexact line search) to find the line search parameter, ξk ,
such that the Wolfe conditions are satisfied. The specific
line search algorithm used in our implementation, taken
from (Ascher and Greif 2011), is provided in Algorithm 2
of Appendix C.

7.2 Design variable update

The design variables are updated in each optimization
iteration using the optimality criteria (OC) method, which
is detailed in Appendix D. The OC method is characterized
by a recursive update derived using Lagrangian duality
of truncated Taylor approximated subproblems evaluated
at intervening variable yi = A

αi

i , αi < 0 (Bendsøe
and Sigmund 2003; Groenwold and Etman 2008). The
approximate subproblems are only accurate in a small
neighborhood of the current design; thus, we impose a move
limit, M , on the change in the design variables in a given

iteration. The move limit is defined using a parameter, γ ,
such that

M = γA0 (37)

where A0 is the initial cross-sectional area of each member
(Ramos Jr. and Paulino 2016). Note that the recursive nature
of the OC method does not allow reappearance of zero-area
members (see (51) in Appendix D).

7.3 Convergence criterion

Convergence of the optimization problem is determined
based on the change in the design variables. Specifically, the
optimization algorithm is aborted when

max

(
|Ak+1

i − Ak
i |

1 + Ak
i

)
≤ tol (38)

7.4 Reduced order model

As noted in Section 7.2, the OC update scheme used in this
work does not allow zero-area members to reappear. Thus,
we reduce the design space in each iteration by removing the
zero-area members (Ramos Jr. and Paulino 2016; Sanders
et al. 2017; Zhang et al. 2017). The following mapping
matrix Q is constructed, such that

u = QuTop (39)

where uTop is the vector of nodal displacements considering
only the degrees of freedom associated with the topology,
i.e., the set of members in the initial ground structure that
have non-null member area. Based on this mapping, we can
also define the global tangent stiffness matrix, external load
vector, and internal load vector associated with the topology,
respectively, as

Kt,T op =QT KtQ ;FT op =QT F;TT op
(
uT op

k

)
=QT T (uk)

(40)

Then the associated linearized equilibrium equation of the
nonlinear system becomes(
Kt,Top + ηI

)
�uTop

k = RTop (uk) = FTop − TTop
(
uTop

k

)
(41)

with update:

uTop
k+1 = uTop

k + ξk�uTop
k (42)

7.5 End filter

Although we enforce a zero lower bound, the solutions often
contain thin members that can be removed with negligible
effect on the structural behavior. To clean up the final
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design, we adopt the maximum end filter, proposed by
Sanders et al. (2017), which sets cross-sectional areas equal
to zero according to the following:

Ai = Filter
(
A, αf

) =
{

0 if Ai

max(A)
< αf

Ai otherwise
(43)

where αf is the filter value selected using a bisection
algorithm to ensure that, after filtering, the final design
satisfies global equilibrium and the increase in the objective
is controlled.

To determine whether to accept the filtered structure for
a given αf , we first check that the global equilibrium error
of the filtered structure is within a tolerance, ρ, which is
typically taken to be 10−4:

||RTop (uk) ||
||FTop|| ≤ ρ (44)

Additionally, we check that the objective value obtained
after filtering, ffiltered, is within a margin of that obtained at
convergence, fconverged:

�f =
(
ffiltered − fconverged

)
fconverged

≤ f tol (45)

where f tol is a user-prescribed tolerance. If either of (44)
or (45) is not satisfied by a filter value, αf , greater than
Ai/ max (A) ∀i, then no end filter is applied.

8 A few examples

In this section, we present four numerical examples to
illustrate the capabilities of the proposed formulation for
obtaining maximum stiffness cable networks under possibly
finite displacements and deformations. The first example
highlights the effect of load magnitude on the final
design when considering large deformation kinematics and
includes a case similar to Fig. 2 in which the linear and
nonlinear (cable) formulation lead to the same topology,
but with very different mechanical behavior. The second
example shows that when the design variable upper bound,
Amax

i , is active, the final topology does not have constant
stress or strain energy, in accordance with the KKT
optimality conditions. The third example demonstrates that
the cable topology optimization formulation may lead to
topologies that would be meaningless in the case of small
displacement kinematics, but that are well defined in the
context of the current nonlinear model. Finally, we use the
formulation to design spider web–inspired cable nets that
have similarities to an orb-web (Vollrath and Mohren 1985).
Since the problems provided are relatively small scale, we
do not consider symmetry reduction, but note that convexity
of the formulation implies that symmetry reduction can be

used for problems with symmetric domain and boundary
conditions (Guo et al. 2013; Du and Guo 2016).

The ground structure “level” reported for each example
is based on the definition proposed by Zegard and Paulino
(2014). As such, the ground structure is generated on a
base mesh in which neighboring nodes are defined as nodes
that belong to the same element in the base mesh. Then, a
level 1 ground structure contains connectivity between all
neighboring nodes, level 2 contains connectivity up to the
neighbors of the neighbors, level 3 contains connectivity
up to the neighbors of the neighbors of the neighbors, and
so on. A full-level ground structure contains connectivity
between all nodes in the base mesh. In all examples, the
longer of two overlapping members in the initial ground
structure is not considered. Line thicknesses in the topology
plots indicate the diameter of the member normalized to
the maximum member diameter, assuming a circular cross-
section. Note that, in general, line thicknesses cannot be
compared between structures, unless indicated otherwise.
In all presented results, blue and red indicate members in
tension and compression, respectively.

8.1 Clamped beamwith equal and opposite point
loads

Here, we consider a clamped beam subjected to equal and
opposite compressive point loads on the top and bottom
faces at midspan of the beam. A full-level ground structure
consisting of 251 members with Young’s modulus, Ei = 7.5
GPa, is generated based on a 6 × 3 orthogonal base mesh.
The ground structure and boundary conditions are provided
in Fig. 5a. In this example, an end filter with f tol = 0.01
is used to remove thin members remaining at convergence.
All other optimization parameters used for this problem are
provided in Table 1.

Considering small deformation kinematics and a linear
material model, the expected solution, shown in Fig. 5b, is
a single vertical member in compression, self-equilibrated
by the two equal and opposite loads, where members
connected by aligned nodes have been replaced by a single
long member (see Sanders et al. 2017). In this case, the
magnitude of the load P is irrelevant to obtaining the
optimal design in Fig. 5b.

Three different optimal designs obtained considering
large deformation kinematics with the cable material model
are provided in Fig. 5c, d, and e. We show the specific sizing
and deformed shapes for P = 10 kN, P = 1000 kN, and
P = 2000 kN, but note that the critical load that causes
a transition between the topologies in Fig. 5c and d, and
Fig. 5d and e is about 400 kN and 1655 kN, respectively. In
this case, the topology and sizing of the stiffest structure is
dependent on the magnitude of the load. Note also that all
of the members in these designs are in tension, as clearly
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a b

c

d

e

Fig. 5 Clamped beam with equal and opposite compressive point
loads. a Domain, ground structure, and boundary conditions. b
Optimal design considering small deformation kinematics and lin-
ear material model (aligned nodes are removed in post-processing).

Undeformed (left) and deformed (right) topologies considering large
deformation kinematics and the cable material model, with c P = 10
kN, d P = 1000 kN, and e P = 2000 kN. (color online)

indicated in the plots of the deformed shapes (right side of
Fig. 5c, d, and e). The maximum strains and stresses for the
three (fully stressed) designs are provided in Table 2.

This example is similar to the one provided in the
Introduction and we finalize the discussion about it here.
As noted previously, depending on the load magnitude, we
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Table 1 Optimization input parameters for the clamped beam

Volume limit, V max 2.000 × 10−2 m3

Initial area, A0 3.198 × 10−6 m2

Maximum area, Amax
i 1.600 × 10−3 m2

Move parameter, γ 1.000 × 103

Convergence tolerance, tol 1.000 × 10−9

Objective tolerance, f tol 1.000 × 10−2

Damped Newton parameter, η 1.000 × 10−8

can sometimes obtain an identical topology to that obtained
using small deformation kinematics and a linear material
model (compare the topologies in Fig. 5b and e). The
difference is that in the case of finite deformations with
the cable material model, the structure goes through a large
configuration change to obtain its equilibrium position.
Notice that in the deformed shape, the location of loaded
nodes A and B flip so that tension is induced in the structure.

8.2 Pin-supported beamwithmidspan load

In this example, we study a pin-supported beam with mid-
span point load (100 kN) at the top surface. The domain,
boundary conditions, and full-level ground structure con-
sisting of 251 members with Young’s modulus, Ei = 170
GPa, are provided in Fig. 6a. Here we investigate the solu-
tions based on two different design variable upper bounds,
Amax

i = 1.444×10−3 m2 and Amax
i = 1.155×10−4 m2 for

all i. An end filter with f tol = 0.01 is used to remove thin
members remaining at convergence. All other optimization
parameters used for this problem are provided in Table 3.

The solution considering small deformation kinematics
and a linear material model is provided in Fig. 6b, where
members connected by aligned nodes have been replaced
by a single long member (see Sanders et al. 2017). The
results considering large deformation kinematics and the
cable material model with load P = 100 kN are provided
in Fig. 6 c and d for Amax

i = 1.444 × 10−3 m2 and Amax
i =

1.155×10−4 m2, respectively, for all i. Notice that the result

Table 2 Clamped beam maximum strains and member stresses for
varying applied load magnitudes

Load (kN) Maximum strain (%) Member stress (MPa)1

10 2.02 152

1000 25 1875

2000 26.6 2000

1All three structures are fully stressed

in Fig. 6c has the same topology as that obtained from a
linear model; however, the internal forces are tension forces
rather than compression forces. Also note that the cross-
sectional area of each member in Fig. 6c is below the upper
bound and, in agreement with the optimality conditions
in (33), all members have the same strain energy (fully
stressed). In contrast, when we reduce the upper bound to
Amax

i = 1.155 × 10−4 m2, a different topology, shown in
Fig. 6d, is obtained and the area of each member coincides
with the upper bound, leading to a design without constant
strain energy (non-fully stressed). Convergence plots for
both cases are provided in Fig. 7.

8.3 Tangentially loaded donut

Here, we investigate the centrally supported, tangentially
loaded, donut-shaped domain available with download of
GRAND and shown in Fig. 8a. Also shown is the base mesh
used by GRAND to generate a level 4 ground structure
composed of 69,400 members (Zegard and Paulino 2014).
A Young’s modulus of Ei = 170 GPa is assigned to all
members. As in the previous examples, an end filter with
f tol = 0.01 is used to remove thin members remaining
at convergence. All other optimization parameters are
provided in Table 4.

Considering small deformation kinematics and the linear
material model, we expect to obtain an assembly of five
structures resembling Michell’s solution for a cantilever
with circular support (Zegard and Paulino 2014). This
solution is repeated here in Fig. 8b with the tension
and compression members indicated in blue and red,
respectively.

Considering large deformation kinematics and the cable
material model with load P = 100 kN, we obtain the
structure in Fig. 8c in which all members are in tension.
Note that in the deformed configuration, the members
making up each tension strand become collinear with the
direction of the load, putting the structure in equilibrium.
In this case, the configuration found considering finite
deformations with the cable material model is different from
and totally meaningless for the case of a small deformation
kinematics. The objective function plotted in Fig. 9 shows
smooth convergence.

8.4 Spider web inspired cable net

Inspired by the elegant and efficient cable systems found
in nature, we design a spider web–inspired cable net using
the proposed formulation. Cranford et al. (2012) provide
empirically parameterized stress-strain curves for two types
of spider silks: radial (dragline) silk and spiral (viscid) silk.
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a b

c d

Fig. 6 Pin-supported beam with midspan point load. a Domain,
ground structure, and boundary conditions. b Optimal design con-
sidering small deformation kinematics and linear material model
(aligned nodes are removed in post-processing). Undeformed (top) and

deformed (bottom) topologies considering large deformation kinemat-
ics and the cable material model, with c Amax

i = 1.444 × 10−3 m2 for
all i and d Amax

i = 1.155 × 10−4 m2 for all i. (color online)
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Table 3 Optimization input parameters for the pin-supported beam

Volume limit, V max 2.000 × 10−3 m3

Initial area, A0 2.888 × 10−6 m2

Move parameter, γ 1.000 × 103

Convergence tolerance, tol 1.000 × 10−9

Objective tolerance, f tol 1.000 × 10−2

Damped Newton parameter, η 1.000 × 10−8

Although spider silk mechanical properties are dependent
on a variety of factors (e.g., type of spider, type of silk,
spinning conditions), the spiral (viscid) silk reported by
Cranford et al. (2012) seems to fit well with the constitutive
model proposed here as it reaches strains of around 250%
and has a stress-strain response with positive curvature
(i.e., it satisfies the convexity requirement discussed in
Section 6.2). Additional information regarding spider silk
can be found in the review paper by Omenetto and Kaplan
(2010).

The goal of this example is not to exactly match the
material properties and boundary conditions of a real spider
web, but instead, to use the general characteristics of
spider webs as inspiration for conceptual design of a cable
net. Noting that the design depends on the ratio of the
applied load to the stiffness of the system, we consider
dimensionless parameters in our design and investigate the
effect of varying the design variable upper bound, Amax

i , for
a given volume limit, V max.
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Fig. 7 Convergence of the objective function for the pin-supported
beam considering large deformation kinematics and the cable material
model for the two different design variable upper bounds considered
(color online)

With an orb-web in mind, we consider simplified
boundary conditions on a 2D circular domain of radius,
ro = 1. Fully fixed supports are placed at 8 equally
spaced locations around the circumference and a single
out-of-plane point load of magnitude 1 is applied at the
center of the domain. We use GRAND (Zegard and Paulino
2014) to generate a level 3 ground structure on a polar
grid with 16 circumferential and 16 radial divisions. Inside
a central hole of radius, ri = 0.2, we only allow radial
members, i.e., a restriction zone is defined in GRAND such
that additional members are not generated in that region.
The initial ground structure contains 5056 members. A
summary of the domain, boundary conditions, base mesh,
and initial ground structure is provided in Fig. 10. The
volume limit is defined to be 1% of the total in-plane area
of the design domain (i.e., V max = 0.01πr2). Additionally,
we assign a Young’s modulus of Ei = 1000 to all members.
An end filter with f tol = 0.001 is used to remove thin
members remaining at convergence. All other optimization
parameters are provided in Table 5.

Results considering large deformation kinematics and
the cable material model are provided in Fig. 11a and
b considering design variable upper bounds, Amax

i =
0.005 and 0.0012, respectively, for all i. In Fig. 11a, the
design variable upper bound is not active and in the very
simple final design containing 8 radial members with cross-
sectional area, Ai = 0.0039 for all i, all elements have
the same strain energy (fully stressed). In the other case,
the design variable upper bound is active such that some
members have cross-sectional area, Ai = Amax

i = 0.0012,
and additional radial and “circumferential” members are
included in the final design to add additional stiffness. A
side view showing the deflection of each design confirms
that the case with inactive upper bound is stiffer. It is also
interesting to note that although the initial ground structure
contains many crossing members, the optimal solution
prefers radial and nearly circumferential members. In fact,
the design in Fig. 11b is reminiscent of an orb-web with
only radial and spiral members (Fig. 12a). Furthermore,
the design clearly prefers higher stiffness for the radial
members, which mimics the distinction in real spider webs
between the radial (dragline) silk, which is a few orders of
magnitude stiffer than the spiral (viscid) silk (Cranford et al.
2012).

Unlike the designs in Fig. 11, spider webs in nature
are imperfect. Notice in Fig. 12a that neither the radial
nor circumferential strands are equally spaced and some of
the circumferential members even intersect each other. In
an effort to achieve a spider web–inspired cable net that
is imperfect, like those found in nature, we redesign the
spider web using an initial ground structure with perturbed
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Fig. 8 Centrally supported, tangentially loaded donut. a Domain,
boundary conditions and mesh used to generate the level four ground
structure. b Optimal design considering small deformation kinematics

and linear material model (nodes omitted for clarity). c Undeformed
(left) and deformed (right) topologies considering large deformation
kinematics and the cable material model. (color online)

nodal positions. Starting with the same nodal mesh used
to define the initial ground structure of the previous spider
web designs (Fig. 10), we modify the potential spacing of

Table 4 Optimization input parameters for the tangentially loaded donut

Volume limit, V max 2.000 × 10−3 m3

Initial area, A0 2.157 × 10−7 m2

Maximum area, Amax
i 2.157 × 10−3 m2

Move parameter, γ 1.000 × 104

Convergence tolerance, tol 1.000 × 10−9

Objective tolerance, f tol 1.000 × 10−2

Damped Newton parameter, η 1.000 × 10−8

the radial members by randomly perturbing each of the 16
sets of radial nodes (each radial set of nodes is defined by
the same polar angle) by a uniformly distributed random
perturbation in the range [−7.2◦, 7.2◦]. Additionally, we
randomly select 1% of the nodes to perturb in the radial
direction by a uniformly distributed random perturbation in
the range [−0.005 units, 0.005 units]. The level 3 ground
structure containing only radial members within a radius
of ri = 0.2 is regenerated on this perturbed nodal mesh.
This time, due to an increased number of overlapping
members, the initial ground structure contains a total
of 5045 members. The imperfect spider web, designed
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Fig. 9 Convergence of the objective function for the tangentially
loaded donut considering large deformation kinematics and the cable
material model

considering all the same input parameters as the previous
spider web designs (Table 5) and Amax

i = 0.0012, is
provided in Fig. 12c.

Fig. 10 Domain, boundary conditions, base mesh, and initial ground structure used for the spider web–inspired cable net

Table 5 Optimization input parameters for spider web–inspired cable
net

Volume limit, V max 0.01π

Initial area, A0 1.223 × 10−5

Move parameter, γ 1.000 × 102

Convergence tolerance, tol 1.000 × 10−9

Objective tolerance, f tol 1.000 × 10−3

Damped Newton parameter, η 1.000 × 10−8

9 Conclusion

We proposed a topology optimization formulation for
conceptual design of tension-only cable networks of
maximum stiffness by maximizing the stationary potential
energy of the system. This objective function was selected
because of its elegant sensitivities, which can be computed
without solving an adjoint system of equations. With
the goal of finding optimal cable network configurations
for conceptual design, we assumed uniaxial strain in all
members for simplicity. In order to promote tension-only
designs, we prescribed a tension-only constitutive relation
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Fig. 11 Spider web–inspired
cable net: optimal design
considering large deformation
kinematics, the cable material
model, and the unperturbed
nodal mesh with
a Amax

i = 0.005 for all i and
b Amax

i = 0.0012 for all i

a b

top view (undeformed) top view (undeformed)

isometric view (deformed) isometric view (deformed)

side view (deformed) side view (deformed)

Fig. 12 Comparison of a an orb
spider web found in nature
(https://inchemistry.acs.org/
content/inchemistry/en/
atomic-news/spider-webs.html)
and our spider web–inspired
cable nets designed using
topology optimization on a
b unperturbed nodal mesh and
c perturbed nodal mesh

a

b

c

top view (undeformed)

isometric view (deformed)
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such that the members have zero stiffness in compression.
Additionally, in order to induce tension in the members,
finite displacement and deformation kinematics were
considered such that the structures are allowed to undergo
large configurational changes as well as large strains. We
assumed a strain energy density function, which is shown to
meet a curvature requirement that ensures our optimization
problem is convex for an appropriately selected axial strain
measure (for simplicity, we chose a linear strain measure).
Several simple 2D numerical examples were provided to
demonstrate that the cable results are 1) distinct from
those obtained using linear mechanics, 2) are dependent
on the load magnitude for a given material, and (3) are
dependent on large configurational changes in order to
induce tension in the members. Finally, the formulation
is used to design a 3D spider web–inspired cable net,
where a very simple topology was obtained when the box
constraints were relaxed, while a more complex design with
many similarities to an orb-web was obtained when the box
constraints were set to become active in the final design.
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Appendix A: Derivation of element tangent
stiffness matrix

We derive the element tangent stiffness matrix, focusing on
the partition, kqq

i :

kqq
i = ∂tqi

∂uq
i
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uk

= ∂(σiaini )

∂uq
i

= ai
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(46)

In the second line of (46), we use the observation that since
Ji = λi , ai = Ai ; in the last line of (46), we substitute
the expression for internal force, ti = aiσi , and use the
relationship between �i and σi from (13). Additionally, in
(46), we use the following derivatives:

∂li

∂xq
i

= xq
i − xp

i
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= ni (47)
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Appendix B: Positive semi-definiteness
of the element tangent stiffness matrix

As stated in Section 6.2, to show that the lower partition
of the element tangent stiffness matrix in (28) is positive
semi-definite, we need to show that the matrix,

(
I − ninT

i

)
,

is positive semi-definite. To do so, we can easily confirm
that the determinants of all principal minors of the following
matrix are non-negative (Strang 2006):

(
I − ninT

i

)
=
⎡
⎣ 1 − cos2 α cos β cos α cosγ cos α

1 − cos2 β cos γ cos β
symm. 1 − cos2 γ

⎤
⎦

(50)

where we have noted that the unit vector along member
i’s axis is ni = [cos α, cos β, cos γ ]T for some angles,
0 ≤ α, β, γ ≤ 2π , defining the orientation of member i in
Cartesian space.
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Appendix C: Damped Newton and line
search algorithms

The damped Newton algorithm used to solve the nonlinear
equilibrium equations is provided in Algorithm 1. In line
8 of the algorithm, line search is used to compute the step
length for the solution update. The line search algorithm
is provided in Algorithm 2, where the Armijo condition is
stated on line 4 and the backtracking parameter is computed
using a quadratic interpolant on line 5. Additional detail
on the Newton and damped Newton methods can be found
in textbooks such as Wriggers (2008), Bonet and Wood
(2008), and Madsen and Nielsen (2010); additional detail
on the specific line search algorithm used here is detailed by
Ascher and Greif (2011) and used for topology optimization
considering various nonlinear mechanics models by Zhang
et al. (2017) and Zhao et al. (2019).

Appendix D: Optimality Criteria design
variable update scheme

The optimality criteria (OC) method is characterized by
a recursive update derived using Lagrangian duality of
truncated Taylor approximated subproblems evaluated at
intervening variable yi = A

αi

i , αi < 0 (Bendsøe and
Sigmund 2003; Groenwold and Etman 2008). The update
for iteration k + 1 is as follows:
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i B
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i ≥ A

k

i

(51)

where

Bk
i =

(
−

∂f
∂Ai

∣∣
A=Ak

φ
∂g
∂Ai

∣∣
A=Ak

) 1
1−αi

(52)

and the bounds, Ak
i and A

k

i , are defined by a move limit, M ,
(see (37)) such that

Ak
i = max

{
Ak

i − M;
0

A
k

i = min

{
Ak

i + M

Amax
i

(53)

In (52), φ is the Lagrange multiplier and the quantity
1/ (1 − αi) is a damping factor corresponding to a
reciprocal approximation when αi = −1. Here, we
determine αi using a two-point approximation such that the
derivatives of the reciprocal approximation at iteration k

match the derivatives of the function at iteration k−1 (Fadel
et al. 1990; Groenwold and Etman 2008):

αk
i = 1 +

ln

(
∂f

∂Ai

∣∣∣∣
A=Ak−1

/
∂f

∂Ai

∣∣∣∣
A=Ak

)

ln
(
Ak−1

i /Ak
i

) (54)

In the first iteration, αi = −1 and in subsequent iterations,
αi is computed based on (54) with bounds, −15 ≤ αi ≤
−0.1.

Appendix E: Other strain measures

In the main body of the paper, a linear strain measure is
selected for simplicity; however, many other strain measures
can be defined and used with the proposed formulation. In
this Appendix, we explore three common strain measures,
linear strain (used here), logarithmic strain, and Green-
Lagrange strain, and investigate how each one affects
convexity of the optimization problem. Table 6 defines the
three strain measures and shows the strain energy density
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Table 6 Definition of three common strain measures and the strain energy density function as a function of stretch for each one

Strain measure Instantaneous strain, dεi Strain, εi Strain energy density, �i

∂�i

∂λi

∂2�i

∂λ2
i

Linear
d�i

Li

λi − 1
Ei

2
(λi − 1)2 Ei (λi − 1) Ei

Logarithmic
d�i

�i

ln λi

Ei

2
(ln λi)

2 Ei

λi

ln λi

Ei

λ2
i

(1 − ln λi)

Green-Lagrange
�id�i

L2
i

1

2

(
λ2

i − 1
) Ei

8

(
λ2

i − 1
)2 Eiλi

2

(
λ2

i − 1
) Ei

2

(
3λ2

i − 1
)

as a function of stretch for each one. Noting that the strain
energy density of member i can be expressed as

�i = 1

Vi

∫ �i

Li

σiaid�i (55)

we can re-write the integral for each case in terms of
strain, i.e., with limits of integration from 0 to εi and with
the appropriate instantaneous strain measure substituted
for d�i . Then, the integrand is equal to ∂�i/∂λi , and we
can obtain the expressions for strain energy density of the
three strain measures provided in Table 6. From the last
column of Table 6, it is clear that the convexity requirement,
∂2�i/∂λ2

i ≥ 0, is always satisfied for the cases of linear and
Green-Lagrange strain, and is only satisfied for logarithmic
strain when λi ≤ e.

To further illustrate the differences between the three
strain measures, the strain energy density function is plotted
against axial strain and axial stretch in Fig. 13a and b,
respectively. For the case of logarithmic strain, the strain
energy density function is not a convex function of axial
stretch and thus does not meet the curvature requirement
needed for a positive semi-definite element tangent stiffness
matrix. Although they are different, the general trend of the
linear and Green-Lagrange strain measures are similar, and
for the conceptual designs pursued in this paper, these two
strain measures can be expected to lead to similar designs.

Appendix F: Nomenclature

Nomenclature

f objective function
g volume constraint

V max upper limit on structural volume
Ai cross-sectional area of member i in undeformed

configuration
Amax

i upper bound on the cross-sectional area of member
i in undeformed configuration

� total potential energy of the system
�min stationary potential energy of the system

u vector of nodal displacements
η damped Newton parameter

�i stored strain energy per unit volume of member i

Ei material parameter for member i

εi axial strain in member i

λi axial stretch of member i

Xi position of member i in undeformed configuration
Ej coordinate frame describing the undeformed con-

figuration
xi position of member i in deformed configuration
ej coordinate frame describing the deformed configu-

ration
nd number of spatial dimensions

�up
i incremental displacement at end p of member i

�uq
i incremental displacement at end q of member i

Fig. 13 Strain energy density
function versus a axial strain, εi ,
and b axial stretch, λi , for three
common strain measures
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Li length of member i in undeformed configuration
�i length of member i in deformed configuration
Ni unit vector along the length of member i in

undeformed configuration
ni unit vector along the length of member i in

deformed configuration
λ2

i , λ
3
i transverse principal stretches

Ji Jacobian of member i

ai cross-sectional area of member i in deformed
configuration

Vi volume of member i in undeformed configuration
vi volume of member i in deformed configuration
ti magnitude of internal force in member i

σi axial component of Cauchy stress in member i

U internal strain energy
N number of cable members in the model

 potential of external loads
F external load vector
T member internal force vector
R residual force vector
uk vector of nodal displacements at iteration k

�uk incremental displacement at Newton-Raphson iter-
ation k

Kt global tangent stiffness matrix
kt

i tangent stiffness matrix of member i

ti internal force vector of member i

ui vector of nodal displacements for member i

A∗ optimal solution
φ∗ Lagrange multiplier at optimum
ξk line search parameter at Newton-Raphson iteration

k

γ move parameter
tol convergence tolerance

uTop nodal displacement vector for dof in the topology
Kt,Top global tangent stiffness matrix for dof in the

topology
FTop external load vector for dof in the topology
TTop internal force vector for dof in the topology
RTop residual force vector for dof in the topology

Q mapping matrix between ground structure and
topology

�uTop
k incremental displacement vector for the topology at

Newton-Raphson iteration k

ρ global equilibrium tolerance
f tol tolerance on increases in objective due to end filter
�f change in objective due to end filter
αi OC parameter
Bk

i recursive OC multiplier for member i in iteration
optimization iteration k

M OC move limit
Ak

i lower bound on change in design variables

A
k

i upper bound on change in design variables
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