
Available online at www.sciencedirect.com

p
a
t
f
s
c
p
i
b
⃝

t
f
d
t
t
f
t
i

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 375 (2021) 112739
www.elsevier.com/locate/cma

Universal machine learning for topology optimization
Heng Chic, Yuyu Zhangb, Tsz Ling Elaine Tangc, Lucia Mirabellac, Livio Dalloroc,

Le Songb, Glaucio H. Paulinoa,∗

a School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, Atlanta, GA, 30332,
United States of America

b School of Computational Science and Engineering, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA, 30332,
United States of America

c Siemens Corporation, Corporate Technology, 755 College Rd E, Princeton, NJ, 08540, United States of America

Received 8 March 2019; received in revised form 23 October 2019; accepted 6 November 2019
Available online 24 December 2020

Abstract

We put forward a general machine learning-based topology optimization framework, which greatly accelerates the design
rocess of large-scale problems, without sacrifice in accuracy. The proposed framework has three distinguishing features. First,
novel online training concept is established using data from earlier iterations of the topology optimization process. Thus,

he training is done during, rather than before, the topology optimization. Second, a tailored two-scale topology optimization
ormulation is adopted, which introduces a localized online training strategy. This training strategy can improve both the
calability and accuracy of the proposed framework. Third, an online updating scheme is synergistically incorporated, which
ontinuously improves the prediction accuracy of the machine learning models by providing new data generated from actual
hysical simulations. Through numerical investigations and design examples, we demonstrate that the aforementioned framework
s highly scalable and can efficiently handle design problems with a wide range of discretization levels, different load and
oundary conditions, and various design considerations (e.g., the presence of non-designable regions).
c 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we create a general framework to amalgamate machine learning with topology optimization so
hat we can significantly accelerate the design process without sacrificing accuracy. The basic idea behind this
ramework is to exploit the history data of topology optimization and employ machine learning techniques to
iscover the underlying mapping between the design variables and their corresponding sensitivities. Our goal is
hat, once the machine learning model is trained, it avoids solving the state equations for structural responses in
he later optimization steps. Conceptually different from any other machine learning-based topology optimization
rameworks in the literature, our proposed framework has several unique features, which will be demonstrated
hroughout this work. First, the proposed framework is universal because it can be applied to any design domains
n conjunction with any suitable machine learning models and any advanced linear solvers without any pre-collected

∗ Corresponding author.
E-mail address: paulino@gatech.edu (G.H. Paulino).
https://doi.org/10.1016/j.cma.2019.112739
0045-7825/ c⃝ 2019 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2019.112739
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2019.112739&domain=pdf
mailto:paulino@gatech.edu
https://doi.org/10.1016/j.cma.2019.112739

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

t
o
l
t
a
t
l
d

2

c
a
p
a
d
s
d
p

p
l
i
a
e
i

e
t
n
l
a
g
h
a
c

t
e
t
d
t
f
f
l
b
s

information. Unlike other offline frameworks in the literature, our framework collects the training data and trains
the machine learning models online. Therefore, it does not need a separate stage for collecting samples and training
of the machine learning models. Second, the proposed framework has great scalability and is capable of effectively
handling design problems containing a large number of design variables.

The remainder of this paper is organized as follows. In Section 2, we summarize the relevant attempts in
he literature of topology optimization and the motivation of our work. Section 3 briefly reviews the topology
ptimization formulation for the minimum compliance problem, and Section 4 presents the proposed machine
earning-based topology optimization framework, which integrates machine learning and topology optimization
hrough a two-scale formulation. In Section 5, we perform numerical assessments to demonstrate the scalability
nd accuracy of the deep learning module. Several design examples are presented in Section 6, which showcases
he effectiveness of the proposed machine learning-based topology optimization framework on various discretization
evels and with various choices of parameters. Finally, Section 7 contains concluding remarks and future research
irections.

. Related work

Since the seminal work of Bendsøe and Kikuchi [1], topology optimization has evolved into a powerful
omputational tool which has been successfully used in many industrial applications (e.g., aerospace and automotive)
nd widely implemented in major commercial software. For an overview of the recent developments as well the
opular approaches and applications of topology optimization, the interested readers are referred to [2–5]. From
computational perspective, topology optimization is an intensive task because it typically involves hundreds of

esign iterations, and in order to update the current design, the structural response needs to be solved to compute the
ensitivity information. To handle large-scale topology optimization problems (e.g., problems involves millions of
esign variable and beyond), the associated computational cost could be enormous and one typically has to resort to
arallel computing [6–8], advanced iterative solvers [9,10], or multi-scale and multi-resolution approaches [11–13].

Machine learning has been developed to automatically detect patterns in data and then use those patterns to
redict future data or perform various kinds of decision making with uncertainty [14,15]. For decades, machine
earning has achieved huge success in many aspects. For example, machine learning systems are now widely used
n many daily-life applications, such as face recognition [16], automatic vehicle licence plate recognition [17], online
dvertising [18], web search engine [19], and recommendation systems on e-commerce websites [20]. Since we are
ntering into the big data era with more and more data available, then machine learning is showing great potential
n more and more applications.

Conventional machine learning methods are limited in processing data in raw form, and typically require domain
xpertise to design features on top of raw data to serve as additional input to machine learning systems [21–23]. On
he contrary, deep learning methods can be directly fed with raw data and automatically learn the representations
eeded for different tasks, which creates major advances over conventional machine learning methods. Deep
earning methods turn out to achieve very impressive performance in a variety of challenging problems in the
rtificial intelligence community, such as surpassing human-level performance on image classification [24], beating
randmaster go players [25,26], and matching human levels in automatic machine translation [27]. Deep learning
as demonstrated its ability to discover intricate structures in high-dimensional data without hand-designed features,
nd therefore can be applied in many domains of science and engineering. Given their successful applications and
apability of processing large amount of data, this work will focus on the deep learning models.

More recently, several attempts have been made to apply various machine learning techniques to accelerate the
opology optimization process. Essentially, their ideas are to use machine learning models to replace the optimizer
ither partially or completely so that, once the machine learning models are trained, one could directly employ
hem to map the initial designs or partially converged designs to the final designs. For example, Ulu et al. [28]
eveloped a data-driven approach for predicting optimized topologies under various loading cases. In this approach,
he optimized topologies obtained under a wide range of loading cases are treated as training samples and a feed-
orward neural network is adopted together with the Principal Component Analysis (PCA) to establish a mapping
or predicting the optimized topology under a given loading scenario. Sosnovik and Oseledets [29] introduced a deep
earning-based framework, which uses Convolutional Neural Networks (CNN) to predict the final optimal 2D design
ased on two input images: a partially converged design and its change with respect to the previous step. By doing
o, the total number of optimization steps are reduced. Later, Banga et al. [30] took a similar idea and extended
2

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

a
t
p
s
s
p
l
o
c
c
l
t
s

d

the work to 3D design problems and incorporated additional inputs such as external loads and boundary conditions.
More recently, Yu et al. [31] proposed a two-stage prediction procedure to produce nearly-optimal structural design
without any iterations. When given a design domain, load and boundary conditions, the procedure first uses a trained
CNN-based encoder and decoder to predict a low resolution structural design and, then, the predicted low-resolution
design is mapped to a high resolution one using a trained Generative Adversarial Network (GAN). All the above-
mentioned frameworks are proposed in the context of a density-based topology optimization approach. With the
same goal, Lei et al. [32] developed a machine learning-based framework for the Moving Morphable Component
(MMC) approach. The framework first uses the MMC approach to generate a set of training samples with different
external load locations and subsequently applies either Supported Vector Regression (SVR) or K-Nearest Neighbors
(KNN) to establish an instantaneous mapping between the design parameters and the optimized topology. Compared
to the density-based and level-set approaches, the MMC approach typically contains a relatively small number of
design variables, which could reduce the computational burden on the training of the machine learning models.

Several limitations exist in the aforementioned frameworks. The first limitation is related to the data collection
nd online-training of the machine learning models. In those frameworks, one needs to collect a large amount of
raining samples and training the machine learning models in a separate stage before they can make satisfactory
redictions. For instance, the work of Yu et al. [31] uses designs of 100,000 completed topology optimization
imulations as the training samples for the CNN and GAN, and the work by Banga et al. [30] uses a total of 6,000
amples. Collecting those training samples could be a computationally intensive task, especially for large-scale 3D
roblems, because each training sample corresponds to a completed topology optimization simulation. The second
imitation is related to the scalability and the generality of those frameworks. Being restricted by the large amount
f training samples needed and the capacity of the machine-learning models, the above-mentioned frameworks only
onsider either 2D or small-scale (with less than 10,000 design variables) 3D problems, and the design domains
onsidered are all simple rectangular domains with fixed boundary conditions and concentrated load at only one
ocation. Finally, because direct mappings are pervasively adopted, hanging and disconnected members are likely
o appear in the final topology as the information about those structural artifacts is not embedded in the training
amples of machine learning models.

In this work, we propose a novel machine learning-based topology optimization framework, which takes a
ifferent path from all the aforementioned frameworks. Instead of dedicating a separated offline stage to collect

training samples for the machine learning models, our idea is to propose an online training concept which exploits
the data generated during the topology optimization and employs the machine learning models to extract the
underlying mapping between the design variables and their corresponding sensitivities. Once established, this
mapping can be subsequently used in later optimization steps to avoid solving the state equations so that the
entire design process can be accelerated. By doing so, the training samples are collected simultaneously as the
topology optimization proceeds. Moreover, to ensure that the proposed framework is efficient and scalable for design
problems (potentially of any size), we devise a tailored two-scale topology optimization formulation, which allows
for the training of machine learning models based on local features of the topology optimization. As a result, the
proposed framework is capable of handling 3D large-scale design of a wide range of problem sizes while achieving
significant speedup. For example, we demonstrate that the proposed framework can achieve close to an order of
magnitude speedup in a 3D design problem with more than 1 million design variables. Additionally, we introduce
an online updating scheme to frequently update the machine learning model based on new data generated from
physical simulations so that we constantly improve the prediction accuracy throughout the optimization and avoid
structural artifacts such as hanging and disconnected members in the final design. Four design examples with varied
design scenarios are presented to demonstrate the universality and potential of the proposed machine learning-based
framework in practical engineering applications.

3. Topology optimization formulation

In this section, the topology optimization formulation for the classical compliance-minimization problem is
briefly reviewed. Throughout, we assume that the design domain is discretized by a finite element mesh and adopt
the standard density-based approach [4,33], where the material distribution is characterized by an element-wise
constant function.

Our goal is to find the structural topology, which has the most stiffness under prescribed load and boundary
conditions. For a given finite element mesh with N nodes and M elements, we denote f ∈ Rd N×1 as the
3

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

c

w

t

w
a

I
b

d

(

applied global force vector. We introduce z as the vector of design variables, whose i th component zi is the
design variable associated with the i th element. Within this setting, the topology optimization formulation for
ompliance-minimization problems is stated as:

min
z

c(z) = f⊤u(z)

s.t. gV (z) = v⊤z − Vmax ≤ 0
0 ≤ zi ≤ 1 ∀i ∈ {1, . . . , M}

with K(z)u(z) = f and z = Pz,

(1)

here c(z) is the compliance function, u(z) ∈ Rd N×1 is the global displacement vector, v is a vector whose i th
component vi is the volume of element i , and Vmax is the maximum allowable volume imposed on the design.

To ensure the well-posedness of the formulation and impose a minimum length scale on the design, the filtered
design variable z is used in which P is the density filter matrix whose (i, j)-th component is given by

(P)i j =

max
(

0, R − |x∗

i − x∗

j |

)
∑

k∈S(j)

(
R − |x∗

k − x∗

j |

) , (2)

where R is the radius of the density filter, S(j) denotes the indices of elements whose centroids fall within radius
R of the centroid of the j th element, and x∗

i and x∗

j stand for the centroid of the i th and j th elements, respectively.
The standard Solid Isotropic Microstructures with Penalization (SIMP) scheme [34–36] is adopted to penalize

he intermediate densities throughout. In the SIMP scheme, the global stiffness matrix K is interpolated as

K(z) =

⋃
j

E j k0
j , (3)

here k0
j is the element stiffness matrix for the j th element when the material is solid,

⋃
represents the standard

ssembly procedure in FEM [37], and E j is interpolated stiffness1 of element j given by

E j = Emin + (1 − Emin)(z)p. (4)

n the above expression, Emin is the Ersatz stiffness and p is the SIMP penalization parameter, which are taken to
e 10−4 and 3, respectively, throughout this work.

The sensitivity information is needed to perform the design variable update. In the following discussion, we
enote by G and G the sensitivity vectors of the compliance with respect to z and z, respectively. We first compute

G as

G i =
∂c
∂zi

= −p(zi)p−1(ui
)⊤k0

j ui , (5)

where ui is the displacement vector of the i th element. Having obtained G, G is given by

G = P⊤G. (6)

On the other hand, the sensitivity of the volume constraint function gV is simply given by
∂gV

∂z
= P⊤v. (7)

Once the sensitivities of both the objective and constraint functions are obtained, we use the Optimality Criteria
OC) method [4] to update the design variables.2 If we denote z(k) and G(k) as the design variable and sensitivity

vectors at the optimization step k, respectively, the OC method updates the design variable vector for the optimization
step k + 1 as

z(k+1)
i =

⎧⎪⎨⎪⎩
max(zmin, z(k)

i − m) if z(k)
i

(
B(k)

i

)η
≤ max(zmin, z(k)

i − m)
min(1, z(k)

i + m) if min(1, z(k)
i + m) ≤ z(k)

i

(
B(k)

i

)η

z(k)
i

(
B(k)

i

)η otherwise,
(8)

1 The interpolated stiffness is normalized by the Young’s modulus of the solid material.
2 We note that our proposed machine learning-based framework also works with any gradient-based design update scheme, for instance,

the popular Method of Moving Asymptotes (MMA) [38].
4

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

t
i

where, as usual, m is the move limit and η is the damping coefficient. The coefficient B(k)
i is given by

B(k)
i = −

G(k)
i[∑

j (P) j iv j

]
Λ

, (9)

where Λ > 0 is the Lagrangian multiplier found using a bi-section algorithm [4] such that gV (z(k+1)) = 0.

4. Universal machine learning for topology optimization: Concept, methodology and algorithms

We propose a general-purpose framework, which uses machine learning to considerably accelerate large-scale
topology optimization without any sacrifice in accuracy. Unlike the dominating offline training strategies in the
literature, where the data collection and machine learning training are performed before the actual topology
optimization, this framework adopts a novel online training & updating strategy, where data collection and machine
learning training happen simultaneously during the topology optimization process. In the sequel, we will first provide
an overview of the framework and introduce the novel online training & updating strategy. We will then focus on
the machine learning module of the framework and discuss details regarding the deep learning model that we adopt.
Finally, we introduce a tailored two-scale topology optimization step-up together with a localized online training
and prediction concept, and discuss how they can ensure the efficiency, accuracy, and scalability of the proposed
framework.

4.1. An overview of the proposed framework and the online training & updating strategy

Topology optimization is an iterative process which often involves hundreds of steps. Every time we come up
with a new design, we need to solve for the structural response of the current design to compute the sensitivity
information. For large-scale topology optimization, this procedure is computationally intensive.

A large amount of history data (e.g., design variables, their corresponding sensitivities, and displacement
solutions) are generated during topology optimization, of which we typically do not make full use. Thus, our
key idea is to use machine learning models to learn the underlying mapping between design variables and their
corresponding sensitivities from those history data. Once the machine learning model is trained, then it can be
employed in the later optimization steps to directly predict the sensitivity information of the current design without
solving the state equations.

In our proposed approach, the machine learning model is trained online in several stages: an initial online
raining stage and several online updating ones. To control the design iteration which each stage starts, we
ntroduce two parameters, NI and NF , which are the initial online training step and online updating frequency,

respectively. Additionally, to control the amount of history data used in training, we also introduce WI and WU
as the window sizes for initial online training and online updating, respectively. As for the machine learning
model, a fully-connected Deep Neural Network (DNN) is employed in this work, whose details will be provided
in Section 4.2.

Initial online training. In the proposed framework, we start (topology optimization) with the standard procedure
(e.g., solving the state equation and sensitivity analysis based on Eq. (6)) in the first NI + WI − 1 optimization
steps, where the history data in the last WI steps (i.e., step NI to step NI + WI − 1) are collected for the initial
online training.3 Afterwards, starting from step NI + WI , instead of following the standard procedure, we use the
trained machine learning model to directly predict the sensitivities based on the new design variables, which allows
us to avoid the most computationally expensive tasks of solving the state equations and sensitivity analyses.

Online updating. To guarantee the accuracy of the predicted sensitivity in the long term (i.e., steps farther away
from the initial online training), the proposed framework also introduces an online updating strategy to dynamically
update the machine learning model by switching back to the standard procedure for one optimization step to generate
new data. We use NF to control the frequency of the online updating, meaning that we will perform the online
updating every NF optimization steps after the initial prediction step (NI + WI). In the online updating, the data
collected from the past WU exact evaluations are used.

3 In our framework, we discard the data from first NI − 1 because they generally have the most variations and are biased to the initial
guess.
5

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
As an illustration, let us consider NI = 10, WI = 5, NF = 10 and WU = 2. With this set, we start the
optimization with the standard procedure in the first 14 steps and use the data generated from step 10 to step 14 to
train the machine learning model. Starting from optimization step 15, we use the trained machine learning model
to predict the sensitivity. Because the online updating frequency is 10, we switch back to the standard procedure at
optimization step 25 to generate new data, and use the data in optimization 14 and 25 (because the window size for
online update is WU = 2) as the input to update the machine learning model. We then continue to use the updated
machine learning model to predict the sensitivity in the following steps and recursively update the model every 10
steps until either the convergence criteria are fulfilled or the maximum allowable step is reached.

To ensure that the proposed framework is efficient, accurate and scalable, we devise a two-scale topology
optimization setup which includes a coarse-scale mesh and a fine-scale mesh. On the fine-scale mesh, we perform
all the design variable update every optimization step but only solve the state equations in those steps where we need
to collect data for training. On the other hand, on the coarse-scale mesh, no design variable update is performed
but the state equation is solved at every optimization step based on the stiffness distribution mapped from the
fine-scale mesh. The main reason for the two-scale topology optimization setup is to enable a localized training
and prediction approach, which guarantees the scalability of the framework. More discussion on the two-scale
topology optimization setup and localized training and prediction of the machine learning model will be discussed
in Section 4.3. To conclude the overview, we summarize the entire procedure of the proposed machine learning-based
topology optimization framework in Algorithm 1.

Algorithm 1: Proposed framework of universal machine learning for topology optimization.

1 Input: z(0), Vmax, fC , f, R, T ol, I termax, NI , NF , WI and WU ;
2 Form filter matrix P based on (2);
3 for k = 0 to I termax do
4 Filter design variables: z(k)

= Pz(k);
5 Assemble the global stiffness matrix KC on the coarse-scale mesh based on (14);
6 Solve the state equation on coarse-scale mesh: uC

= (KC)−1fC ;
7 Evaluate the strain vector εC,(k) on the coarse-scale mesh based on uC ;
8 if k < NI + WI or mod(max(k − NI − WI , 1), NF) = 0 then
9 Assemble the global stiffness matrix K on the fine-scale mesh based on (3);

10 Solve the state equation on fine-scale mesh: u = K−1f;
11 Evaluate G(k)

based on (5);

12 Store the history data z(k), G(k)
and εC,(k);

13 if k = NI + WI − 1 then
14 Initial training of the machine learning model using last WI step of collected data;
15 else if mod(max(k − NI − WI , 1), NF) = 0 then
16 Online update of the machine learning model using last WU step of collected data;
17 end
18 Compute the sensitivity vector as G(k)

= P⊤G(k)
;

19 Update z(k+1) using G(k) based on (8);
20 else

21 Use the machine learning model to predict G̃
(k)

based on the input z(k) and εC ;

22 Compute the predicted sensitivity as G̃(k)
= P⊤G̃

(k)
;

23 Update z(k+1) using G̃(k)
based on (8);

24 end
25 end
26 if ||z(k+1)

− z(k)
||∞ ≤ T ol then

27 Output: optimization converged and plot final design;
28 end
6

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

m
h
m
i
o
m
N
C

l
i
b
i
c

w
l
f
a

w
o
w

g
t

w
t
u
t
w
o

4

i
d
t
o
a
g
l
s
a

4.2. The machine learning model: Deep Neural Networks (DNNs)

In this work, we employ the fully-connected Deep Neural Networks (DNNs) as the universal function approxi-
ator for predicting the sensitivities of the objective function because of (1) its powerful capability of processing

igh-dimensional inputs and outputs without domain expertise; (2) its powerful approximation property of nonlinear
apping between high-dimensional spaces [39–41]; and (3) its success in achieving the state-of-the-art performance

n various machine learning tasks processing raw data in forms of vision, audio, and natural language. Notice that
ur proposed framework is independent of any specific implementation of the machine learning module. Thus, other
achine learning and deep machine learning models, such as Support Vector Machine (SVM) [42,43], Convolutional
eural Networks (CNNs) [44,45] and Residual Networks (ResNets) [46], and hybridized models (e.g., Principal
omponent Analysis (PCA) [47,48] and DNN), can be directly applied in the proposed framework.

The fully-connected DNN consists of one input layer, multiple hidden layers, and one output layer. Each hidden
ayer has a set of neurons, each of which takes an input value and performs a non-linear activation to generate
ts output value. The number of hidden layers is a hyper-parameter and can be tuned according to the trade-off
etween the computational complexity and model accuracy. Let us denote Nh as the total number of hidden layers
n DNN. During prediction, each hidden layer takes the output of the last layer as input, and performs feed-forward
omputation as follows

hi = σ (Wi hi−1 + bi), i = {1, . . . , Nh} (10)

here hi is the output of the i th hidden layer; Wi and bi are respectively the weight vector and the bias of the i th
ayer that can be randomly initialized and then optimized during model training; and σ (·) is a non-linear activation
unction. By convention, we designate h0 as the input of the input layer. The output layer is obtained by applying
linear transformation of the output of the last hidden layer as

y = WouthN , (11)

here Wout is also a weight matrix, which will also be learned according to the training data. The architecture of
ur DNN model is illustrated in Fig. 1. In this work, the output y is the chosen as the sensitivity of the compliance
ith respect to the filtered design variables.
In this work, we choose to use the Parametric Rectified Linear Unit (PReLU) as the activation function, which

eneralizes the traditional rectified unit and is shown to achieve impressive performance on image classification
asks [24]. The PReLU activation function is defined as follows:

σ (x) = max(0, x) + a min(0, x), (12)

here a is a learnable parameter, and x is the input of each neuron in the DNN. To train the DNN model, we collect
he training data from exact evaluations in the topology optimization as the supervision signal. During training, we
se Adam optimizer [49], which is a widely used algorithm for stochastic gradient-based optimization. In the initial
raining, we randomly initialize all the learnable parameters in the DNN and, in each subsequent online updating,
e take the optimized parameters from the last training step as the initial guess and continue to update them based
n the new training data received.

.3. Two-scale topology optimization and local online training & prediction

As mentioned at the beginning of this section, a key concept of the proposed machine learning-based framework
s to make use of the history data in topology optimization to train a machine learning model, which can make a
irect prediction of the sensitivity information based on the design variables. However, it is common nowadays for
opology optimization problems to have millions of (or even more) design variables and thus building a scalable
nline machine learning model for those problems is by no means an easy task. More specifically, the challenges
rise from three aspects. First, as the number of design variables increases, the dimensions of the input and output
row accordingly, making it much more difficult to learn the mapping from input to output due to limited machine
earning model capacity. Second, although the increased learning difficulty may be alleviated by providing more
upervisions, i.e., collecting “exact” gradients in more optimization steps for model training, it can significantly

ffect the speedup performance for large-scale problems because evaluating the “exact” gradients in topology

7

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
Fig. 1. Architecture of the fully-connected Deep Neural Networks.

Table 1
Comparison of the number of parameters to learn and the GPU memory requirement between a single-scale and
a two-scale scheme for online training. The DNN for both cases is assumed to have 4 hidden layers with each
hidden layer having 1,000 neurons.

Scheme 86K DVs 250K DVs 1.5M DVs

Single-scale
parameters 175M 867M 3B
GPU memory 3.9GB – –

Two-scale
parameters 3.3M 3.3M 3.3M
GPU memory 0.7GB 0.7GB 0.9GB

optimization is expensive. Third, the size of the machine learning model grows according to the dimensions of
the input and output, which costs more GPU memory for training and prediction; and the maximum GPU memory
available in existing hardware can significantly limit the scale of the optimization problem that can be handled. To
illustrate the last point, let us consider a topology optimization problem discretized by three meshes, each has 86K ,
250K , and 1.5M elements respectively. Let us also assume that the DNN we use has 4 hidden layers with 1,000
neurons in each layer. We record the total number of model parameters and the corresponding GPU memory cost
in Table 1. For a single-scale scheme, the number of neurons in the input and output layers of the DNN is equal
to the total number of elements in the mesh. Thus, as we increase problem size, the number of parameters in the
DNN increases drastically and so does the GPU memory required. For meshes with 250K and 1.5M elements, we
will run out of memory on a 12GB GPU. In order to address this fundamental challenge related to the scalability of
the framework, this section proposes a two-scale topology optimization scheme together with local online training
and updating to make better use of the history data in topology optimization.

4.3.1. Two-scale topology optimization setup
According to Eqs. (5) and (6), the sensitivity of each element depends on both the design and state variables

of that element. However, the information about the state variables of each element is not available unless we
solve the state equation. In order to provide sufficient information to the machine learning model and, at the same
time, to avoid the most time-consuming step of solving the state equation, we introduce a topology optimization
formulation with two discretization levels: a coarse-scale mesh and a fine-scale mesh. As we mentioned, the design
variables (and the corresponding filtered design variables) live on the fine-scale discretization and they will be
updated every optimization step. However, on the fine-scale mesh, the state equations are only solved in those
optimization steps when we collect training data for the machine learning model. On the contrary, on the coarse-

scale mesh, no optimization is performed but the state equation is solved at every optimization step to provide

8

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

i
m
t
o
m

w

a

i

Fig. 2. A 2D illustration of the setup of the two mesh scales and the mapping from the fine-scale mesh to the coarse-scale mesh for a
cantilever beam design problem.

information about the state variables to the machine learning model. Assuming that the number of elements of the
coarse-scale mesh is much smaller than that of the fine-scale mesh, the time spent in solving the state equation on
the coarse-scale mesh will be negligible.

The setup of the coarse-scale and fine-scale meshes is illustrated in Fig. 2. We note that although the illustration
s in 2D, the numerical examples in this work also consider 3D problems. On both coarse-scale and fine-scale

eshes, we adopt regular hexahedral (brick) finite elements with linear displacement interpolations and assume that
he fine-scale mesh is fully embedded in the coarse-scale mesh. Under this assumption and because of the regularity
f the two meshes, every element in the coarse-scale mesh contains the same number of elements in the fine-scale
esh. Thus, we introduce a parameter called block size NB to quantify how many fine-scale elements are contained

on each side of the coarse-scale element. For example, the illustration in Fig. 2 has a block size of NB = 5, meaning
every element in the coarse-scale mesh constrains 5 × 5 = 25 fine-scale elements.

Because the design update is only performed on the fine-scale mesh, one needs to map the stiffness distribution of
the fine-scale mesh to the coarse-scale mesh at every optimization step. Taking inspiration from the multi-resolution
topology optimization frameworks [12,50], we define the mapping in the following manner. For a given coarse-scale
finite element with a total of nG integration points, as illustrated in Fig. 2, we divide it into a total of nG sub-regions
and each sub-region is associated with one of its integration point. In this work, nG is equal to 4 in 2D and 8 in
3D. In addition, for the coarse-scale finite element k, we denote Qk

j (j = 1, . . . , 4 in 2D or j = 1, . . . , 8 in 3D)
as its sub-region associated with the j th integration point. Under this convention, the mapped stiffness at the j th
integration point of coarse-scale element k, which is denoted as EC,k

j , is computed as the weighted average of the
interpolated stiffness of all the fine-scale elements that fall within in the sub-region Qk

j , namely,

EC,k
j =

1∑
i∈Qk

j
(w

Qk
j

i)

∑
i∈Qk

j

(w
Qk

j
i) Ei , (13)

here recall from (4) that Ei is the interpolated stiffness of element i in the fine-scale mesh, and w
Qk

j
i is the weight

ssigned to Ei in sub-region Qk
j . If element i in the fine-scale mesh falls completely in Qk

j , then the weight w
Qk

j
i

s taken to be 1. Otherwise, if element i falls into a total of n sub-regions, we then take its weight as w
Qk

j
i =

1
n for

all sub-regions Qk
j . With the stiffness mapping and assuming that all coarse-scale elements are identical, the global

stiffness matrix KC on the coarse-scale mesh is computed as

KC
=

⋃
k

[nG∑
j=1

EC,k
j (BC

j)⊤D0BC
j J C

j

]
, (14)

where D0 is the constitutive matrix of the solid phase, and BC
j and J C

j are the strain–displacement matrix and the

Jacobian of iso-parametric mapping at the j th integration point of a coarse-scale element, respectively. The nodal

9

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

a

w
t
R

4

m
t
e
i
q
p
l

T
(
i
e
w

T

Fig. 3. A 2D illustration of the setup of the two mesh scales for a cantilever beam design problem. The block size NB in this illustration
is 5.

displacement vector of the coarse-scale mesh, denoted as uC , can then be obtained by solving the state equation
s

uC
= (KC)−1fC , (15)

here fC is the applied force vector on the coarse-scale mesh. Finally, we also remark that other schemes of mapping
he stiffness between the two meshes can also be adopted in our proposed approach, for example, the ones used in
eferences [12,50].

.3.2. Local online training & update approach
Having introduced the machine learning model (i.e., fully-connected DNN) and the two-scale topology opti-

ization setup, we are now ready to propose the local online training & updating approach which capitalizes on
he main features of the two-scale topology optimization formulation. In the proposed approach, instead of treating
ach global design as an individual training sample, we view each element in the coarse-scale mesh together with
ts enclosed fine-scale elements as an independent training instance. An illustration is shown in Fig. 3. The next
uestion is what will be the proper inputs from the coarse- and fine-scale meshes. In this work, we construct a
roper set of input by examining the dependence of sensitivity and the availability of information in the two mesh
evels.

raining data from fine-scale mesh. Naturally, the choice of input from the fine-scale mesh is the design variables
or closely-related variables) in each training instance. In this work, we choose the filtered design variables as the
nput data from the fine-scale mesh because they possess smoother distribution than the design variables due to the
ffect of the density filter. Accordingly, we choose the output data to be the sensitivities of the objective function
ith respect to the filtered design variables within each instance. We will denote G̃ as a prediction of G by the deep

learning model. Once we have G̃ at hand, the prediction for G, denoted as G̃, can be efficiently obtained through
G̃ = P⊤G̃.

raining data from coarse-scale mesh. Unlike the fine-scale mesh, we know the structural responses on the coarse-
scale mesh at every optimization step. Thus, the input data from the coarse-mesh will be taken as the state variables
on the coarse-scale mesh. Because we have access to all the information about the state variables, including the
displacement, strain, and stress fields, the question then becomes: what state variable should we select as the input
data to the deep learning model from the coarse-scale mesh so that we could get the most accurate prediction. The
most natural choice according to the expression (5) is the nodal displacement vector of each coarse-scale element.
However, as we will show soon, the choice of the nodal displacement vector of each coarse-scale element as the
input to deep learning model will result in an unsatisfactory level of accuracy in prediction. Instead, this work
proposes to use the strain vectors at all the integration points of each coarse-scale element as input. For the kth
coarse-scale element, we use εC

k to denote a vector collecting the strain vectors at all the integration points of that
element, namely, εC

k = [εC,k
1 , . . . , εC,k

nG
]⊤, where ε

C,k
j = [εC,k

xx, j , ε
C,k
yy, j , ε

C,k
zz, j , γ

C,k
xy, j , γ

C,k
xz, j , γ

C,k
yz, j]

⊤ is the strain vector
obtained at the j th integration point of the kth coarse-scale element. The strain vector ε

C,k
j can be computed from

the nodal displacement vector uC
k of element k following the standard finite element procedure using the values of
the gradients of the shape functions at the j th integration point of that element.

10

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

c

c

t
p
r

u
d
a
D
s
a
l

Fig. 4. An illustration of the design domain, load and boundary condition of the cantilever example. The training and prediction data is
ollected on a mesh with 16,000 elements and 18,081 nodes.

Here, we use a simple numerical experiment to demonstrate the improved accuracy of prediction achieved by
hoosing the strain vector εC

k instead of the nodal displacement vector uC
k as input. Afterwards, an explanation will

be provided about the reasons behind this improved prediction accuracy.
In this simple experiment, we consider a cantilever beam design domain of dimensions 2 × 1 × 1 as shown in

Fig. 4. The design domain is fixed on its face x = 0 and subjected to a distributed load τ = 1 in the negative z
direction at the lower edge of the face, x = 2. The volume fraction and the filter radius of this problem are taken
to be Vmax = 12% and R = 0.08, respectively. In this experiment, we want to evaluate whether the fully-connected
DNN is able to learn the exact expression to compute the sensitivity G if it is given all the necessary input, i.e., both
design and state variables of each element. To that end, we consider a limit case where the coarse-scale and fine-scale
meshes are identical (i.e., NB = 1) and each has 16,000 elements and 18,081 nodes, as shown in Fig. 4. In this
case, the input data to the fully-connected DNN in our localized training strategy reduces to the filtered design
variable and nodal displacement vector or the strain vector of each element, and based on the analytic expression
(5), those input data provide sufficient information to compute the sensitivity of each element. We also separate
the topology optimization and machine learning modules. We first collect the data for both training and prediction
from a completed topology optimization procedure with 200 optimization steps, and use the data collected from
optimization steps 11 to 15 to train a fully-connected DNN (the data from the first 10 steps are discarded). We
then use the trained fully-connected DNN to predict the sensitivity G i in each element of the mesh from steps 16
to 200. No online update is performed here. To quantify the accuracy of the prediction, we introduce the angle of
deviation between the exact sensitivity G and the predicted sensitivity G̃, as

θerror = arccos
(G⊤G̃

∥G∥ ∥G̃∥

)
. (16)

In terms of the hyper-parameters of the fully-connected DNN, we fix the total number of hidden layers to be
Nh = 4 and vary the total number of neurons in each hidden layer as 100, 500 and 1,000. In the training stage of
he DNN, the maximum iteration is set as 1,000 and the batch size is selected as 20,000. To stabilize the training
rocess, a decaying learning rate schedule is defined: the initial learning rate is taken as ℓr = 0.0005 and will be
educed every 1,000 iterations by a factor of 0.5.

In Fig. 5, we plot the angle of deviation θerror as function of the optimization step obtained by the DNN trained
sing two different sets of input data. In Fig. 5(a), the DNN is trained using the nodal displacement and filtered
esign variable of each element as input; and, in Fig. 5(b), the DNN is trained using the element-level strain vector
nd the filtered design variable of each element as input. By comparing the two figures, we can conclude that the
NN trained with the element-level strain vector and the filtered design variable of each element as input exhibits

ignificantly improved the accuracy in prediction as compared to the one trained using the nodal displacement vector
nd the filtered design variables. Moreover, we also notice that, increasing the number of neurons in each hidden

ayer can monotonically improve the prediction accuracy of the DNN trained using strain vectors and filtered design

11

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

a
v

v
d
t

w

q
f
e

d

Fig. 5. The angle of deviation θerror as function of the optimization steps obtained by (a) the DNN trained using the nodal displacement
nd filtered design variable of each element as input, and (b) the DNN trained using the element-level strain vector and the filtered design
ariable of each element as input.

ariables but cannot improve the accuracy of the DNN trained using the nodal displacement vectors and filtered
esign variables. The results of this simple experiment indicate that the choice of input data can greatly influence
he accuracy and prediction performance of the fully-connected DNN.

Here, we provide an explanation of why such different predication accuracy is obtained by training the DNN
ith different sets of input data. We recall that from (5) that G is given by

G i = −p(zi)p−1(ui)⊤k0ui , (17)

where k0 is the local stiffness associated with solid materials that is identical for each element in the present work.
Alternatively, we can also express G in terms of element-level strain vectors,

G i = −p(zi)p−1
nG∑
j=1

[
(εi

j)
⊤D0εi

j

]
, (18)

where εi
j is the strain vector at the j th integration point of element i , and D0 is the modulus matrix of the solid

material. According to expressions (17) and (18), G i depends on the nodal displacement vector ui through a
uadratic form determined by matrix k0, while its dependence on the element-level strain vector is a quadratic
orm determined by matrix D0. When training the DNN, we are essentially trying to learn the coefficients or,
quivalently, the eigenvalues and their associated eigenvectors, of matrices k0 or D0. Let us examine matrix k0 first.

The matrix k0 is positive semi-definite with 6 zero eigenvalues representing the rigid body motions. Therefore,we
can express the quadratic form (ui)⊤k0ui in (17) as

(ui)⊤k0ui =

n−6∑
k=1

λk
[
(qk)⊤ui

]2
+

n∑
k=n−5

0
[
(qk)⊤ui

]2
, (19)

where n is the total number of displacement DOFs in the element; λ1, . . . , λn−6 are the positive eigenvalues of k0

with q1, . . . , qn−6 being their corresponding eigenvectors; and qn−5, . . . , qn are the eigenvectors associated with the
6 zero eigenvalues. According to the above expressions, due to the presence of zero eigenvalues, it is impossible to
correctly learn vectors qn−5, . . . , qn from the training data. As a result, learning all the coefficients of the matrix
k0 with the nodal displacement vector becomes an ill-posed task. Unlike k0, the D0 matrix is strictly positive
efinite and, thus, learning all its coefficients is a well-posed task. Based on the above analysis, we remark that,

12

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

i
f
t
t
t
t
l

another potential solution could be still using the displacement vector from the coarse-scale mesh but adding a small
regularization term (e.g. Tikhonov regularization [51–53]) to the coarse-scale stiffness matrix in order to avoid the
singular displacement modes.

In summary, an illustration of the inputs to the DNN in the proposed local online training & updating approach
s shown in Fig. 1. Compared to the global approach, this local online training & updating approach can address the
undamental challenges early in this subsection. First, by adopting the local approach, we can significantly increase
he total number as well as the diversity of the training samples. From a machine learning perspective, more diverse
raining samples could potentially lead to more accurate predictions. Second, the local approach allows us to bound
he size as well as the GPU memory requirement of the fully-connected DNN for problems of any size. To illustrate
he advantages of the local online training & updating approach enabled by the two-scale topology optimization,
et us consider the same example at the beginning of Section 4.3 with a two-scale setup of block size NB = 5. For

all the three problem sizes considered in this example, the number of neurons in both input and output layers of
the DNN are always equal to the total number of fine-scale elements enclosed in each coarse-scale element plus
the strain information of every integration point of each coarse-scale element, which is 125 + 48 = 173 neurons in
the present case. As a result, with the two-scale scheme, the total number of parameters in the DNN and the GPU
memory required for training stay almost constant, even when we drastically increase the problem size, as shown
in Table 1.

4.4. Improve training efficiency by randomly dropping out void training samples

With the local online training & updating approach, many void samples exist in the training data set. A void
sample is referred to as a training instance whose enclosed filtered DVs are all zero. The void sample does not
contain as much useful information as the non-void ones, and thus we propose to randomly drop out a portion of
them from our training set to improve the online training efficiency without affecting accuracy. This is determined
by the drop out rate Pdrop, which is the probability of removing any void instance. For example, if we choose
Pdrop = 0.9, each void training instance has a 90% chance of being removed from the training set. As will be
demonstrated in the design examples, this proposed strategy of dropping out void training samples can greatly
improve the efficiency of the training of the deep learning model without sacrificing its accuracy.

5. Numerical assessment

Before performing design examples that integrate the machine learning and the two-scale topology optimization
modules, this section performs thorough numerical assessments to demonstrate the effectiveness of the localized
training strategy and the online update scheme. In addition, different choices of parameters (e.g., NI , NF , NB) are
studied and their influence on the accuracy of the sensitivity prediction are discussed.

We consider the same cantilever design problem shown in Fig. 4 with the same separated training and prediction
sequence: we first perform the entire optimization for 200 steps to collect all data in the optimization history and,
subsequently, use a subset of the collected data determined by parameters NI , NF , WI , WU to train/update the deep
learning model. The rest of the data collected after the initial prediction (NI + WI) is used to evaluate the deviation
angle θerror defined in (16). We consider three fine-scale meshes and, unless otherwise stated, the block size NB
is taken to be 5 for all of them. The mesh statistics of the fine-scale meshes and their corresponding coarse-scale
meshes are provided in Table 2. Throughout this section, we consider a fully-connected DNN with 4 hidden layers
and each hidden layer consists of 1,000 neurons. To train that DNN, the maximum number of iterations is set to be
2,000 and the batch size is selected as 1,000. The decaying learning rate schedule is adopted in both initial training
and online update stages — the initial learning rate is taken as ℓr = 0.0005 and will be reduced every 500 iterations
by a factor of 0.5.

5.1. Scalability and accuracy of the localized training

First, we demonstrate the scalability and accuracy of the local training strategy by comparing its performance
with a global training strategy, in which we have only one training sample at each optimization step. For each
training sample in the global training strategy, the input data is the global filtered design variable vector z at a given
optimization step and the output data is their corresponding global sensitivity vector G. There is no strain vector
13

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
Table 2
Statistics of the fine-scale meshes considered in the numerical assessments.

Meshes # of fine-scale El. # of fine-scale Nd. # of coarse-scale El. (N B = 5) # of coarse-scale Nd. (N B = 5) # of DVs

Mesh 1 54,000 58,621 432 637 54,000
Mesh 2 128,000 136,161 1,024 1,377 128,000
Mesh 3 432,000 450,241 3,456 4,225 432,000

Fig. 6. (a) The evolution of θerror as function of the optimization steps, after step 20, obtained by both local and global training for Mesh
1, Mesh 2, and Mesh 3. (b) The GPU memory used in the training of DNN by both local and global strategies for Mesh 1, Mesh 2, and
Mesh 3. In (a), the results of the global training for Mesh 3 are not included because the GPU runs out of memory (i.e., the memory
requirement is more than 12GB).

considered as input in the global training. To train the DNNs, we consider the one-time training (i.e., NF > 200)
with the parameter setup of NI = 10 and WI = 10. Under this setup, the data from optimization steps 10 to 19
are used to train the DNN and the prediction begins at optimization step 20. In Fig. 6(a), we show the evolution
of θerror as function of the optimization step after step 20 for both local and global training strategies. We also plot
in Fig. 6(b) the GPU memory used in the training of DNN by both local and global strategies. For mesh 3, we
could not obtain the results for global training because the GPU is out of memory, i.e., the memory requirement
is more than 12GB. We can draw several conclusions from the comparison in those figures. First, within the same
number of hidden layers and the identical number of neurons in each hidden layer, greater prediction accuracy is
achieved by the DNN trained using the local strategy rather than the one trained by the global strategy, as shown in
Fig. 6(a). Second, as shown in Fig. 6(b), as we increase the number of design variables, the local training strategy
can maintain a constant GPU memory cost while the GPU memory required for the global training strategy increases
drastically. This is because, as we increase the problem size (i.e., the number of the design variables), the number
of training samples will increase but the size of the input and output data will stay the same in the local training
strategy. However, in the global training strategy under the same situation, the number of training samples will not
change but the sizes of the input and output data will increase accordingly. As a result of this feature, the local
training can lead to a more scalable framework that could potentially work with topology optimization problem of

any size.

14

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

a
s
fi
e
e
o
a
i
s
t

Fig. 7. The deviation angle θerror as function of the optimization steps obtained by online update schemes with the 3 sets of parameters
(i.e., NI = 5, NF = 10; NI = 10, NF = 10; and NI = 10, NF = 20) for (a) Mesh 1, (b) Mesh 2 and (c) Mesh 3.

5.2. Influence of the online update and block sizes

As demonstrated in Fig. 6(a), in one-time training, the deviation angle θerror increases monotonously after the
initial prediction step. This leads to an unsatisfactory level of long-term accuracy, meaning that, the predication
accuracy of the DNN keeps deteriorating as we move away from those training steps. Thus, the online update
scheme is necessary to improve the long-term accuracy of the prediction. To demonstrate this, we use the same
data collected from the cantilever design example, and perform online update every NF optimization steps after the
initial prediction step. Three sets parameters are considered: (1) NI = 5 and NF = 10; (2) NI = 10 and NF = 10;
nd (3) NI = 10 and NF = 20. In Fig. 7(a)–(c), we plot the deviation angles θerror as function of the optimization
teps obtained with all the 3 sets of parameters for Mesh 1, Mesh 2 and Mesh 3, respectively. Notice that, in all the
gures, we only plot the deviation angles in those optimization steps where the predictions are performed. Thus,
ach line in the figures is piece-wise continuous and consists of multiple intervals, each of which represents the
volution of deviation angle between either the initial training and the first online update or any two consecutive
nline updates. We can see from the figures that, for all the meshes and sets of parameters considered, the deviation
ngle θerror is reduced drastically every time the online update is performed and, as a result, even though θerror still
ncreases monotonously within each interval, the maximum deviation angle of each interval keeps decreasing. This
uggests that the predication accuracy of the DNN is constantly improved throughout the optimization history with
he online update scheme. Moreover, by comparing the results obtained with different sets of NI s and NF s, we also

conclude that, both decreasing NI and increasing NF (which corresponds to decreasing the frequency of the online
update) will increase the maximum deviation angle of each interval, although the overall decreasing trend of the
deviation angle throughout the optimization remains.

In the last part of this section, we study the influences of the block size NB on the prediction accuracy by
considering four different block sizes values, i.e., NB = 4, NB = 6, NB = 10, and NB = 15. In this study,
we restrict our attention to Mesh 3 and fix the parameters of the online update scheme as NI = 10, NF = 10,
WI = 10, and WU = 2. In Fig. 8(a), we plot the deviation angle θerror as function of the optimization step for
those four block sizes values, which is obtained using the strain vector from the coarse-scale mesh as input (see
discussions in Section 4.4.2). It is observed from the results that, the influence of block size on the predication
accuracy is monotonous, especially in those steps right after initial training (the ones in the zoomed portion of
Fig. 8(a)). As the block size NB decreases, the prediction accuracy increases accordingly. In contrast, in Fig. 8(b),
we plot the deviation angle θerror as function of the optimization steps for the same set of NB , which is obtained
using the nodal displacement vector from the coarse-scale mesh as input (see discussion in Section 4.4.2). Unlike
Fig. 8(a), the results in Fig. 8(b) suggest a non-monotonous behavior of the prediction accuracy as we decrease NB .
As illustrated in the zoomed portion of Fig. 8(b), the prediction accuracy first improves as we decrease NB from

15 to 6 and then deteriorates as we decrease NB from 6 to 4. If we extrapolate the above behaviors to the limit

15

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

m
T
s
i
d
o

6

a
a
o
c
w
a
w

Fig. 8. (a) The deviation angle θerror as function of the optimization steps for NB = 4, 6, 10, and 15, which are obtained using the strain
vector from the coarse-scale mesh as input. (b) The deviation angle θerror as function of the optimization steps for NB = 4, 6, 10, and 15,
which are obtained using the nodal displacement vector from the coarse-scale mesh as input.

case of NB = 1, we will obtain consistent behaviors observed in the numerical study of Section 4.4.2. Thus, this
study provides additional numerical evidence to support that we should always use the strain vector rather than the
nodal displacement vector from the coarse-scale mesh as the input to the machine learning module of the proposed
framework.

6. Design examples

Having gained sufficient understanding of the proposed framework and its proper parameter setup, this section
presents four design examples to showcase the effectiveness and significant speedup of the proposed framework
as compared to the standard topology optimization. We emphasize that, unlike any other machine learning-based
approaches in the literature of topology optimization, our proposed framework can be universally applied to any
design problem without any pre-collected information about that problem. For all the design examples, the Young’s
modulus and Poisson’s ratio for the solid material are chosen as EY = 1 and ν = 0.3, respectively, the move limit

is taken as m = 0.1, and the damping coefficient η is set as η = 0.5. In terms of our specific implementation, two
itan Xp GPUs, each having 12GB of memory, are used. One is used to solve the state equations on both coarse-
cale and fine-scale meshes. The Preconditioned Conjugate Gradient (PCG) method with the Jacobi preconditioner
s adopted. The other GPU is used to train the deep learning model. In this section, in order to distinguish the
esigns produced by the proposed framework from the ones by the standard framework, we plot the 3D designs
btained by the proposed framework in red color and the ones obtained by the standard approach in gray color.

.1. Example 1: An illustrative example in 2D

We intend to use the first 2D example as an illustration of the proposed framework. To that end, we consider
2D Messerschmitt–Bölkow–Blohm (MBB) beam design domain whose dimensions, load and support conditions

re given in Fig. 9. The magnitude of the load is F = 2. Due to symmetry, we consider half of the MBB domain in
ur implementation with the appropriate boundary conditions and discretize it with a 1,920 by 640 fine-scale mesh
onsisting of 1228,800 elements. The block size NB is taken to be 5, leading to a 364 by 148 coarse-scale mesh
ith 53,872 elements. As for the optimization parameters, the radius of the density filter is taken to be R = 0.008

nd the volume fraction is set as V = 50%. We adopt a continuation scheme for the penalization parameter p, in
hich p is increased from 1 to 3 with increment 1. The maximum optimization step number for p = 1 and p = 2
is set as 20, whereas the one for p = 3 is chosen as 200. We start to apply the proposed framework at p = 3.

16

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

p

Fig. 9. The dimensions, load, and boundary conditions of the 2D MBB domain.

Fig. 10. Comparison between the standard and proposed approaches: (a) convergence history of the objective function, and (b) sensitivities
with respect to the filtered design variable.

The associated parameters are chosen as NI = 1, NF = 20, WI = 4 and WU = 4. As for the machine learning
model, we utilize a fully-connected DNN with 4 hidden layers, each of which has 200 neurons. For both online
training and updating, the maximum epoch number is taken to be 2,000 and the batch size is chosen as 30,000.
During the training, we utilize a decaying learning rate schedule: the initial learning rate is set to ℓr = 0.0005 and
is subsequently reduced by half every 400 epochs until the minimum ℓr = 1 × 10−5 is reached.

In Fig. 10(a), we show the convergence history of the objective function obtained by the standard approach and
roposed framework for the optimization steps starting with p = 3. It is immediate from the comparison that the

proposed framework can lead to a design with almost identical topology and objective value (195.38 (proposed) v.s.
195.98(standard)) to the ones obtained by the standard approach. The proposed framework, however, only solves
the fine-scale system 14 times while the standard approach solves the fine-scale systems 200 times (for p = 3).
Moreover, in Fig. 10(b), we present fringe plots of the sensitivities of the objective function with respect to the
filtered design variables for several intermediate steps obtained with the standard approach (left column) and the
proposed framework (right column). In the proposed framework, the sensitivity plots are directly predicted by the
DNN. Comparing the sensitivity plots, we can draw several conclusions. First, the proposed online training and
updating scheme produce sensitivities that are sufficiently accurate as compared to true ones. Second, with the
online updating scheme, the predicted sensitivity becomes more accurate throughout the optimization process. For
instance, it is apparent that the sensitivity predicted at optimization step 160 (with several online updating) is more

accurate than the one predicted at optimization step 6 (with no online updating).

17

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

F
r
o

F
a

Table 3
Statistics of the fine-scale and coarse-scale meshes considered in the 3D cantilever design problem.

Meshes # of fine-scale El. # of fine-scale Nd. # of coarse-scale El. (N B = 5) # of coarse-scale Nd. (N B = 5) # of DVs

Mesh 1 85,750 92,016 686 960 85,750
Mesh 2 250,000 262,701 2,000 2,541 250,000
Mesh 3 1458,000 1498,861 11,664 13,357 1458,000

Fig. 11. The final topologies obtained on Mesh 1 (see Table 3) with the four cases of parameter setup for the cantilever design problem.

6.2. Example 2: Benchmark 3D cantilever beam design

The cantilever design problem illustrated in Fig. 4 is considered and, through this example, we aim to demonstrate
the scalability and accuracy of the proposed machine learning-based framework for meshes with different sizes. To
that end, we consider three fine-scale meshes with different levels of refinement and set the block size NB to be 5 for
all of them. The detailed statistics of these three meshes are summarized in Table 3. In addition, We will also discuss
in this example how different parameters choices (e.g., NI and NF) affect the performance of the proposed machine
learning-based framework. To achieve this, we consider four cases with different parameter setup as follows:

• Case 1: NI = 10, NF = 10 and WI = 10;
• Case 2: NI = 10, NF = 10 and WI = 5;
• Case 3: NI = 5, NF = 10 and WI = 10;
• Case 4: NI = 10, NF = 25 and WI = 10.

or all the cases, the parameter WU , which is the window size for online update, is taken to be 2 and the drop out
ate for void sample Pdrop is set as 0.9. Moreover, the fully-connected DNN is trained or updated using batch sizes
f 500, 1,000 and 10,000 for Mesh 1, Mesh 2, and Mesh 3, respectively.

In Figs. 11–13, we depict the final structural topologies obtained on Mesh 1, Mesh 2, and Mesh 3, respectively.
or each mesh, the results include the designs obtained using the proposed approach with four cases of parameters
nd the design obtained from the standard topology optimization. Comparing the overall layouts between the
18

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
Fig. 12. The final topologies obtained on Mesh 2 (see Table 3) with the four cases of parameter setup for the cantilever design problem.

Fig. 13. The final topologies obtained on Mesh 3 (see Table 3) with the four cases of parameter setup for the cantilever design problem.

designs, we obtain from the proposed and standard approaches, we conclude that the proposed machine learning-

based approach can yield structural designs which closely resemble the ones produced by the standard topology

19

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

s
F
b
p

Table 4
Summary of the quantitative comparison between the results obtained by the proposed machine learning-based and standard topology
optimization approaches for the 3D cantilever beam design problem. The comparison is in terms of both accuracy and computational cost.

Standard Case 1 Case 2 Case 3 Case 4

Mesh 1

Final Objective 370.11 370.023 371.14 371.23 368.61
Difference 0% −0.023% 0.28% 0.3% −0.4%
ML time (s) 0 499 469.78 560 289
Total time (s) 1,346 1,248 1,160 1,250 924

Mesh 2

Final Objective 379.54 379.67 379.53 379.57 379.37
Difference 0% 0.03% −0.002% 0.009% −0.046%
ML time (s) 0 787 769 876 451
Total time (s) 3,665 2,115 1,991 2,105 1,515

Mesh 3

Final Objective 383.51 383.84 384.12 383.76 383.75
Difference 0% 0.085% 0.159% 0.065% 0.062%
ML time (s) 0 1,947 1,842 2,229 1,193
Total time (s) 25,455 8,710 7,954 8,331 6,069

optimization procedure for a wide range of mesh sizes. We also notice that, as the mesh becomes finer, the designs
produced by the machine learning-based and standard topology optimization become more similar to each other.
For example, for Mesh 1, which is the coarsest mesh considered, noticeable differences in structural layout can
still be found among the designs. However, no visual difference is observed for Mesh 2 and Mesh 3 between the
designs obtained by the proposed framework and standard one.

Furthermore, Table 4 provides quantitative comparisons between the proposed machine learning-based and
tandard approaches in terms of accuracy (with respective to the final objective value) and the computational cost.
rom the accuracy perspective, we notice that the final designs obtained from the proposed machine learning-
ased approach have almost identical objective values to the ones produced by the standard topology optimization
rocedure — for all the meshes and all four cases considered, the differences are within 0.5%. We also notice that,

the variation of the percentage differences between the four cases is less for Mesh 3 and Mesh 2 than for Mesh 1,
implying that, as the mesh becomes more refined, the performance of the proposed approach becomes more stable
and less sensitive to different choices of parameters. This conclusion is in agreement with our previous observation
from the qualitative comparison of the designs on different meshes (c.f. Figs. 11–13).

Regarding the computational efficiency, we show in Fig. 14 the total computational time spent by the proposed
and standard frameworks for the 4 cases on Mesh 1, Mesh 2 and Mesh 3. In conjunction with Table 4, we
conclude that the proposed machine learning-based framework is in general more efficient than the standard topology
optimization. For instance, with the parameter setup in Case 4, we gain more than 4 times of speedup with the
proposed machine learning-based approach on Mesh 3. In addition, we see a clear trend that, the larger the mesh
is, the more speedup is achieved. For smaller meshes, although the machine learning model avoids solving the state
equations in many optimization steps, training the machine learning model takes the majority of the computational
time saved. Thus the net saving is not substantial. However, this is not the case for finer meshes as training the
machine learning model is relatively more efficient than solving the state equations.

To further quantify the computational efficiency of the optimization process, we plot in Fig. 14(a)–(c) the
convergence history of the objective function versus the total computational time for Mesh 1, Mesh 2, and Mesh
3, respectively. In those figures, for a given objective value in the y axis, the value in the x axis corresponds
to the total computational time spent to reach that value. For the proposed framework, the time spent in training
the deep learning model is also included. Those figures can provide insight into the computational efficiency of
the optimization process by measuring how much computational time each approach needs in order to reach a
certain objective value. For Mesh 1, we notice that the convergence history of the objective values obtained by the
machine learning-based framework (i.e., the circular markers) falls slightly above the one by the standard topology
optimization (i.e., the solid line) except for the Case 4. This suggests that, for Mesh 1, the proposed machine

learning-based framework is in fact a slightly less efficient than the standard one in its optimization process. Even

20

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

t
i
c
b

t
c
M
b
p
w
b
o

Fig. 14. Convergence history for the 3D MBB beam design problem in terms of the objective function versus the total computational
ime (in seconds) for: (a) Mesh 1, (b) Mesh 2, and (c) Mesh 3. For the machine learning-based framework, the total computational time
ncludes the time for performing the two-scale topology optimization as well as the time for training the deep learning model. (d) The total
omputational time spent by the proposed and standard frameworks for the 4 cases on Mesh 1, Mesh 2 and Mesh 3. The speedups obtained
y the proposed framework as compared to the standard one in the four cases are summarized in (d) as well.

hough the total time is slightly less for the proposed framework, the amount of time saved is not sufficient to
ompensate the difference in objective values during the convergence history. On the contrary, for Mesh 2 and
esh 3, we can see that the convergence histories of the objectives values obtained by the machine learning-

ased framework are below the ones by the standard topology optimization for all the cases, indicating that the
roposed framework does achieve a higher computational efficiency during its optimization process. To summarize,
e conclude from this example that the main feature of the proposed machine learning-based framework is that it
ecomes more efficient and accurate for finer meshes, which makes it a suitable framework for large-scale topology

ptimization problems.

21

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
Fig. 15. The MBB design domain and its dimensions, load and boundary conditions.

Table 5
Statistics of Mesh 1 and Mesh 2 together with their associated coarse-scale meshes considered in the 3D MBB beam design problem.

Mesh 1 Mesh 2

NB # of elements # of nodes NB # of elements # of nodes

Fine-scale 324,000 342,271 1327,104 1373,617

Coarse-scale

5 2,592 3,367 4 20,736 23,725
6 1,500 2,046 6 6,144 7,497
10 324 532 8 2,592 3,367
15 96 195 12 768 1,125

6.3. Example 3:3D MBB beam design

The main goal of the third design example is to study the impact of various choices of block size NB and void
sample dropout rate Pdrop on the training efficiency, prediction accuracy, and the topology optimization performance.
To that end, we consider a MBB design example whose dimensions and boundary conditions are shown in Fig. 15.
Because of symmetry, a quarter of the design domain is simulated. In terms of the design parameters, we assume
that the allowable volume fraction is Vmax = 12% and set the radius of the density filter to be R = 0.08. This
example consists of two parts. The first part fixes the parameters NI , NF , WI , and WU and studies the impact of
various choices of block size NB and void sample dropout rate Pdrop on the training efficiency, prediction accuracy,
and the performance of the proposed framework. The second part discusses the trade-off between small and large
block sizes and discusses how NB impacts the choices of NI , NF , WI and WU as well as the overall computational
efficiency.

In the first part, the domain is discretized by two fine-scale meshes: Mesh 1 with 324,000 elements and Mesh
2 with 1373,617 elements. Four block size values are considered for each mesh. For Mesh 1, the block sizes are
chosen to be NB = 5, NB = 6, NB = 10 and NB = 15 and; for Mesh 2, the block sizes are adopted as NB = 4,
NB = 6, NB = 8 and NB = 12. The statistics of both fine-scale meshes and their corresponding coarse-scale meshes
are summarized in Table 5. In additional to various block size values, we also consider two void sample drop-out
rates: Pdrop = 0.9, which corresponds to dropping out void samples with a probability of 90%, and Pdrop = 0,
which corresponds to keeping all the void samples. The parameters NI , NF , WI and WU are chosen to be NI = 5,
NF = 10, WI = 10 and WU = 4.

We utilize a DNN with 4 hidden layers and 1,000 neurons per hidden layer. For each mesh and block size, the
hyper-parameters of the DNN are summarized in Table 6. Decaying learning rate schedules are adopted in both
initial training and online update stages: the initial learning rate is reduced by half every 400 and 500 epochs,
respectively for mesh 1 and mesh 2, until a minimum value 10−5 is reached.

In Figs. 16(a)–(b) and 17(a)–(b), we plot the convergence histories of objective function obtained from the
machine learning-based framework for mesh 1 and mesh 2, respectively. The convergence histories of the objective

function by the standard topology optimization approach are also included for comparison purposes. Additionally,

22

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

F
M

i
o

c
o
f
t
t
m
b
i
m
s
a

s
a

Table 6
Summary of hyper-parameters for the DNNs adopted for the 3D MBB beam design problem.

Mesh 1 Mesh 2

NB ℓr Max. epochs Batch size NB ℓr Max. epochs Batch size

5 0.005 2,000 1,500 4 0.005 3,000 10,000
6 0.005 2,000 1,000 6 0.005 3,000 3,000
10 0.005 2,000 300 8 0.005 3,000 1,000
15 0.005 2,000 80 12 0.005 3,000 400

Fig. 16. Convergence history for the 3D MBB beam design problem in terms of the objective obtained from the machine learning-based
framework with four different NB values for Mesh 1 with: (a) Pdrop = 0.9, (b) Pdrop = 0.

igs. 18 and 19 depict the optimal designs obtained from both machine learning-based and standard approaches for
esh 1 and Mesh 2, respectively, with four different NB values and Pdrop = 0.9.
Several observations are made. First, we find that performance of the proposed machine learning-based framework

s insensitive to different choices of block sizes NB for both meshes. As shown in Table 7, the differences in final
bjective values between the machine learning-based and standard approaches typically stay within 0.5%. Larger

NB values, however, seem to lead to larger oscillations in the convergence history of the objective function. In most
ases, the machine learning-based framework even produces designs with smaller objective values than the standard
ne, suggesting that it has the potential of driving the optimization to a better local minima. On the other hand,
rom qualitative comparison of the designs, we conclude that different choices of NB all lead to optimal designs
hat closely resemble the ones obtained by the standard topology optimization for both Mesh 1 and Mesh 2, while
he machine learning-based approach with larger NB values is likely to produce designs without thin structural

embers. Second, from a computational efficiency perspective, the machine learning-based framework is shown to
e able to greatly accelerate the design process and the total speedup increases as the mesh becomes larger, which
s in agreement with the first design example. In addition, the larger the block size NB is, the more speedup the

achine learning-based framework can introduce as a result of the smaller coarse-scale systems and the smaller
ample size. For example, by choosing NB = 12 and Pdrop = 0.9, the machine learning-based framework can
ccelerate the design process more than 4 times on Mesh 2, whereas the speedup is more than 2 when considering

NB = 4 and Pdrop = 0.9 instead. Third, we conclude that the randomly dropping out void samples from the training
et improves both the accuracy and training efficiency of the machine learning-based framework. In terms of the
ccuracy, we notice from the final objective values in Table 7 that choosing P = 0.9 leads to less variations of
drop

23

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

f

f

Fig. 17. Convergence history for the 3D MBB beam design problem in terms of the objective obtained from the machine learning-based
framework with four different NB values for Mesh 2 with: (a) Pdrop = 0.9, (b) Pdrop = 0.

Fig. 18. Optimal MBB beam design obtained from the machine learning-based and standard approaches for Mesh 1. The results obtained
rom the machine learning-based approach utilize the void sample drop out rate Pdrop = 0.9.

Fig. 19. Optimal MBB beam design obtained from the machine learning-based and standard approaches for Mesh 2. The results obtained
rom the machine learning-based approach utilize the void sample drop out rate Pdrop = 0.9.
24

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
Table 7
Summary of comparison between the results obtained for the 3D MBB beam design problem by standard topology optimization and machine
learning-based approach, and their respective computational times for Mesh 1 and Mesh 2.

Mesh 1 Standard NB = 5 NB = 6 NB = 10 NB = 15

Pdrop = 0.9

Final Objective 188.57 186.58 186.72 187.03 186.81
Difference 0% −1.06% −0.98% −0.82% −0.94%
ML time (s) 0 1,552 1,148 684 826
Total time (s) 7,529 3,297 2,704 2,211 2,338

Pdrop = 0

Final Objective 188.57 188.39 188.38 187.59 189.81
Difference 0% −0.099% −0.10% −0.52% 0.65%
ML time (s) 0 2,626 1,930 1,016 982
Total time (s) 7,529 4,242 3,508 2,652 2,599

Mesh 2 Standard NB = 4 NB = 6 NB = 8 NB = 12

Pdrop = 0.9

Final Objective 221.30 221.17 219.78 220.92 220.54
Difference 0% −0.06% −0.69% −0.17% −0.35%
ML time (s) 0 9,244 3,982 3,023 1,942
Total time (s) 43,206 18,205 12,531 11,382 10,299

Pdrop = 0

Final Objective 221.30 221.26 220.25 220.13 220.00
Difference 0% −0.018% −0.48% −0.53% −0.59%
ML time (s) 0 17,645 7,352 5,067 2,785
Total time (s) 43,206 26,634 15,851 13,461 11,008

final objective values when different NB values are considered, especially for Mesh 1, than choosing Pdrop = 0.
This suggests that, for the present example, randomly dropping out void training samples can help stabilize the
training process and improve the predication accuracy of the DNN as compared to keeping all the void samples
in the training set. In terms of the training efficiency, Figs. 20 and 21 show the evolution of the training set size
and training time of the machine learning module during the optimization under various NB and Pdrop for Mesh
1 and Mesh 2, respectively. We conclude that, comparing to keeping all the void instances (i.e., Pdrop = 0) in the
training set, randomly dropping out most of them (i.e., Pdrop = 0.9) from the training set can greatly reduce the
sample size and therefore the total time to train the DNN. The smaller the block size NB is, more reductions are
achieved. This suggests that, in practice, one should always perform random drop out of void samples with a large
probability Pdrop, such as Pdrop = 0.9 (adopted in this section), in the machine learning-based framework to ensure
both the accuracy and efficiency.

Moreover, we segment the computational time of the proposed framework into four main portions: (1) fine-scale
solver, (2) coarse-scale solver, (3) Optimizer (i.e., OC), and (4) online training and update; and report the detailed
breakdown of computational time into each segment (Fig. 22). As shown in Fig. 22, solving the fine-scale systems
plus the online training and update make up the most of computational cost for both Meshes 1 and 2. As we increase
the block size values, the time for online training and update is reduced accordingly. As expected, the time associated
with the coarse-scale solver is significantly less than the one spent by the fine-scale solver, especially for the larger
mesh. Lastly, the computational time associated with the optimizer constitutes a considerably larger portion of the
total time in Mesh 2 than in Mesh 1, implying the need of a parallel implementation of the optimizer [54] for larger
meshes in our proposed framework.

We noticed that there exists a trade-off between small and large block sizes. Thus, in this second part of this
example, we illustrate this trade-off and discuss how it impacts the choices of parameters NI , NF , WI and WU as
well as the computational efficiency of the proposed framework. From now on, we restrict our attention to Mesh
2 and consider three block size values, NB = 2 (small), NB = 4 (intermediate) and NB = 8 (large). In general, as
the NB becomes larger, we need a DNN with larger model capacity and more frequent online updating to maintain
sufficiently accurate performance. We find the following parameters and hyper-parameters setups are suitable for
each choice of block size:

• For NB = 2, we use a fully-connected DNN with 4 hidden layers and 200 neurons per hidden layer. The
initial learning rate is set as ℓ = 0.001 and the batch size is taken as 15,000. the parameters NI , NF , WI and

WU are chosen as 7, 50, 3 and 1, respectively.

25

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

a

F
ℓ

fi
b
e

Fig. 20. The evolution of sample size and training time for training/updating the DNN throughout the optimization with both Pdrop = 0.9
nd Pdrop = 0 for Mesh 1 considering the 3D MBB beam design problem. The block size for each figure is: (a) NB = 5, (b) NB = 6, (c)

NB = 10, and (d) NB = 15.

• For NB = 4, we use a fully-connected DNN with 4 hidden layers and 500 neurons per hidden layer. The
initial learning rate is set as ℓ = 0.0005 and the batch size is taken as 8,000 and the parameters NI , NF , WI
and WU are chosen as 5, 45, 5 and 2, respectively.

• For NB = 8, we use a fully-connected DNN with 4 hidden layers and 1,000 neurons per hidden layer. The
initial learning rate is set as ℓ = 0.0005 and the batch size is taken as 1,000 and the parameters NI , NF , WI
and WU are chosen as 5, 10, 10 and 4, respectively.

or all the cases, the maximum epoch is 3,000 and the initial learning rate is reduced by half until a minimum of
= 10−5 is reached.
Fig. 23(a)–(c) present the convergence history versus computational time, the total computational cost, and the

nal designs for both proposed framework and the standard approach. While the proposed framework with all the
lock sizes yields designs with identical compliances, the intermediate block size NB = 4 is considerably more
fficient than the other two. This is explained by Table 8. According to the table, while the proposed framework
26

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

a

w
e
t
r
t

t
m
n

Fig. 21. The evolution of sample size and training time for training/updating the DNN throughout the optimization with both Pdrop = 0.9
nd Pdrop = 0 for Mesh 2 considering the 3D MBB beam design problem. The block size for each figure is: (a) NB = 4, (b) NB = 6, (c)

NB = 8, and (d) NB = 12.

ith NB = 2 uses the least frequent online updating, its costs considerably more in solving the coarse-scale state
quations. Additionally, online training and updating also spend more time in NB = 2 than NB = 4 due to a larger
raining sample size. On the contrary, while NB = 8 is the most efficient in solving the coarse-scale systems, it
equires much more frequent online updating than the other two NBs to main sufficient prediction accuracy, leading
o significantly more time in online training & updating and solving the fine-scale systems. The intermediate choice
NB = 4 provides most balanced efforts in online training and solving the coarse-scale system and, thus, leads to
he most speedup in computational time (i.e., 9.2 versus 3.8 in other two choices). This example suggests that, to

aximize the performance of the proposed framework, a proper choice of block size NB should be neither too large
or too small.
27

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

l

o
a

Fig. 22. Breakdown of the total computational time for the 3D MBB beam design problem considering Mesh 1 and Mesh 2 with various
choices of block sizes NB .

Table 8
Breakdown of the total computational time for the 3D MBB beam design problem into four segments: fine-scale
FE solver, coarse-scale FE solver, design update, and online training.

Time break down (s) Standard NB = 2 NB = 4 NB = 8

Fine-scale FE 42,047 2,159 2,141 6,521
Coarse-scale FE 0 6,705 1,045 497
Update 1,160 1,162 1,067 1,330
ML 0 1,270 446 3,023
Total 43,207 12,296 4,699 11,371

6.4. Example 4: A 3D bridge design

Non-designable regions are typical in engineering designs but add additional challenges to the proposed machine
earning-based framework because they are never explicitly defined on the coarse-scale mesh. Thus, one goal of this

last design example is to showcase the potential of the proposed machine learning-based framework to accurately
capture the presence of non-designable regions with various block size NB . Moreover, this design example also aims
to study the influence of various choices of hyper-parameters of the DNN, like the batch size and the maximum
training iteration, on the performance of the proposed framework. To that end, we consider a bridge design example
whose dimensions and boundary conditions are shown in Fig. 24. The presence of a bridge deck is incorporated
in the topology optimization through a non-designable solid layer, which has a thickness of 4/3 and is composed
of solid finite elements whose densities are kept constant throughout the optimization process. The top of the non-
designable layer, which is located at z = H/2 (where H is the height of the design domain), is subjected to a
distributed load in the negative z direction of magnitude τ = 0.1. In addition to the non-designable solid layer,
we also introduce a void region below the bridge deck, whose design variables are kept as zmin throughout the

ptimization process. In terms of design parameters, the allowable volume fraction (excluding the bridge deck) is
ssumed to be V = 7% and radius of the density filter is taken to be R = 3.

Making use of the symmetries in both x and y directions, we employ only a quarter of the design domain. To
discretize the domain using the two-scale discretization methodology, we consider a fine-scale mesh consisting of
864,000 elements and 903,991 nodes and take the block size to be either N = 5 or N = 10. The detailed statistics
B B

28

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

o

Fig. 23. (a) Convergence history of the objective function versus computational time for the proposed framework with various choices of
NB as well as the standard topology optimization approach. (b) Comparison of the total computational time spent by the standard topology
ptimization and the proposed framework with various choices of NB (c) Final designs obtained from the standard topology optimization

and the proposed framework with varying NB and their corresponding parameter setup.

Table 9
Statistics of the fine-scale and coarse-scale meshes considered in the bridge design
problem.

of elements # of nodes

Fine-scale 864,000 903,991
Coarse-scale (NB = 5) 6,912 8,575
Coarse-scale (NB = 10) 864 1,300

of the two-scale discretizations is summarized in Table 9. For each block size value, we consider three cases with
different batch size and maximum training parameters. Thus, a total of six cases are considered in this example,
whose parameter and hyper-parameter setups are summarized in Table 10. For all the six cases, the initial learning
rate ℓ for training/online update is 0.0005; P is taken to be 0.9; and N , W , W , and N are taken to be 10,
r drop I I U F

29

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
Fig. 24. The dimensions, load and boundary conditions of the bridge design domain. A non-designable solid region is placed in the middle
height, representing the bridge deck; and a non-designable region (the yellow one) is assigned below the bridge deck.

Table 10
The six cases considered in the bridge example with their parameter & hyper-parameter setups.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

NB 5 5 5 10 10 10
Batch size 3,000 3,000 Full 300 300 Full
Max. training iterations 2,000 4,000 2,000 2,000 4,000 2,000
Weight Decay 10−5 10−5 10−5 5 × 10−5 5 × 10−5 5 × 10−5

Fig. 25. Comparison of the final bridge designs obtained from the standard and machine learning-based approaches for cases where the
block size NB = 5.

5, 4, and 10, respectively. For cases with maximum training iteration being 2,000, the learning rate decays by a
factor of 2 every 500 steps; and for those with maximum training iteration being 4,000, the learning rate decays by
a factor of 2 every 800 steps.

In Figs. 25 and 26, we depict the final designs obtained from the machine learning-based approach for NB = 5
and NB = 10, respectively. The final objective values and the associated total computational costs for each of cases
are quantified in Table 11. For comparison purposes, we also perform the bridge design using the standard topology
optimization with the same design parameters and provide the results as well. Three observations are made. First,
30

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

t

Fig. 26. Comparison of the final bridge designs obtained from the standard and machine learning-based approaches for cases where the
block size NB = 10.

Table 11
Summary of comparison between the results obtained by standard topology optimization and machine-learning for the bridge design problem.

Standard Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Final Obj. 410.29 412.05 410.95 416.28 423.33 411.35 483.12
Diff. N/A 0.43% 0.16% 1.46% 3.18% 0.25% 17.75%
Total time (s) 19,034 6,660 9,156 6,037 5,440 6,835 4,484

with the presence of the non-designable regions, the performance of the machine learning-based framework becomes
more sensitive to the choice of block sizes than in the other examples. From Table 11, it is apparent that cases with
NB = 5 typically produce better designs than cases with NB = 10. For example, in terms of final objective values,
the maximum difference between the machine learning-based and standard approaches can be as high as 18% for
NB = 10, whereas the one for NB = 5 is only 1.46%. In addition, as shown from the comparison in Figs. 25
and 26, the differences between the designs are mainly located at those regions above and below the bridge deck,
and the presence of the bridge deck (which has a small thickness) is better captured by the coarse-scale mesh with
NB = 5 than NB = 10. Second, it is observed that, for both NB = 5 and NB = 10, choosing a smaller batch size
consistently gives better designs (in terms of objective function) than using a full batch size (i.e., equal to the sample
size). This is because that, as compared to full batch, choosing a small batch can add random noise to the update
of weights of the DNN to help them escape from bad local minima and saddle points [55]. However, one has to
keep in mind the trade-off between efficiency and accuracy when choosing the batch size. As indicated in Table 12,
given the same number of training iterations, choosing a smaller batch size leads to a longer training time, resulting
in a larger total computational time with the proposed framework. For example, case 1 (with a batch size of 3,000)
takes around 600 seconds more (with a full batch) to produce the final design than case 3. Finally, we also find that
increasing the training iteration of the DNN is typically helpful to improve its prediction accuracy, especially when
the block size NB is big. For the large block size NB = 10, it appears to be necessary in the proposed framework
o train the DNN with 4,000 iterations instead of 2,000 to achieve a good performance (i.e., under 0.5% difference

in objective value).

7. Concluding remarks

In this work, we propose a general machine learning-based topology optimization framework that can greatly
accelerate the process of large-scale design problems without sacrificing accuracy. Unlike the existing approaches, in

which the machine learning models are trained offline before the topology optimization, this work proposes a unique

31

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

t

Table 12
Detailed information about computational time spent in the training of DNN for each run case considered in the bridge design example.

Time (s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Ini. train time 207 396 152 111 215 34
Ave. time per update train 124 258 91 68 144 26
Total time 2,435 5,036 1,789 1,343 2,801 493

online training concept, which allows the machine learning model to be trained during the topology optimization
process. The proposed framework uses history data of topology optimization as the training samples and, based
on them, trains a machine learning model to directly predict the sensitivities without solving the state equations.
Moreover, to promote better integration between machine learning and topology optimization, several new schemes
are introduced. First, we present a two-scale topology optimization formulation which employs both coarse-scale
and fine-scale meshes. The setup enables the online training to be performed based on local data, which is shown
to significantly improve both the accuracy and scalability of the framework. Second, we propose an online updating
scheme which continuously improves the machine learning model during the optimization process by providing new
training data generated from physical simulations. Finally, a void sample drop out scheme is devised to improve the
training efficiency and prediction accuracy of the machine learning model. Through design examples, the proposed
framework is shown to significantly accelerate topology optimization with various load and boundary conditions,
design requirements (e.g., volume fraction, filter radius, and non-designable regions) without sacrifice in accuracy.
For example, the proposed machine learning-based framework is able to produce a design with the identical objective
and achieve almost an order of magnitude speedup as compared to the standard topology optimization approach in
the 3D MBB beam design example. In addition, we highlight that the proposed machine learning-based framework
can offer an ideal tool for accelerating large-scale topology optimization problems as it is shown to achieve more
speedup for problems with larger mesh sizes.

Through the design examples, some insights on how to properly choose the parameters & hyper-parameters in
he proposed framework are gained, which are summarized as follows:

• When the block size NB is small, the performance of the proposed framework is insensitive to the parameters
NI , NF , WI and WU . When the block size NB is large, the performance of the proposed framework is sensitive
to parameters NI , NF , WI and WU . In addition, for large block sizes, the convergence of the objective function
may experience oscillation and the optimization is more likely to converge to different local minima from the
one obtained by the standard topology optimization.

• In terms of computational efficiency, there exists a trade-off between small and large block sizes. On the one
hand, although small block sizes (e.g., NB = 2) allow us to choose a larger online update frequency NF ,
which leads to less fine-scale system solves, each coarse-scale system solve and online training take more
time. On the other hand, while larger block sizes (e.g., NB = 10) require less time in solving the coarse-scale
system, it needs more frequent online updates which increases the effort in solving fine-scale systems and
online training. We find an intermediate block size (e.g., 4 or 5) balances the efforts on both sides and can
lead to the best acceleration performance of the proposed framework.

• The practice of randomly dropping out void samples with a large Pdrop value (e.g., Pdrop = 0.9) can improve
both the training efficiency and prediction accuracy of the machine learning model.

• With the presence of non-designable (especially solid) regions, it is beneficial to choose a relatively small block
size and to use more epochs in online training so that the presence of the non-designable layer be captured
well in the coarse-scale mesh and the machine learning model.

• In both online training and update, choosing a batch size which is smaller than the size of the training sample
can lead to better predication accuracy in the proposed framework.

Finally, we highlight several future research directions of the proposed framework. First, we remark that the
proposed machine learning-based framework is universal in the sense that it can work with any suitable machine
learning model. Therefore, future extension of the present work includes incorporating other machine learning
and deep learning models, such as the Polynomial Chaos (PC) [56], Kriging [42], Low Rank Approximations

(LRA) [57,58], Support Vector Machine (SVM) [42,43], CNNs [44,45]) and ResNets [46], with the proposed

32

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739

“
C
w
M
a

R

framework, and exploring the comparative advantages and disadvantages of each model. Second, although being
applied to deterministic topology optimization problems, we believe that the proposed framework also has the
potential in topology optimization under uncertainty, such as robust topology optimization. Unlike the present work,
where the training data are deterministic, the training data from optimization under uncertainty will be stochastic,
which requires more investigation on the proper machine learning model to correctly capture the uncertainty in the
training data.

Acknowledgments

The authors acknowledge the financial support from Siemens Corporate Technology under the project titled
Deep Learning Enhanced Topology Optimization”. The inception of this research was the Siemens FutureMakers
hallenge at Georgia Tech (May 4-5, 2018), which included an institute-wide hackathon. Two authors of this paper
ere members of the hackathon winning team: HC, YZ & GHP. The other members of the hackathon team were
rs. Emily D. Sanders and Mr. Yang Jiang. GHP was the hackathon faculty advisor for the team. HC and GHP

cknowledge the support from the Raymond Allen Jones Chair at the Georgia Institute of Technology.

eferences

[1] Martin Philip Bendsøe, Noboru Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput.
Methods Appl. Mech. Engrg. 71 (2) (1988) 197–224.

[2] George I.N. Rozvany, A critical review of established methods of structural topology optimization, Struct. Multidiscip. Optim. 37 (3)
(2009) 217–237.

[3] Peter Christensen, Anders Klarbring, An Introduction to Structural Optimization, Springer Science & Business Media, Linköping, 2009.
[4] Martin Philip Bendsøe, Ole Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer Science & Business Media,

2013.
[5] Raphael T. Haftka, Zafer Gürdal, Elements of structural optimization, vol. 11, Springer Science & Business Media, 2012.
[6] Thomas Borrvall, Joakim Petersson, Large-scale topology optimization in 3D using parallel computing, Comput. Methods Appl. Mech.

Engrg. 190 (46–47) (2001) 6201–6229.
[7] Niels Aage, Erik Andreassen, Boyan Stefanov Lazarov, Topology optimization using PETSc: An easy-to-use, fully parallel, open source

topology optimization framework, Struct. Multidiscip. Optim. 51 (3) (2015) 565–572.
[8] Niels Aage, Erik Andreassen, Boyan S. Lazarov, Ole Sigmund, Giga-voxel computational morphogenesis for structural design, Nature

550 (7674) (2017) 84.
[9] Shun Wang, Eric de Sturler, Glaucio H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods

with recycling, Internat. J. Numer. Methods Engrg. 69 (12) (2007) 2441–2468.
[10] Oded Amir, Niels Aage, Boyan S. Lazarov, On multigrid-CG for efficient topology optimization, Struct. Multidiscip. Optim. 49 (5)

(2014) 815–829.
[11] Yoon Young Kim, Gil Ho Yoon, Multi-resolution multi-scale topology optimization—a new paradigm, Int. J. Solids Struct. 37 (39)

(2000) 5529–5559.
[12] Tam H. Nguyen, Glaucio H. Paulino, Junho Song, Chau H. Le, A computational paradigm for multiresolution topology optimization

(MTOP), Struct. Multidiscip. Optim. 41 (4) (2010) 525–539.
[13] Hui Liu, Yiqiang Wang, Hongming Zong, Michael Yu Wang, Efficient structure topology optimization by using the multiscale finite

element method, Struct. Multidiscip. Optim. (2018) 1–20.
[14] Christian Robert, Machine Learning, a Probabilistic Perspective, Taylor & Francis, 2014.
[15] Trevor Hastie, Robert Tibshirani, Jerome Friedman, James Franklin, The elements of statistical learning: data mining, inference and

prediction, Math. Intell. 27 (2) (2005) 83–85.
[16] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, et al., Deep face recognition, in: BMVC, vol. 1, 2015, p. 6.
[17] K.K. Kim, K.I. Kim, J.B. Kim, H.J. Kim, Learning-based approach for license plate recognition, in: Neural Networks for Signal

Processing X, Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), vol. 2, IEEE, 2000, pp.
614–623.

[18] Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin Wang, Tie-Yan Liu, Sequential click prediction for
sponsored search with recurrent neural networks, in: Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[19] Tie-Yan Liu, Learning to rank for information retrieval, Found. Trends® Inf. Retrieval 3 (3) (2009) 225–331.
[20] Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay, Deep learning based recommender system: A survey and new perspectives, ACM Comput.

Surv. (ISSN: 0360-0300) 52 (1) (2019) 5:1–5:38, http://dx.doi.org/10.1145/3285029, URL http://doi.acm.org/10.1145/3285029.
[21] Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[22] Jürgen Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61 (2015) 85–117.
[23] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT press, 2016.
[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.

33

http://refhub.elsevier.com/S0045-7825(19)30629-2/sb1
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb1
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb1
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb2
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb2
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb2
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb3
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb4
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb4
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb4
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb6
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb6
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb6
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb7
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb7
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb7
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb8
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb8
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb8
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb9
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb9
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb9
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb10
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb10
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb10
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb11
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb11
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb11
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb12
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb12
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb12
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb13
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb13
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb13
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb14
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb15
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb15
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb15
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb18
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb18
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb18
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb19
http://dx.doi.org/10.1145/3285029
http://doi.acm.org/10.1145/3285029
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb21
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb22
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb23

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
[25] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, Demis Hassabis, Mastering the game of go with deep neural
networks and tree search, Nature 529 (7587) (2016) 484.

[26] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
Demis Hassabis, Mastering the game of go without human knowledge, Nature 550 (7676) (2017) 354–359.

[27] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-
Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian,
Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, Ming Zhou, Achieving human parity on automatic Chinese
to English news translation, 2018, arXiv preprint arXiv:1803.05567.

[28] Erva Ulu, Rusheng Zhang, Levent Burak Kara, A data-driven investigation and estimation of optimal topologies under variable loading
configurations, Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 4 (2) (2016) 61–72.

[29] Ivan Sosnovik, Ivan Oseledets, Neural networks for topology optimization, 2017, arXiv preprint arXiv:1709.09578.
[30] Saurabh Banga, Harsh Gehani, Sanket Bhilare, Sagar Patel, Levent Kara, 3D topology optimization using convolutional neural networks,

2018, arXiv preprint arXiv:1808.07440.
[31] Yonggyun Yu, Taeil Hur, Jaeho Jung, Deep learning for determining a near-optimal topological design without any iteration, Struct.

Multidiscip. Optim. (2019) 1–13.
[32] Xin Lei, Chang Liu, Zongliang Du, Weisheng Zhang, Xu Guo, Machine learning-driven real-time topology optimization under moving

morphable component-based framework, J. Appl. Mech. 86 (1) (2019) 011004.
[33] Cameron Talischi, Glaucio H. Paulino, Anderson Pereira, Ivan F.M. Menezes, PolyTop: a Matlab implementation of a general topology

optimization framework using unstructured polygonal finite element meshes, Struct. Multidiscip. Optim. 45 (3) (2012) 329–357.
[34] Martin P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1 (4) (1989) 193–202.
[35] George I.N. Rozvany, Ming Zhou, Torben Birker, Generalized shape optimization without homogenization, Struct. Optim. 4 (3–4)

(1992) 250–252.
[36] Martin P. Bendsøe, Ole Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69 (9–10) (1999)

635–654.
[37] Thomas J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation, 2012.
[38] Krister Svanberg, The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg.

24 (2) (1987) 359–373.
[39] Andrew R. Barron, Approximation and estimation bounds for artificial neural networks, Mach. Learn. 14 (1) (1994) 115–133.
[40] Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5)

(1989) 359–366.
[41] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, Liwei Wang, The expressive power of neural networks: A view from the width,

in: Advances in Neural Information Processing Systems, 2017, pp. 6231–6239.
[42] Maliki Moustapha, Bruno Sudret, Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework,

Struct. Multidiscip. Optim., 1–20.
[43] Bernhard Scholkopf, Alexander J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,

MIT Press, 2001.
[44] Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, Lawrence D Jackel,

Backpropagation applied to handwritten zip code recognition, Neural Comput. 1 (4) (1989) 541–551.
[45] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances

in Neural Information Processing Systems, 2012, pp. 1097–1105.
[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
[47] Karl Pearson, LIII. On lines and planes of closest fit to systems of points in space, Lond. Edinb. Dublin Phil. Mag. J. Sci. 2 (11)

(1901) 559–572.
[48] Harold Hotelling, Analysis of a complex of statistical variables into principal components., J. Educ. Psychol. 24 (6) (1933) 417.
[49] Diederik P. Kingma, Jimmy Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[50] Tam H. Nguyen, Glaucio H. Paulino, Junho Song, Chau H. Le, Improving multiresolution topology optimization via multiple

discretizations, Internat. J. Numer. Methods Engrg. 92 (6) (2012) 507–530.
[51] Adeildo S. Ramos, Glaucio H. Paulino, Filtering structures out of ground structures–a discrete filtering tool for structural design

optimization, Struct. Multidiscip. Optim. 54 (1) (2016) 95–116.
[52] Xiaojia Zhang, Adeildo S. Ramos, Glaucio H. Paulino, Material nonlinear topology optimization using the ground structure method

with a discrete filtering scheme, Struct. Multidiscip. Optim. 55 (6) (2017) 2045–2072.
[53] A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, vol. 328,

Springer Science & Business Media, 2013.
[54] Niels Aage, Boyan S. Lazarov, Parallel framework for topology optimization using the method of moving asymptotes, Struct. Multidiscip.

Optim. 47 (4) (2013) 493–505.
[55] Rong Ge, Furong Huang, Chi Jin, Yang Yuan, Escaping from saddle points—online stochastic gradient for tensor decomposition, in:

Conference on Learning Theory, 2015, pp. 797–842.
[56] Emiliano Torre, Stefano Marelli, Paul Embrechts, Bruno Sudret, Data-driven polynomial chaos expansion for machine learning
regression, J. Comput. Phys. 388 (2019) 601–623.

34

http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb25
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb26
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb26
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb26
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb26
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb26
http://arxiv.org/abs/1803.05567
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb28
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb28
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb28
http://arxiv.org/abs/1709.09578
http://arxiv.org/abs/1808.07440
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb31
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb31
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb31
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb32
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb32
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb32
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb33
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb33
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb33
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb34
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb35
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb35
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb35
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb36
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb36
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb36
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb37
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb38
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb38
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb38
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb39
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb40
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb40
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb40
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb41
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb41
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb41
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb43
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb43
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb43
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb44
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb44
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb44
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb45
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb45
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb45
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb47
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb47
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb47
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb48
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb50
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb50
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb50
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb51
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb51
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb51
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb52
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb52
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb52
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb54
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb54
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb54
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb56
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb56
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb56

H. Chi, Y. Zhang, T.L.E. Tang et al. Computer Methods in Applied Mechanics and Engineering 375 (2021) 112739
[57] Anthony Nouy, Proper generalized decompositions and separated representations for the numerical solution of high dimensional
stochastic problems, Arch. Comput. Methods Eng. 17 (4) (2010) 403–434.

[58] Ivan Markovsky, Konstantin Usevich, Low Rank Approximation, Springer, 2012.
35

http://refhub.elsevier.com/S0045-7825(19)30629-2/sb57
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb57
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb57
http://refhub.elsevier.com/S0045-7825(19)30629-2/sb58

	Universal machine learning for topology optimization
	Introduction
	Related work
	Topology optimization formulation
	Universal machine learning for topology optimization: Concept, methodology and algorithms
	An overview of the proposed framework and the online training & updating strategy
	The machine learning model: Deep Neural Networks (DNNs)
	Two-scale topology optimization and local online training & prediction
	Two-scale topology optimization setup
	Local online training & update approach

	Improve training efficiency by randomly dropping out void training samples

	Numerical assessment
	Scalability and accuracy of the localized training
	Influence of the online update and block sizes

	Design examples
	Example 1: An illustrative example in 2D
	Example 2: Benchmark 3D cantilever beam design
	Example 3:3D MBB beam design
	Example 4: A 3D bridge design

	Concluding remarks
	Acknowledgments
	References

