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Mechanical Testing of Origami Metamaterials 

 

In situ SEM compression tests were performed using a commercial Alemnis nanomechanical 

test platform (Alemnis AG) set up inside an FEI Nova 600 SEM (Figure S1(a)). Both 

monotonic and oscillatory (Figure S1(b)) displacement profiles were programmed to be 

exerted by a piezo-driven actuator with a stainless-steel flat punch (1 𝑚𝑚 diameter).  

Micropillar Compression Tests 

 

Micropillars were fabricated via two-photon polymerization to assess the constitutive 

properties of the photocured printing polymer (Figure S2(a)). Figure S2(b) presents the Stress-

Strain curves for the micropillar compression experiments described in the Methods Section. 

Table S1 presents the mechanical parameters derived from each test and overall average 

values with the corresponding sample standard deviations. 

Modeling – Bloch Analysis and Infinite Periodic Structure 

 

Leveraging the periodic nature of the origami-inspired assembly, the mechanical anisotropy 

and potential tunability of Configuration A was explored in terms of mechanical instabilities 

by employing the Bloch-Floquet formalism in the unfoldable direction (Z-direction). 

According to the pioneering work of Triantafyllidis and Geymonat et. al,
 [27, 28]

 initial 

periodicity of the structure may break down due to elastic instabilities, giving rise to new 

periodic patterns within the structure which, depending on their extent, can be classified as 
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microscopic and macroscopic modes. At the bifurcation point, application of Bloch’s 

Theorem to displacements relates the displacements of nodes in periodic planes (denoted by 

primed variable) to those of the nodes on the original edges (non-primed variable) by: 

𝒖(𝑿′) = 𝒖(𝑿 + 𝒓) = 𝒖(𝑿)𝑒𝑗(𝒌∙𝒓) = 𝒖(𝑿)𝑒𝑗(𝑘1𝑟1+𝑘2𝑟2+𝑘3𝑟3)   (S1) 

where 𝒌 denotes the corresponding Bloch wavevector in reciprocal lattice space and 𝒓 an 

arbitrary vector of integer components (𝑟𝑖) in lattice space. The extent of the bifurcation mode 

(i.e., local to the cell, extending to finite number of cells, and extending to infinite number of 

cells) is determined by the wavenumbers (𝑘𝑖) at which the instability condition is satisfied 

and the magnitude of the lattice vector in a given coordinate direction (∆𝑖), viz.: 

𝑟𝑖 =
1

𝑘𝑖∆𝑖
          (S2) 

Bloch analysis was conducted in two steps using the commercial finite element code 

ABAQUS using the representative volume element (RVE) shown in Figure S4(a) and 

following well-established procedures.
[28-31]

 While the choice of the RVE is arbitrary, 

selection of a unit cell with orthogonal lattice vectors (i.e., enclosed by a parallelepiped) was 

favored on account of the complexity of the boundary conditions dictated by the geometry 

and the translation operations on which the propagation technique relies.
[33]

 Within the two-

step Bloch framework, the first step consisted of subjecting the unit cell to a prestress 

condition (i.e., displacement in Z-direction) under classical periodic boundary conditions. 

General classical periodic conditions and equations are shown in Figure S3 and Eqn. S3, 

respectively. 

𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝐵𝐶𝑠. : {

𝒖𝑥′ − 𝒖𝑥 = 𝒖𝐵 − 𝒖𝐴        𝜽𝑥′ − 𝜽𝑥 = 0

𝒖𝑦′ − 𝒖𝑦 = 𝒖𝐶 − 𝒖𝐴       𝜽𝑦′ − 𝜽𝑦 = 0

𝒖𝑧′ − 𝒖𝑧 = 𝒖𝐷 − 𝒖𝐴        𝜽𝑧′ − 𝜽𝑧 = 0

 

Where pairs {(𝒖𝑥′ ; 𝒖𝑥),( 𝒖𝑦′; 𝒖𝑦),( 𝒖𝑧′−𝒖𝑧)}and (𝜽𝑥′ ; 𝜽𝑥),( 𝜽𝑦′; 𝜽𝑦),( 𝜽𝑧′−𝜽𝑧)} denote 

displacements and rotations, along coordinate directions, of nodes on periodic edges (blue 

(S3) 
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lines Fig. S3). General displacement loading of the periodic unit cell is achieved by enforcing 

displacements on reference nodes (Nodes A, B, C and D), located in the corners of the unit 

cell. Subsequently, a linear perturbation modal analysis step was conducted to extract the 

natural frequencies of the preloaded structure using Bloch-Floquet periodic boundary 

conditions, viz.: 

𝒖𝑥′ = 𝒖𝑥 𝑒𝑗(𝑘𝑥∆𝑥) 𝒖𝑦′ = 𝒖𝑦  𝑒𝑗(𝑘𝑦∆𝑦)      𝒖𝑧′ = 𝒖𝑧  𝑒𝑗(𝑘𝑧∆𝑧)     

𝒖𝐵′ = 𝒖𝐴 𝑒𝑗(𝑘𝑥∆𝑥+𝑘𝑦∆𝑦) 𝒖𝐷′ = 𝒖𝐴 𝑒𝑗(𝑘𝑦∆𝑦+𝑘𝑧∆𝑧)     (S4) 

where pairs {𝒖𝑥′ ; 𝒖𝑥}, {𝒖𝑦′; 𝒖𝑦},{𝒖𝑧′; 𝒖𝑧} denote the displacements of nodes in bounding 

planes of the enclosing parallelepiped and 𝒖𝐴, 𝒖𝐵′𝒖𝐷′  the displacements of specific corner 

nodes (Figure S4(a)). Both classical and Bloch periodic conditions were implemented via 

Multi-Point-Constraint (MPCs) Equations in ABAQUS. A single node was constrained 

during the pre-compression step and eigenvalue extraction at the null wave vector to avoid 

singularity issues. The procedure was repeated in iterative fashion sweeping over a wide 

range of wavenumbers (i.e., within the first Brillouin Zone) and prescribed finite deformations 

in the Z-direction, to determine the minimum strain (i.e., critical strain) at which the system 

first becomes unstable. Instability is assessed by the change in sign of the system’s 

eigenvalues. Consideration of the three-dimensional periodicity of the RVE, which implies 

that every combination of wavenumbers (𝑘1 , 𝑘2 , 𝑘3) within the interval [0,2𝜋/∆𝑖] must be 

considered, proved to be a considerable number of computations (e.g., considering five 

wavenumbers in the [0,2𝜋] interval, it involves 125 simulations for each level of pre-strain). 

All Bloch simulations were conducted employing first order quadrilateral and triangular shell 

elements (ABAQUS element types S4R and S3) with five integration points through the 

thickness. Following mesh convergence studies, the average element size was established 

at 0.5 𝜇𝑚. The IP-DIP photopolymerized polymer post-cure was modeled as linear elastic 
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(Table S1) with Elastic Modulus derived from average results from micropillar compression 

tests (SI: Micropillar compression tests) and reference values for Poisson’s ratio (𝜈 = 0.49) 

and density (𝜌 = 1000 𝑘𝑔/𝑚3), as found in the work by Meza, et al.
[3]

 and Lemma et al.
[32]

 It 

is noteworthy that mechanical properties of photoresist polymers, especially Young’s 

Modulus, are strongly influenced by manufacturing parameters (e.g., laser power).
 [32] 

 

Figures S4(c-d) present the eigenvalue-strain curves obtained via implementation of the Bloch 

framework with finite elements, considering two different sets of wavenumbers. The set 

corresponding to Figure S4(c) considers five linearly spaced wavenumbers in the range [0; 𝜋], 

whereas the set corresponding to Figure S4(d) considers five linearly spaced wavenumbers in 

the range [0; 𝜋/64].The latter shows the convergent trend in combinations of wavenumbers 

approaching the null wavevector, as shown in Figure S4(b), indicating the presence of a long 

wavelength mode.  

While the aforementioned methodology, consisting of a single cell RVE, detects the onset and 

extent of the geometric instability, it cannot inform on the structural response of the infinite 

periodic system. To fully capture the behavior of such system, elastic nonlinear geometric 

finite element analyses of RVEs comprised of multiple stacked unit cells with periodic 

boundary conditions were conducted. These analyses, performed in perfect and imperfect 

geometries trace the structural path of the infinite periodic structure. Geometric imperfections 

in the form of the first buckling mode, global in nature, were added to the perfect geometry to 

gain insight on the structure’s sensitivity to imperfections. The magnitude of the 

imperfections are normalized by the nominal panel thickness (𝛿𝐺/𝑡). Figure S5 presents the 

stress-strain curves for the aforementioned augmented RVE models, the convergence of the 

perfect structures to the critical strain predicted by Bloch analysis, and the structural response 

of the imperfect system with the maximum number of cells analyzed. 
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Modeling – Imperfection Analysis 

 

Given the extreme sensitivity to geometric imperfections of the mechanical response of thin-

walled structures, the structural response of the origami-architected metamaterial in the Z-

Direction was studied under global and local geometric imperfections, as well as load 

imperfections. 

First, characterization of buckling modes was carried out, using a linearized buckling analysis 

consisting of the solution of an eigenvalue problem, to determine the many bifurcation loads 

of the system. Though such analysis generally overestimate critical loads, the analysis offers 

insight into the possible mode shapes, which can later be introduced, upon scaling, as 

imperfections in a subsequent geometric nonlinear analysis. Eigenvalue results of the linear 

buckling analysis were obtained using Abaqus (* STEP, BUCKLE). The result of the analysis 

is shown in Figure S6a, including up to the first 40 buckling modes. Selected mode shapes, 

both local (L) and global (G), (1-3, 25, 33) are shown in Figure S6b.  

The response of the structure to a linear combination of local and global imperfections was 

assessed by superimposing and scaling selected eigenmodes, used as perturbations to the 

perfect structure. The magnitude of the imperfections are normalized by the nominal panel 

thickness, 𝛿𝐿/𝑡   for the local imperfection and  𝛿𝐺/𝑡  for the global imperfection. The 

magnitude of imperfections is selected in agreement with the tolerances observed in 

experiments (
𝛿𝐺

𝑡
= 1,

𝛿𝐿

𝑡
= 0.5) and in the form of modes 1,7 (edge affecting modes), 33 

(internal affecting modes) and 25, a bowing mode.  The elasto-plastic response of the 

structure with a combination of local and global geometric imperfections is shown in Figure 

S6c. Additionally, after careful consideration of the experimental setup, the response of the 

structure under an imperfection in the load application was also considered. Evidenced from 

the toe region in the force-displacement readings, a small tilt was identified in the loading 

punch of approximately 𝜃𝑡𝑖𝑙𝑡~0.8° . This effect  was incorporated in the finite element 
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simulations by loading the structure with a flat rigid surface with normal and tangential 

contact conditions including friction.  The overall effect of the local and global geometric 

imperfections together with the aforementioned loading imperfection are depicted Figure S6. 

The effect of the coefficient of friction in the application of the displacements is shown in 

Figure S7. In the absence of tangential friction, lateral sliding occurs, causing a deviation 

from the initial loading path of the structural response. This is followed by convergence 

problems in the numerical solver (termination indicated by a red cross in Figure S7b). 

Addition of tangential friction quickly stabilizes the system, allowing it to follow a more 

complex path in very good agreement with the experimental measurement. 

Stiffness Response – Data 

 

Figures 3 and 4 in the main text presents the stress-strain response of Configuration A type 

structures subjected to the oscillatory loading scheme introduced in Figure S1(b). As the 

amount of compression increases, it can be seen that local folding occurs which then cascades 

to multiple rows (Figure S8(a-f)) . The stiffnesses reported are the tangent stiffnesses obtained 

during the oscillatory loading steps at various compression levels. Note that upon unloading, 

there is a residual compression which subsequently recovers significantly but not completely 

as discussed in the main text. 

For second compression tests following incomplete recovery, the compression data are 

calculated to include the residual compression to get the percent compression as follows: 

(deformation imposed by the punch + unrecovered deformation) / original dimension of the 

as-printed structure. 

Figure S9 shows that the response is repeatable for first and second compression of the same 

sample. Note also that fabrication variances (laser power, writing speed) can change the 

intrinsic material properties of the polymer, and this can give rise to variations of stiffnesses 

for the same geometry (the red and black curves in Figure S9) fabricated under different 



  

7 

 

process parameters.  However, the tunability with compression (foldability) follows the same 

trends. This underscores the need for fabrication processing parameters consistent. 

Auxetic Response – Data 

The single degree-of-freedom kinematic model for the zipper/aligned assembly (Equation (1)) 

indicates a geometric instability at the folding angle = 45𝑜  , where 𝑤𝑦 reaches its maximum 

(Figure S10). Associated with this is a switch in the sign of the Poisson’s ratio (Equation (2) 

and Figure 3(b,c)). Motivated by this, the chosen configurations A and B were 3D printed 

with initial configurations on either side of the instability point. The reversible auxetic 

behavior of Configuration B metamaterials is discussed in the main text. To quantify the 

ability of Configuration A structures to expand/contract in lateral directions in response to 

axial deformation, the Poisson’s ratio was calculated. The change in length was measured by 

comparative image analysis at two compression stages: zero compression and maximum 

compression. In this case, the Poisson’s ratio should be interpreted as an average instead of an 

instantaneous value. Owing to the non-uniform deformation of the structures, a consequence 

of both the folding sequence heterogeneity and end effects, only a region in the middle of the 

structures was employed for the calculation of Poisson’s ratio, as highlighted in Figures 

S8(b,c,e,f). A summary of the measured Poisson’s ratios is presented in Table S2. The 

Poisson’s ratio of the zipper/aligned origami assemblage for Configuration A is clearly 

anisotropic. As listed in Table S2, the (X;Z) structure exhibits a negative Poisson’s ratio of 

𝑣𝑥𝑦 = −0.55. Note also that the (X;Y) structure presents negligible Poisson effect, 𝑣𝑥𝑧 =

0.04, close to the theoretical value of zero. Since the initial folding angle of Configuration A 

metamaterials was 𝜓0 = 55𝑜 , these structures always exhibited negative Poisson’s ratio 𝑣𝑥𝑦 

with compression, unlike Configuration B metamaterials which can exhibit a reversible 

switch in sign. 
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Figure S1: In situ SEM Compression Tests. (a) Nanomechanical testing platform. (b) 

Oscillatory loading profile. 
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Figure S2. (a) Two-photon lithography printed IP-DIP (Nanoscribe, GmbH) micropillars for 

material mechanical characterization. (b) Stress-Strain curves from uniaxial compression 

tests. 
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Figure S3. Unit cell considered for the origami metamaterial and reference nodes for 

implementation of periodic boundary conditions. Periodic edges are highlighted in blue lines.  
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Figure S4. Bloch Analysis of infinite origami assembly. (a) Representative volume element 

considered for Bloch Analysis with lattice vectors and relevant points. (b) Convergence of 

critical strain in the neighborhood of the null wavevector. (c) Eigenvalue-Strain curves for 

wavenumbers in the range [0;π]; (d) Eigenvalue-Strain curves for wavenumbers in the range 

[0;π/64]. 
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Figure S5. (a) Structural response of perfect and imperfect RVEs with increasing number of 

unit cells to assess convergence towards the long-wavelength critical strain predicted by the 

Bloch method. (b) Shape of the long wavelength modes for an RVE with 24 vertically stacked 

unit cells. 
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Figure S6. Imperfection analysis for Configuration A, Z-Direction origami-architected 

metamaterial. (a) Linear buckling analysis, first 40 eigenvalues. (b) Selected local (L) and 

global (G) modeshapes from linear buckling analysis used as geometric imperfections in 

subsequent nonlinear finite element analyses. (c) Effect of local, global geometric and load 

imperfections in the elastic-plastic structural response of the origami structures.  
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Figure S7. Numerical models with friction. a) Overview of model from Configuration A 

actuated by means of a rigid, tilted plane. b) Comparison of structural response of 

Configuration A with tangential friction procedures with varying friction coeficients. 

  

 

Figure S8. Compression of Configuration A metamaterial. (a) Schematic and (b,c) SEM 

images of the structures compressed along the X-direction and (b) observed from the Z-

direction (X;Z)1 at 0% compression (left), at an average 23% compression (center), and after 

30 min of relaxation (right); and (c) observed from the Y-direction (X;Y)1 at 0% compression 

(left), at an average 32% compression (center), and after 30 min of relaxation. (d) Schematic 

and (e, f) SEM images of the structures compressed along the Y-direction and (e) observed 

from the Z-direction (Y;Z)1 at 0% compression (left), at an average 23% compression 

(center), and after 25 min of relaxation (right); and (f) observed from the X-direction (Y;X)1 

at 0% compression (left), at an average 32% compression (center), and after 25 min of 

relaxation (right). Red squares represent regions where the Poisson’s ratios were measured.  
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Figure S9. Tunable stiffness relationships for non-monotonic loading of Configuration A 

samples. (a) (X;Y)1,2 and (X;Z)1,2 samples and (b) (Y;X)1,2 and (Y;Z)1,2 samples. Note that 

while (X,*)1,2 are the same sample upon first and second compression, (X,Y)* , (X,Z)* , 

(Y,X)* and (Y,Z)* refer to tests on different samples. 

 

 

 
 

Figure S10: Kinematic model. (a) Unit cell of the zipper-coupled tubes. (b) Plot showing unit 

cell dimensions as functions of the folding angle ψ for the panel parameters: a=b=13.83μm, 

panel angle α=75°. 
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Table S1. Material properties of IP-DIP from micropillar uniaxial compression tests 

 

Test Young’s Modulus 

(E) (MPa) 

Yield Stress 

(σy) (MPa) 

Yield Strain 

(εy) 

Tangent Modulus 

(Ep) (MPa) 

Test I 3030.83 65.76 0.024 564.67 

Test II 2910.20 53.84 0.021 465.83 

Test III 3364.74 56.19 0.019 572.16 

Test IV 2860.14 51.50 0.020 502.20 

Test V 3319.82 61.50 0.021 680.10 

Mean 3097.15 57.76 0.021 557.00 

Std. 

Deviation 
232.76 5.81 0.0018 81.79 
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Table S2. Measured Poisson’s ratios for Configuration A Metamaterials 

 

Compression/observation direction (X;Z) (X;Y) (Y;Z) (Y;X) 

Poisson’s ratio (ν) 𝑣𝑥𝑦 =-0.55 𝑣𝑥𝑧 =0.04 𝑣𝑦𝑥 =-0.18 𝑣𝑦𝑧 =0.10 
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Supplementary Movies 

 

Supp. Video 1: Monotonic Compression Test of X-Dir Configuration A Metamaterial. 

https://northwestern.box.com/s/w41kytvgd9oy154i0quppq57hkioxwh7 

Supp. Video 2: Monotonic Compression Test of Y-Dir Configuration A Metamaterial. 

https://northwestern.box.com/s/jhnuxb47iwxa8xyzwqyeliyzmkrp7lks 

Supp. Video 3: Monotonic Compression Test of Z-Dir Configuration A Metamaterial. 

https://northwestern.box.com/s/12foa1y9pjb0hn9qxna7807n61xjpr2v 

Supp. Video 4: Oscillatory Compression Test of X-Dir Configuration A Metamaterial. 

https://northwestern.box.com/s/f1wwq8xou1xzxr9l6kbadiaykslyjmgs 

Supp. Video 5: Compression Test of X-Dir Configuration B Metamaterial. 

https://northwestern.box.com/s/egv45lp2hxla81c4o8t1te1j075bpxl8 

Supp. Video 6: FEM Simulated Compression Test of X-Dir Configuration B Metamaterial. 

https://northwestern.box.com/s/2tstui0jsmpjnuzgkbkw1it3ay19qy8f 

Supp. Video 7: FEM Simulated Compression Test of Z-Dir Configuration A Metamaterial. 

https://northwestern.box.com/s/6prtrbhggszq96ydzaqd02tcbnzmndh8 

 

 

https://northwestern.box.com/s/w41kytvgd9oy154i0quppq57hkioxwh7
https://northwestern.box.com/s/jhnuxb47iwxa8xyzwqyeliyzmkrp7lks
https://northwestern.box.com/s/12foa1y9pjb0hn9qxna7807n61xjpr2v
https://northwestern.box.com/s/f1wwq8xou1xzxr9l6kbadiaykslyjmgs
https://northwestern.box.com/s/egv45lp2hxla81c4o8t1te1j075bpxl8
https://northwestern.box.com/s/2tstui0jsmpjnuzgkbkw1it3ay19qy8f
https://northwestern.box.com/s/6prtrbhggszq96ydzaqd02tcbnzmndh8

