
Received: 24 October 2019 Revised: 29 June 2020 Accepted: 4 August 2020

DOI: 10.1002/nme.6519

R E S E A R C H A R T I C L E

Computational Morphogenesis: Morphologic constructions
using polygonal discretizations

Habeun Choi1 Heng Chi2,3 Kyoungsoo Park1 Glaucio H. Paulino2

1Department of Civil and Environmental
Engineering, Yonsei University, Seoul,
Korea
2School of Civil and Environmental
Engineering, Georgia Institute of
Technology, Atlanta, Georgia
3Siemens Corporate Technology,
Princeton, New Jerssy

Correspondence
Kyoungsoo Park, Department of Civil and
Environmental Engineering, Yonsei
University, 50 Yonsei-ro Seodaemun-gu,
Seoul 120-749, Korea.
Email: k-park@yonsei.ac.kr

Funding information
Georgia Institute of Technology,
Grant/Award Number: Raymond Allen
Jones Chair; Korea Institute of Energy
Technology Evaluation and Planning,
Grant/Award Number: 20174030201480;
National Research Foundation of Korea,
Grant/Award Number:
2018R1A2B6007054

Summary
To consistently coarsen arbitrary unstructured meshes, a computational mor-
phogenesis process is built in conjunction with a numerical method of choice,
such as the virtual element method with adaptive meshing. The morphogenesis
procedure is performed by clustering elements based on a posteriori error esti-
mation. Additionally, an edge straightening scheme is introduced to reduce the
number of nodes and improve accuracy of solutions. The adaptive morphogene-
sis can be recursively conducted regardless of element type and mesh generation
counting. To handle mesh modification events during the morphogenesis, a
topology-based data structure is employed, which provides adjacent information
on unstructured meshes. Numerical results demonstrate that the adaptive mesh
morphogenesis effectively handles mesh coarsening for arbitrarily shaped ele-
ments while capturing problematic regions such as those with sharp gradients
or singularity.
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1 INTRODUCTION

Mesh adaptation has been widely utilized as an effective tool to improve the accuracy and efficiency of numerical solu-
tions in various engineering applications. The main feature of this technique is to decrease the number of degrees of
freedom (DOFs), which reduces computational cost, while ensuring a desired level of accuracy in the numerical anal-
ysis. For example, Babuška and Rheinboldt1,2 developed adaptive mesh refinement schemes to minimize the energy
norm of the error. Zienkiewicz and Zhu3 utilized a recovered gradient, that is, the recovery-based error estimator, to
construct meshes for adaptive refinement. Since then, adaptive mesh refinement has been employed to solve various
engineering problems, for example, shear bands,4–6 cohesive fracture,7–10 structural optimization,11–14 hydrodynamics,15

magnetohydrodynamics,16 hemodynamics,17 compressible flow,18 and Lattice Boltzmann simulation.19 The aforemen-
tioned references are not exhaustive and just represent a very small sample of the field.

Most previous works focused on adaptive refinement while only a few works were conducted on adaptive coarsening.
For example, an adaptive mesh refinement and coarsening library, named as libMesh, was developed using a hierarchi-
cal refinement and coarsening scheme in conjunction with a tree data structure.20 Molinari and Ortiz6 performed mesh
coarsening with an edge-collapse operator while introducing local retriangulation tools to improve mesh quality. To avoid
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mesh quality issues during edge-collapse, Park et al8 employed adaptive mesh coarsening by reversing the adaptive refine-
ment in 4k structured meshes, and Alhadeff et al7 parallelized the adaptive mesh refinement and coarsening process.
Bassi et al21,22 proposed mesh agglomeration of uniform quadrilateral meshes in conjunction with the mesh free con-
cept. Recently, Antonietti and Pennesi23 employed the discontinuous Galerkin method for the agglomeration process of
arbitrarily-shaped polygonal elements with edge-coarsening. Because the mesh agglomeration resulted in elements with
arbitrary shapes, a special rule for the numerical integration on coarsened elements was developed. In summary, most
previous adaptive mesh coarsening investigations were limited to the use of structured meshes because of mesh quality
and numerical integration issues.

Polygonal discretizations have emerged as a new frontier in computational mechanics. In this study, to investigate
mesh coarsening for arbitrary unstructured meshes, computational morphogenesis scheme is introduced. In the adaptive
mesh morphogenesis, new cells are adaptively generated by clustering adjacent cells based on a posteriori error estima-
tion. Additionally, an edge straightening scheme is employed to effectively reduce the number of nodes and global error
of a generated mesh. The proposed scheme is not limited to the size or shape of cells, for example, skew and noncon-
vex, and accurately identifies problematic regions in the domain. Furthermore, the morphogenesis results provide lower
global error than the ones of uniform meshes on various displacement fields. Once a reliable error estimator is avail-
able, then we have a plethora of methods at our disposal, such as finite elements (polygonal based)24,25, virtual element
methods (VEM)26, mimetic finite differences (MFD)27–29, discontinuous Galerkin methods (DG)23,30,31, hybridizable dis-
continuous Galerkin methods (HDG)32,33, and hybrid higher order methods (HHO)34,35, to name a few. Among those, we
arbitrarily select the VEM.

The remainder of the article is organized as follows. Section 2 explains the basic VEM and provides its underlin-
ing formulation. Section 3 presents the adaptive mesh morphogenesis procedure. Section 4 addresses the computational
implementation of the morphogenesis procedure. Section 5 discusses the overall computational framework. Finally,
Section 6 summarizes the key findings of the present article and provides recommendations for further morphogenesis
research.

2 NUMERICAL METHOD OF CHOICE

To perform mesh coarsening on arbitrary unstructured meshes, the virtual element method (VEM)26 is selected because
it provides flexibility on element shapes, namely convex and nonconvex polyhedra.36,38 In the VEM, an explicit form
of shape functions is not required to evaluate the stiffness matrix. To approximate the solution space, projection oper-
ators are employed, which can be exactly computed,26,39 and the evaluation of a discrete bilinear form consists of
consistency and stability terms. The VEM has been utilized to solve various engineering problems such as linear
elasticity,40,41 linear elastodynamics,37,42,43 inelasticity problems,44–46 fracture problems,47–50 Stokes problems,51 and topol-
ogy optimization.52–54 Alternatively, one should note that polygonal and polyhedral elements were employed using
harmonic shape functions,55,56 shape functions from a constrained minimization process,57,58 and maximum-entropy
shape functions,59,60 while numerical integration should be carefully performed for the construction of element stiffness
matrices.

2.1 Virtual Element Method Formulation

The virtual element formulation for linear elasticity problems is presented. We shall restrict our attention to the 2D case.
For a given solid Ω⊂R2 with 𝜕Ω being its boundary, one assumes that a displacement field u0 is prescribed on a portion
of the boundary (Γu), and a traction field t is subjected to the other portion (Γt), such as Γu ∪Γt = 𝜕Ω and Γu ∩Γt = ∅. In
addition, a body force f is applied in the interior.

In the continuum setting, the principle of virtual work states that the (unique) equilibrating displacement field u
among the set of kinematically admissible displacement field 𝒦 satisfies

∫Ω
𝝐(v) ∶ [C𝝐(u)]dx = ∫Ω

f ⋅ vdx + ∫Γt
t ⋅ vds ∀v ∈ 𝒦 0, (1)
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where 𝝐(⋅)= (𝛁 ⋅ +𝛁T⋅)/2 is the infinitesimal strain operator, C is the fourth order linear isotropic elasticity tensor, and
𝒦 0 ⊂ 𝒦 is the set of kinematically admissible displacements that vanishes on Γu. In the following subsections, the local
space for lower order virtual element, together with the essential L2 projection operators, and the corresponding VEM
approximation for the above variational principle will be presented.

2.2 Virtual element spaces for 2D

Consider a generic polygon E with m vertices numbered in counterclockwise fashion as x1 … xm. We first introduce an
auxiliary virtual space, denoted as 𝒱 (E), which is defined as

𝒱 (E) = {v ∈ ℋ1(E) ∶ Δv ∈ 𝒫1(E) in E and v|e ∈ 𝒫1(e), ∀e ∈ 𝜕E} , (2)

where 𝒫1(⋅) is the space of linear functions, Δ stands for the Laplacian operator, and e is a generic edge of element
E. According to its definition, 𝒱 (E) contains functions whose Laplacians are linear in the interior of E and boundary
variations are piecewise linear. From the definition, we can show that 𝒫1(E) ⊆ 𝒱 (E) and therefore, we can define a
projection operator Π∇

E ∶ 𝒱 (E) → 𝒫1(E), such that ∀v ∈ 𝒱 (E), we have{∫E∇(Π
∇
E v) ⋅ ∇p1dx = ∫E∇v ⋅ ∇p1dx ∀p1 ∈ 𝒫1(E)∑m

i=1 Π
∇
E v(xi) =

∑m
i=1 v(xi)

. (3)

By using the divergence theorem and Equation (3), one obtains the following expression, that is,

∫E
∇(Π∇

E v)dx = ∫E
∇vdx = ∫𝜕E

vnds =
m∑

i=1
∫ei

vnei ds, (4)

where nei is the unit outward normal vector of edge ei (connecting vertices xi and xi− 1). Since any function v in 𝒱 (E)
varies piecewise linear on each edge of e, we can further simplify Equation (4) as

∫E
∇(Π∇

E v)dx =
m∑

i=1
v(xi)

nei |ei| + nei+1 |ei+1|
2

, (5)

where |ei| denotes the length of edge ei and we adopt the convention that m+ 1
.
= 1 and 1− 1

.
=m. Putting together

Equation (5) and the second condition of Equation (3), we can show that the projection Π∇
E v can be uniquely

and exactly computed with values of v on vertices of E and some geometric information of E. With the aux-
iliary virtual space 𝒱 (E) and projection operator Π∇

E , the formal definition of the virtual space 𝒱 (E) is given
by

𝒱 (E) =
{

v ∈ 𝒱 (E) ∶ ∫E
(Π∇

E v) p1dx = ∫E
vp1dx,∀p1 ∈ 𝒫1(E)

}
. (6)

Notice that, by definition, 𝒱 (E) is a subspace of 𝒱 (E), yet, it contains 𝒫1(E) as well. We can also show that the
dimension of the virtual space 𝒱 (E) is exactly m and the values of its functions at the m vertices of E form a complete set
of DOFs of 𝒱 (E).

2.3 L2 projection operators for virtual elements

Through the formal definition of 𝒱 (E), we only know its functions on the boundary of E but we do not know the function
in the interior of E unless we solve the partial differential equation (PDE). In order to construct VEM approximation, an
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essential ingredient is the local projections. In this work, an L2 projection operator Π1 ∶ 𝒱 (E) → 𝒫1(E) is defined, such
that ∀v ∈ 𝒱 (E), we have

∫E
Π1v p1dx = ∫E

v p1dx, ∀p1 ∈ 𝒫1(E). (7)

Comparing Equation (7) with the formal definition of 𝒱 (E) in Equation (6), we conclude that Π1v = Π∇
E v for all

v ∈ 𝒱 (E). Since we have shown that the projectionΠ∇
E v is exactly computable with only v at vertices of E, the L2 projection

Π1v is exactly computable with its DOFs and geometric information of E, even without knowing v anywhere in the interior
of E.

Having defined the L2 projection operator for v, we also introduce a second L2 projection operator, which projects ∇v
onto [𝒫0(E)]2, as

∫E
Π0(∇v) ⋅ p0dx = ∫E

∇v ⋅ p0dx, ∀p0 ∈ [𝒫0(E)]2, (8)

where 𝒫0(E) is the space of constant functions. Simplifying expression Equation (8) leads to

∫E
Π0(∇v)dx = ∫E

∇vdx = ∫E
∇(Π∇

E v) dx. (9)

Therefore, the second L2 projection is readily available, once we have computed Π1v (or equivalently, Π∇
E v).

2.4 Virtual element approximation for linear elasticity

With the ingredients defined in the preceding subsections, we are ready to introduce the virtual element approximation
for linear elasticity problems. First, consider tessellation Th of the domain Ω into nonoverlapping polygons. We further
assume that Th is conforming on both Γu and Γt. Then, we can denote Γu

h and Γt
h as the unions of edges in Th which

belongs to Γu and Γt, respectively. On tessellation Th, the global displacement space, denoted as 𝒦h, is defined as

𝒦h
.
= {vh ∈ 𝒦 ∶ vh|E ∈ [𝒱 (E)]2 ∀E ∈ Th}. (10)

According to the above definition, each component of the local displacement field v= [vx, vy]T in any element E
belongs to the local virtual element space [𝒱 (E)]2 and has DOFs located at the vertices of E. Additionally, we define 𝚷1v
and 𝚷0∇v as the actions of the projection operators Π1 and Π0 on each component of v and ∇v, respectively, given as:

𝚷1v
.
=

[
Π1vx

Π1vy

]T

and 𝚷0∇v
.
=

[
(Π0∇vx)T

(Π0∇vy)T

]
. (11)

Based on 𝚷0 ∇ v, we also define the L2 projection of strain tensor 𝚷0𝝐(v) as

𝚷0𝝐(v)
.
= 1

2
[𝚷0∇v + (𝚷0∇v)T]. (12)

To construct the VEM approximation for linear elasticity, a major step is to construct aE
h (uh, vh), which is the VEM

approximation to the following element-level bilinear form, that is,

aE(uh, vh) = ∫E
𝝐(vh) ∶ [C𝝐(uh)]dx, (13)
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where uh is the approximated solution of VEM in a discretized domain. Based on the virtual element space and projection
operators, we decompose aE(uh, vh) into

aE
h (uh, vh) = |E|𝚷0𝝐(vh) ∶ [C 𝚷0𝝐(uh)] + 𝛼ESE(uh −𝚷1uh, vh −𝚷1vh), (14)

where the first and second terms on the right-hand side are, respectively, named as the “consistency” and “stability”
terms. The “consistency” term is responsible for the capturing the part of the bilinear form aE(uh, vh) that is essential
for convergence. Because the “consistency” term only involves the projections of the local strain fields, it can be exactly
computed without numerical integration. With only the consistency term, the system of equation resulting from the VEM
approximation will be singular because of the existence of nonphysical zero-energy eigenmodes (eigenmodes which are
not rigid-body modes in our context). Thus, the basic idea of the stabilization term in VEM is to stabilize those nonphysical
spurious modes. To ensure that it does not affect the convergence rate, the choice of stabilization term SE(uh, vh) needs
to scale like the energy norm aE(uh, vh) in terms of the element size26.

In this work, we adopt the typically choice for “stability” term in the VEM literature, which consists of a bilinear form
SE(uh, vh) and a scalar 𝛼E defined as

SE(uh, vh) =
∑
xv∈E

uh(xv) ⋅ vh(xv) and 𝛼E = 1
4

trC = 1
4

Cijij, (15)

respectively. Note that Cijkl are components of the isotropic elasticity tensor C having both major and minor symmetries.
The basic idea behind this choice of “stability” term is that both SE(uh, vh) and 𝛼E are simple to evaluate. On the other
hand, the VEM approximation of the loading terms related to body force f and surface traction t are defined as

⟨f, vh⟩h =
∑

E∈Th

f(xE
c ) ⋅ (𝚷1vh) |x=xE

c
, (16)

and

⟨t, vh⟩h =
∑
e∈Γt

h

∮e
t ⋅ vhds, (17)

respectively, where xE
c stands for the centroid of element E and ∮ e could be any numerical integration scheme on e that

is exact for any linear integrand. Notice that, by definition, vh is linear on each edge e.
Finally, the VEM approximation for the linear elasticity problem Equation (1) consists of seeking uh ∈ 𝒦h such that∑

E∈Th

aE
h (uh, vh) = ⟨f, vh⟩h + ⟨t, vh⟩h ∀vh ∈ 𝒦 0

h . (18)

3 ADAPTIVE MESH MORPHOGENESIS

An adaptive mesh morphogenesis strategy is proposed to investigate mesh coarsening for arbitrary unstructured meshes.
The concept of the adaptive morphogenesis is simply to merge elements, which have relatively lower errors. In the
following subsections, the adaptive morphogenesis procedure and a geometrical example are presented.

3.1 Generation procedure

The adaptive mesh morphogenesis procedure consists of four steps: (1) identifying elements for coarsening, (2) clustering
target elements, (3) edge straightening, and (4) removing skinny elements, as shown in Figure 1. First, elements which
need coarsening, for example, the gray elements in Figure 1A, are searched based on a posteriori error estimation. Specif-
ically, one searches and flags the elements whose normalized errors (𝜖E,n) are lower than a user-defined threshold (𝜃clst),
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such that

𝜖E,n = 𝜖E

max (𝜖E)
< 𝜃clst, (19)

where the normalized element error is the ratio of the element error (𝜖E) to the maximum element error in the domain
(max(𝜖E)).

Next, for each flagged element, one checks whether its adjacent elements, which share nodes with the flagged element,
are also marked or not. If normalized errors of the adjacent elements are also lower than the threshold, those elements are
considered as a patch for the clustering. After defining the patches for all the flagged elements in the domain, elements of
each patch are merged into a new single element. If there are flagged elements which do not have any adjacent elements
with low errors, one excludes them from the mesh clustering procedure. A clustered element consists of nodes along
the patch boundary (see Figure 1B). After setting the element connectivities of clustered elements, one removes original
elements of the patches and inserts the new elements. Then, nodes, located inside of coarsened elements, do not have
connections with elements. To maintain the topological consistency of a mesh, those nodes are removed. For example,
one can select three elements, that is, E1, E2, and E3 in Figure 2A, as a patch for the mesh clustering. The patch consists of
13 nodes, that is, N1, N2, … , N13. Through the mesh clustering process, those three elements are merged into one element
as illustrated in Figure 2B. The clustered element consists of 12 nodes, that is, N1, N2, … , N12, and then N13 is removed.

After clustering elements, one introduces an edge straightening process to improve the quality of clustered elements
and decrease the number of nodes in a domain. This process is achieved by selectively removing nodes which have two
adjacent edges. One removes interior nodes, which share only two edges, regardless of those directions. For boundary
nodes, to maintain the geometry of a domain, one only eliminates them when the adjacent edges are collinear. Interior
nodes which have only two adjacent edges, for example, the white circles which are shared by dashed lines in Figure 1B,
can be found after the mesh clustering procedure. By removing those nodes, the two adjacent edges are naturally replaced
with a new straight edge, for example, the thick blue lines in Figure 1C. In the case of boundary nodes, one should consider
directions of adjacent edges. For example, as shown in Figure 1C, the white square nodes share two collinear edges, and
thus they are removed. However, the white triangular node describes the corner of the domain, and thus the edges, which
share the white triangular node, are not collinear. Therefore, the white triangular node is not removed. Then, one achieves
a coarsened mesh while maintaining the original geometry (see Figure 1D).

During the adaptive morphogenesis, triangular elements with a large aspect ratio may be generated, for example, the
blue element in Figure 1E. Because such elements do not generally improve the accuracy of solution, the skinny element
is merged with its adjacent element which shares the longest edge of the skinny element (see Figure 1F). In this study,
triangular elements whose angles are greater than 130◦ or less than 20◦ are considered as the skinny elements.

3.2 An illustrative example

An example of the adaptive mesh morphogenesis is illustrated by defining element errors in a domain. A rounded rect-
angular domain has the size of 3× 1 with the corner radius of 0.5 and the “VEM” shaped holes, as shown in Figure 3.
Element errors (𝜖E) are arbitrary defined in the domain with small perturbations (𝜉), given as

𝜖E(xc) = 2xc − y2
c + 0.5 + 𝜉, (20)

where xc = [xc, yc]T is the centroid of an element. A pseudorandom value 𝜉 is obtained from the standard uniform dis-
tribution in the open interval of (0,1). Based on Equation (20), the elements have normalized errors within a range
from 0.024 to 1.0 according to the centroid of each element. For an initial mesh discretization, a centroid Voronoi
tessellation (CVT) mesh is utilized with 7001 elements and 13 946 nodes, as shown in Figure 4A. Higher element error
is expected on the right- and bottom-region, and thus finer elements would be used in the corresponding region. To
demonstrate a smooth transition from fine elements to coarse elements, one monotonically decreases the clustering
threshold 𝜃clst in this example. First, one sets the clustering threshold as 0.831. Then, the mesh morphogenesis scheme
is applied on regions where normalized element error is lower than 0.831. As illustrated in Figure 4B, most elements
are merged while the elements in the right- and bottom-region are remained as they are. The number of elements
is 2059 after the first mesh generation. Next, the element errors are updated on the basis of the centroid of merged
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(B)

(D)

(A)

(C)

(E)                                      (F)

F I G U R E 1 Schematics of the mesh morphogenesis procedure: A, identifying elements for coarsening, B, mesh clustering, C, edge
straightening for interior nodes, D, edge straightening for boundary nodes, E, searching a skinny triangular element, and F, merging the
skinny element with its adjacent element [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 2 An example of
a patch for the mesh clustering
and its element connectivity: A,
original element and B, clustered
element

elements, and the morphogenesis is performed with the clustering threshold value of 0.625, which leads to the sec-
ond mesh generation. Approximately 66.1% of the domain area is coarsened and the number of elements decreases by
1333, as shown in Figure 4C. Afterward, one more morphogenesis is conducted with the threshold value of 0.413. As
expected, larger elements are generated on the left part of the domain (see Figure 4D). The generated mesh has 1243
elements after the third mesh generation. Note that the rounded boundary is maintained by small linear edges. This
is because boundary nodes are eliminated only when the adjacent edges are collinear during the edge straightening
process.

Additionally, mesh statistics for the generated meshes are illustrated in Figures 5 and 6. Figure 5 demonstrates the
composition of generated meshes, while the numbers of occurrences are normalized with respect to the sum of possible
events. For the initial discretization, the domain consists of 66.5% hexagon, 21.7% quadrilateral, 10.7% heptagon, 10.4%
pentagon, and the others, as illustrated in Figure 5. As the adaptive morphogenesis is performed, the distribution of the
mesh composition is wider than those of the initial discretization. In the third generation, the portions of the hexagon and
quadrilateral decrease by 35.8% and 10.5%, respectively. More pentagons are generated, and those normalized appearance
is 28.1%. Figure 6 shows the normalized edge length distribution. At the initial discretization, the average edge length is
about 0.0122. After the performing of the adaptive morphogenesis, longer edges are generated due to merged elements,
and the average edge length is 0.0222. In summary, the proposed adaptive morphogenesis scheme effectively represents
mesh coarsening based on the element errors with various types and sizes of polygons.

4 COMPUTATIONAL IMPLEMENTATION

In the adaptive morphogenesis, accurately estimating element errors and effectively retrieving adjacent information are
essential. Thus, in this section, one first presents a posteriori error estimator,61 which is utilized to identify elements
with lower errors for coarsening. To handle mesh modification events, the topology-based data structure (TopS)62,63

is employed, which provides adjacent information of topological entities. Finally, the morphogenesis procedure is
summarized in Section 4.3.

4.1 Error estimator

Based on the definition of the H1-type skeletal norm, the skeletal error of the displacement from VEM simulation, that
is, original displacement gradient error 𝜖u,s, is given as,

𝜖u,s =

[∑
E∈Ωh

hE
∑
e∈𝜕E

∫e
(∇u ⋅ 𝝉e − ∇uh ⋅ 𝝉e) ⋅ (∇u ⋅ 𝝉e − ∇uh ⋅ 𝝉e)de

]1∕2

, (21)

where hE is a characteristic size of an element, and 𝝉e is the unit tangent vector of edge e. In most cases, the original
error cannot be computed because the exact displacement gradient ∇u is unknown. Alternatively, Chi et al61 proposed a
recovery-based a posteriori error estimator to approximate the original skeletal errors. The exact displacement gradient
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F I G U R E 3 Domain
description of the rounded
rectangular domain with “VEM”
shaped holes
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F I G U R E 4 Generated meshes and those element
errors during the adaptive morphogenesis: A, initial
mesh, B, first mesh generation, C, second generation,
and D, third generation [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 5 Composition of the initial and generated meshes with
respect to the adaptive morphogenesis [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 6 Edge length distribution according to the adaptive
morphogenesis: A, the initial CVT mesh and B, third generation. Note
that the red dashed line represents the average edge length for each
mesh [Colour figure can be viewed at wileyonlinelibrary.com]
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(∇u) is estimated by introducing a reconstructed displacement gradient (Ghuh). The a posteriori estimated element error
𝜖u,s||E is expressed as

𝜖u,s||E =

[
hE

∑
e∈𝜕E

∫e
(Ghuh ⋅ 𝝉e − ∇uh ⋅ 𝝉e) ⋅ (Ghuh ⋅ 𝝉e − ∇uh ⋅ 𝝉e)de

]1∕2

. (22)

The reconstructed gradient is computed at each node in the domain, and the variation of Ghuh along an edge is assumed
to be linear. By summing all the estimated element errors in the domain Ωh, the estimated global error 𝜖u,s is evaluated
as follows

𝜖u,s =

[∑
E∈Ωh

(𝜖u,s||E)2

]1∕2

. (23)

The accuracy of the reconstructed displacement gradient and the error estimator are verified through various numerical
examples.61

For the computation of the reconstructed displacement gradient at a given node xi = [xi, yi]T , a patch of elements
(wi), which shares the node xi, is first defined. Within the patch (wi), the reconstructed displacement gradient is
given as

Ghuh(xi) = ∇pi(xi) =
⎡⎢⎢⎢⎣
𝜕pi

x
𝜕x
(xi)

𝜕pi
x

𝜕y
(xi)

𝜕pi
y

𝜕x
(xi)

𝜕pi
y

𝜕y
(xi)

⎤⎥⎥⎥⎦ , (24)

where pi = [pi
x, pi

y]T is a quadratic vector field within wi. The components of pi are computed by minimizing the difference
between a function (𝜉x, 𝜉y) and the VEM solutions (uh, x, uh, y) along the x- and y-directions, that is,

pi
x = argmin

𝜉∈𝒫2(wi)

nw∑
j=1

[𝜉x(xj) − uh,x(xj)]2, (25)

and

pi
y = argmin

𝜉∈𝒫2(wi)

nw∑
j=1

[𝜉y(xj) − uh,y(xj)]2, (26)

where 𝜉x and 𝜉y are in the set of second degree polynomial functions [𝒫2(wi)], and nw is the total number of nodes in wi.
In this study, Equations (25) and (26) are computed using the least square method.

To check the robustness and accuracy of the error estimator during the mesh morphogenesis, the estimated error 𝜖u, s
is compared with two error measures, that is, original errors 𝜖u,s, and recovered errors 𝜖ũ,s, as discussed in Section 5.1.
The recovered error is the skeletal error of the reconstructed displacement gradient, defined as

𝜖ũ,s =

[∑
E∈Ωh

hE
∑
e∈𝜕E

∫e
(∇u ⋅ 𝝉e − Ghuh ⋅ 𝝉e) ⋅ (∇u ⋅ 𝝉e − Ghuh ⋅ 𝝉e)de

]1∕2

. (27)

4.2 Topology-based data structure (TopS)

The adaptive mesh morphogenesis procedure demands an efficient data structure in order to handle adjacent information
during the mesh modification events, that is, mesh clustering, node removal, treating skinny elements, and others. In
this study, the topology-based data structure, named TopS,62,63 is utilized to retrieve adjacency information. TopS consists
of topological entities, for example, node, element, vertex, edge, and facet. The data structure explicitly represents nodes
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F I G U R E 7 Schematics of topological entities for 2D polygonal
elements [Colour figure can be viewed at wileyonlinelibrary.com]

and elements, while vertices, edges, and facets are implicitly represented. One advantage of TopS is that all the adjacent
entities can be accessed from any given entity. For example, for a given node, one can identify all adjacent nodes, elements,
and edges. As shown in Figure 7, the node N4 has three types of adjacent entities, that is, nodes (N1, N2, N3), elements
(E1, E2, E3), and edges (e1, e2, e3). Note that edges are identical to facets in 2D while nodes and vertices are equivalent
for linear elements. Additionally, a client-server approach is used to consistently maintain the data structure when mesh
modification events occur.64

4.3 Summary

The VEM analysis with the adaptive morphogenesis is outlined in Algorithm 1. Initially, one provides input data of
a boundary value problem such as nodes, elements, material properties, and boundary conditions. Next, a system of
equations is solved, and then the solution corresponds to a displacement field. Based on the evaluated displacement field,
gradient errors of elements are estimated using the a posteriori estimator. Then, the adaptive morphogenesis is performed
based on the estimated element errors. This process is recursively performed until the number of nodes (ni) at the ith mesh
generation is smaller than a given value (nmin). When ni <nmin, a generated mesh is considered as sufficiently coarse, and
then one terminates the analysis.

Algorithm 1. VEM analysis with the adaptive mesh morphogenesis

1: Input initial mesh, material properties and boundary conditions
2: Set nmin // nmin: Minimum number of nodes for the generated meshes
3: i = 0, ni = n0 // n0: Number of nodes at the initial mesh discretization
4: while (ni > nmin)
5: Solve a system of equations
6: Evaluate a posteriori gradient errors of each element (𝜖u,s||E)
7: Perform the adaptive morphogenesis
8: i = i+ 1
9: Update ni // ni: Number of nodes at the ith generation
10: end while

The detailed procedure of the adaptive morphogenesis is described in Algorithm 2. The morphogenesis consists of
four steps: (1) searching target elements, (2) mesh clustering, (3) edge straightening, (4) removing skinny elements, as
discussed in Section 3.1. After finishing the morphogenesis, the clustering threshold 𝜃clst is adaptively updated according
to the change of the number of nodes during the adaptive morphogenesis (see Algorithm 2). If the relative difference
between the numbers of nodes of the ith and i+ 1th mesh generations is less than 0.5%, 𝜃clst increases to accelerate the
mesh coarsening process. On the other hand, if the relative difference is larger than 5%, the value of 𝜃clst is initialized to
prevent excessive coarsening over the whole domain. In this study, the initial value of the clustering threshold is set as
0.001. When the relative difference is less than 0.5%, the clustering threshold is enlarged with the increment of 0.001.
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Algorithm 2. Procedure of adaptive mesh morphogenesis

1: Input: Mesh at the ith generation, 𝜖u,s||E, 𝜃clst, ni
2: Search target elements using the clustering criterion, i.e., 𝜖u,s||E ≤ 𝜃clst max(𝜖u,s||E)
3: Cluster the targeted elements together
4: Perform the edge straightening
5: Remove skinny elements
6: Update the clustering threshold
6-1: Evaluate ni+ 1
6-2: if ((ni −ni+ 1)/ni+ 1 < 0.005) then
6-3: Increase the clustering threshold 𝜃clst
6-4: else if ((ni −ni+ 1)/ni+ 1 > 0.05) then
6-5: Initialize the clustering threshold 𝜃clst
6-6: else; continue; end if
7: Output: Mesh at the i+1th generation, 𝜃clst, ni+ 1

During the morphogenesis, the target elements for clustering are identified on the basis of the a posteriori error esti-
mation, as explained in Section 4.1. The detailed computational procedure for the error estimator is shown in Algorithm
3. First, a patch of elements (wi) is defined for a given node (xi). Then, the reconstructed displacement field (pi = [pi

x, pi
y]T)

is established as a linear combination of basis functions, given as

pi
x = mw(x)qw,x and pi

y = mw(x)qw,y, (28)

where qw,x = [qw,x
1 , · · · , qw,x

6 ]T and qw,y = [qw,y
1 , · · · , qw,y

6 ]T are the vectors containing the coefficients. The basis functions
(mw) of pi are assumed as second order polynomials, that is,

mw(x) =

[
1
(

x − xw

hw

)(
y − yw

hw

)(
(x − xw)(y − yw)

hw
2

)(
x − xw

hw

)2(y − yw

hw

)2
]
, (29)

where xw = [xw, yw]T is the centroid of patch (wi) and hw is a characteristic size of the patch (wi). By considering nodes
(x1, x2 · · · xnw) in the patch (wi), one can rewrite Equation (29) as a matrix form, which is given by,

P =

⎡⎢⎢⎢⎢⎢⎣

mw(x1)
mw(x2)

⋮

mw(xnw)

⎤⎥⎥⎥⎥⎥⎦
.

Then, one finds the coefficients of basis functions (qw, x, qw, y) through minimizing the residuals rx and ry which are
expressed as

rx = Pqw,x − bw,x and ry = Pqw,y − bw,y, (31)

where bw,x = [uh,x(x1), · · · ,uh,x(xnw)]
T and bw,y = [uh,y(x1), · · · ,uh,y(xnw)]

T are vectors containing nodal displacements of
VEM solution. To solve the minimization problem, one sets the normal equations up for qw, x and qw, y as follows,

(PTP)qw,x = PTbw,x and (PTP)qw,y = PTbw,y. (32)

After computing the vectors qw, x and qw, y, the quadratic functions pi
x and pi

y can be evaluated using Equation (28).
Finally, the nodal reconstructed displacement gradients Ghuh(xi) are obtained according to Equation (24).
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Algorithm 3. Element error evaluation using the a posteriori error estimator

1: Input: uh
2: Define a patch of elements (wi) for each node (xi)
3: Compute a quadratic vector field pi for each node
3-1: Set the basis functions and compute P, bw,x, and bw,y

3-2: Evaluate the coefficient vectors, i.e., qw,x and qw,y

3-3: Obtain the quadratic functions pi
x and pi

y
4: Evaluate nodal reconstructed gradients Ghuh(xi)
5: Compute Ghuh on mesh skeleton
6: Compute the estimated element errors, 𝜖u,s||E
7: Output: 𝜖u,s||E

5 NUMERICAL EXAMPLES

To verify the robustness and effectiveness of the adaptive morphogenesis, three numerical examples are illustrated. In
the first example, one assumes an exact displacement field which includes sharp gradients. Next, two boundary value
problems are solved, which have strong gradient and singularity, respectively. Note that plane strain condition is assumed,
and consistent units are utilized for all the numerical examples.

5.1 Prescribed displacement in an octagonal domain

In the octagonal domain illustrated in Figure 8A, an exact displacement field is assumed as

ux = 16x(1 − x)y(1 − y)atan
(

25(x − 4y + 2)
2

)
, (33)

uy = 6xy, (34)

where ux and uy are the displacement magnitudes in the x-y Cartesian coordinate system, respectively. Due to the arctan-
gent term in Equation (33), the domain has a sharp gradient along the line x − 4y+ 2 = 0, that is, the red line in Figure 8A.
The elastic modulus and Poisson’s ratios are selected as 1 and 0.3, respectively. In the numerical simulation, body forces,
which satisfy equilibrium condition with the linear elastic assumption, are calculated and applied on the domain, while
the assumed displacements are prescribed on the domain boundary. In this example, two types of discretizations are uti-
lized, that is, centroid Voronoi tessellation (CVT) mesh, and structured mesh with quadrilateral and triangular elements,
as shown in Figures 8B,C, respectively.

To check the accuracy of the a posteriori error estimator 𝜖u, s, one compares it with two exact error measures, that is,
original error 𝜖u, s, and recovered error 𝜖ũ, s for uniform CVT and structured meshes. The number of nodes for each CVT
mesh is 42, 255, 1001, 1997, 4981, 9932, 19 927, 49 813, and 79 714, while the number of nodes for each structured mesh is
37, 129, 481, 1057, 2092, 5212, 10 261, 19 137, and 52 117. Figure 9 illustrates that the reconstructed displacement gradient
provides a higher rate of convergence than the gradient of the VEM solution, and the estimated error well agrees with
the original error as the meshes are refined. Thus, one can say that the error estimator is accurate because the estimated
error reproduces the original error.

Next, the validity of the error estimator is tested during the morphogenesis procedure on the CVT and structured
meshes. At the initial discretization, the uniform CVT and structured meshes are utilized with the numbers of nodes are
49 813 and 52 117, respectively. The error estimator provides similar gradient errors to the original errors during the mesh
generation, as shown in Figure 10. Although the estimated error is deviated from the original errors after certain mesh
generation, the estimated error evolution is similar to that of the original error. Additionally, the errors of the uniform
meshes are also plotted in Figure 10 for the comparison purpose. The computational results with the morphogenesis
provide smaller error than the results from the uniform mesh. For example, to reach the estimated error level of 0.4, the
minimum number of nodes for the uniform CVT mesh is approximately 31 800, while that for the morphogenesis is about
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7800. In summary, the error estimator provides reasonable accuracy on the error evaluation and can be utilized on the
proposed adaptive morphogenesis scheme. Furthermore, the morphogenesis scheme can effectively reduce the number
of degrees of freedom in this example.

To demonstrate the change of discretization during the morphogenesis, one utilizes a uniform CVT mesh with 9932
nodes and a structured mesh with 10 261 nodes at the initial discretization. The generated meshes and their estimated
element errors are illustrated in Figures 11 and 12. On the region with the sharp gradient, that is, along the line of
x − 4y+ 2 = 0, the initial fine elements are maintained because of relatively large errors. Coarse elements are generated
on the upper and lower parts of the region where relatively smooth gradient is expected. Although some of clustered
elements have relatively larger errors than initial fine elements, the global error of generated meshes is lower than that
of the uniform meshes, as discussed previously. In summary, the error estimator accurately pinpoints the problematic
regions, and the adaptive morphogenesis scheme generates coarse meshes when and where they are needed based on the
estimated errors.

5.2 Short cantilever

A short cantilever example65,66 is employed, which has strong displacement gradients on the corners of the support region.
The geometry and boundary conditions of the cantilever are illustrated in Figure 13A. The domain is fixed on the left edge
and a distributed load of q = 1 is applied along the top surface of the domain. The elastic modulus and Poisson’s ratio are
1 and 0.3, respectively. In this numerical example, two types of discretizations are utilized, that is, CVT and rectangular
meshes, as shown in Figures 13B,C.

To demonstrate the effectiveness of the proposed scheme, the computational results with the adaptive morphogenesis
are compared with the results obtained from the uniform meshes. For the adaptive morphogenesis scheme, the numbers
of nodes are 9983 and 10 201 for the CVT and rectangular meshes, respectively, at the initial discretization. Five uni-
form meshes are utilized for each discretization type. The number of nodes for each CVT mesh is 501, 1024, 2025, 5041,
and 10 201, while the number of nodes for each rectangular mesh is 501, 996, 1996, 4994, and 9983. Figure 14 demon-
strates that the computational results with the adaptive morphogenesis provide lower errors than the results with the
uniform meshes for both CVT and rectangular mesh types. Additionally, during the adaptive morphogenesis procedure,
the effects of the edge straightening (ES) on the estimated global error are investigated. When the edge straightening
scheme is not employed, the estimated global error rapidly increases, and becomes higher than the error obtained from
the uniform meshes. More advanced stabilization schemes67 do not improve the trend of error evolution. For example,
even if a matrix-based stabilization scheme43 is used, the error evolution trend does not change in this study. Basically, the
edge straightening in the morphogenesis improves the element quality, which reduces the estimated errors of coarsened
elements.

The mesh generation and the estimated element errors during the morphogenesis are illustrated for the CVT mesh,
rectangular mesh, and rectangular mesh without using ES, as shown in Figures 15, 16, and 17, respectively. For each
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F I G U R E 8 A, Geometry of the octagon domain. B, An example of the CVT mesh. C, An example of the structured mesh with
quadrilateral and triangular elements [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 10 Global error evolution of the generated meshes in comparisons with those of uniform meshes: A, CVT meshes and B,
structured meshes [Colour figure can be viewed at wileyonlinelibrary.com]

figure, three representative meshes are selected. During the morphogenesis, fine elements are remained on the top- and
bottom-left corners which have strong gradients. Coarse elements are generated on the top- and bottom-right corners,
and the center of the domain which have relatively lower errors than other regions. When the edge straightening scheme
is not applied for the initial rectangular mesh (see Figure 17), all edges of the generated meshes only have horizontal or
vertical directions. In addition, for the rectangular meshes, the mesh statistic and the global estimated errors during the
adaptive morphogenesis are summarized in Table 1. For example, at the 12th morphogenesis, the number of nodes with
ES decreases by 55%, while the global estimated error slightly increases by 7.4% compared with the initial discretization.
The number of elements with ES is similar to the number of elements without ES, and the global errors are also similar to
each other up to the 50th generation. However, the number of nodes without ES is larger than that with ES, which leads
to the increase of the degrees of freedom.
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F I G U R E 11 Generated meshes and element errors using the adaptive morphogenesis on the CVT mesh. The number of nodes of each
figure is A, 5189, B, 3423, and C, 2093 [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 12 Generated meshes and element errors using the adaptive morphogenesis on the structured mesh. The number of nodes of
each figure is A, 5038, B, 3428, and C, 2087 [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 A, Geometry and boundary conditions of the short cantilever. B, An example of the CVT mesh. C, An example of the
rectangular mesh
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F I G U R E 14 Effects of the edge straightening on the global error during the morphogenesis: A, CVT mesh and B, rectangular mesh
[Colour figure can be viewed at wileyonlinelibrary.com]

5.3 L-shaped beam

An L-shaped beam has a nonconvex corner which leads to a singularity in the displacement gradients. In the L-shaped
beam, a uniform shear traction of 𝜏 = 1 is applied on the right edge while the displacement is fixed on the top edge
(see Figure 18). The elastic modulus is 10, and the Poisson’s ratio is 0.35. Two types of discretizations, that is, CVT and
rectangular meshes, are utilized, as in the previous examples. For initial meshes to perform the adaptive morphogenesis,
two CVT meshes with 19 976 and 84 704 nodes, and two rectangular meshes with 17 176 and 77 441 nodes are employed.

The estimated errors obtained from the morphogenesis are compared with those from the uniform meshes. Figure 19
shows that the results from the morphogenesis have lower values of the global errors than the ones of uniform mesh.
Although the morphogenesis starts from the different numbers of nodes at the initial discretization, the relation between
the global error and the number of nodes becomes similar when the number of nodes is smaller than a certain level.
In addition, the zooms of the CVT and rectangular meshes are illustrated according to the morphogenesis, as shown in
Figures 20 and 21, respectively. On the reentrant corner which has singularity [Figures 20B and 21B], the initial fine ele-
ments are remained during the morphogenesis. Coarse elements are generated on the left- and right-bottom corners, for
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F I G U R E 15 The mesh generation and estimated element errors during the morphogenesis on the CVT mesh when the edge
straightening scheme is applied: A, fourth generation, B, 12th generation, and C, 50th generation [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 16 The mesh generation and estimated element errors during the morphogenesis on the rectangular mesh when the edge
straightening scheme is applied: A, fourth generation, B, 12th generation, and C, 50th generation [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 17 The mesh
generation and estimated
element errors during the
morphogenesis on the
rectangular mesh when the edge
straightening scheme is not
applied: A, fourth generation, B,
12th generation, and C, 50th
generation [Colour figure can be
viewed at
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T A B L E 1 Mesh statistics and the global estimated errors according to the adaptive morphogenesis for the
rectangular meshes

Use of edge straightening Nonuse of edge straightening
Initial
mesh

fourth
gen.

12th
gen.

50th
gen.

fourth
gen.

12th
gen.

50th
gen.

Number of elements 10 000 7274 3541 1674 7272 3546 1625

Number of nodes 10 201 7868 4568 2544 8033 4910 3546

Estimated error, 𝜖u,s 0.095 0.097 0.102 0.119 0.098 0.103 0.127
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F I G U R E 18 Domain description of the L-shaped beam
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F I G U R E 19 Global estimated errors of the generated
meshes in comparisons with those of uniform meshes: A, CVT
mesh and B, rectangular mesh [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 20 Zooms of the
generated mesh according to the
morphogenesis on the CVT mesh: A,
top-left corner, B, reentrant corner, C,
bottom-left corner, and D, bottom-right
corner [Colour figure can be viewed at
wileyonlinelibrary.com]

example, Figures 20C,D and 21C,D, where relatively low element errors are expected. In summary, the adaptive morpho-
genesis effectively reduces the number of nodes, while maintaining fine elements on the problematic regions to compute
an accurate solution.

6 CONCLUDING REMARKS AND EXTENSION

To investigate mesh coarsening for arbitrary unstructured meshes, the present study employs a VEM-based adap-
tive mesh morphogenesis strategy. Guided by an a posteriori error estimator, the elements which have low errors are
searched, and merged with those adjacent elements. The main contributions of the present article are summarized
as follows:
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F I G U R E 21 Zooms of the
generated mesh according to the
morphogenesis on the rectangular
mesh: A, top-left corner, B,
reentrant corner, C, bottom-left
corner, and D, bottom-right corner
[Colour figure can be viewed at
wileyonlinelibrary.com]
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• The adaptive mesh morphogenesis strategy consists of four steps: (1) identifying elements for coarsening, (2) clustering
target elements, (3) edge straightening, and (4) eliminating skinny elements. One should note that the mesh morpho-
genesis strategy is not limited to the size or shape of the elements. In other words, skew and nonconvex elements can
be utilized to represent mesh coarsening in the computational framework.

• To search elements which need coarsening, normalized errors of elements are evaluated using an a posteriori error
estimator,61 which is associated with displacement gradient errors based on the H1-type skeletal norm. When the nor-
malized errors are lower than a given threshold, the corresponding elements are classified as target elements for mesh
clustering.

http://wileyonlinelibrary.com
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• The edge straightening scheme is introduced to improve the mesh quality of the clustered elements. When the edge
straightening scheme is not applied during the adaptive morphogenesis procedure, the global errors of the generated
meshes increase rapidly with coarsening. On the other hand, when the edge straightening scheme is employed, the
meshes are generated with lower errors than those of uniform meshes.

• To demonstrate the proof-of-concept for the adaptive morphogenesis, element errors are arbitrarily defined within
a rounded rectangular domain having “VEM” shaped holes. The computational results illustrate that the proposed
scheme effectively coarsen unstructured meshes while maintaining fine meshes on high error regions.

• To verify the proposed computational framework, three numerical examples are simulated, which include sharp gradi-
ents or singularity on the displacement fields. The computational results demonstrate that the adaptive morphogenesis
framework provides lower global errors than the results with uniform meshes. The problematic regions of the domain
are captured by using the error estimator. Thus, fine elements are used in the problematic regions, while other regions
are adaptively coarsened based on the estimated errors.

As indicated before, the morphogenesis strategy can be utilized with any feasible polygonal discretization in conjunc-
tion with reliable error estimators. Besides VEM, these methods include finite elements (polygonal based), MFD, DG,
HDG, and HHO. Although the present study focuses on VEM, we hope that the morphogenesis strategy will be explored
with different numerical methods such as the aforementioned ones. Besides mesh coarsening, the morphogenesis strat-
egy can be explored in conjunction with mesh refinement, and also coupled with both coarsening and refinement. We
hope that these schemes will be extended to three-dimensional problems. Finally, these ideas are promising and provide
the basis for novel adaptive schemes in computational mechanics.
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