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S1 Constructing directional tensile and shear moduli plots26

Hooke’s Law is stated as σij = Cijk`εk` or εij = Zijk`σk`, i, j, k, ` = 1, 2, 3, with Cauchy stress, σij ,27

linearized strain, εk`, homogenized stiffness elasticity tensor, Cijk`, and homogenized compliance elasticity28

tensor, Zijk` = C−1ijk`. To gain insight about the stiffness of our microstructural-materials, we define two29

mechanical constants as follows: 1) the tensile modulus is obtained by imposing σ11 6= 0, σij = 0,∀ij 6= 11 and30

using Hooke’s Law to compute E11 = σ11/ε11 = 1/Z1111; and 2) the shear modulus is obtained by imposing31

σ12 6= 0, σij = 0,∀ij 6= 12, ji 6= 21 and using Hooke’s Law to compute G12 = σ12/ (2ε12) = 1/ (2Z1212).32

These mechanical constants indicate the tensile stiffness of the microstructural-material in the x1 direction33

and the shear stiffness of the microstructural-material in the x1 − x2 plane, respectively, with respect to a34

given reference (unprime) frame.35

Fig. S1. Frame rotation conventions. (A) Rotated (prime) frame initially aligned with reference (unprime)
frame. (B) Rotation about the x′3 axis by α. (C) Rotation about the x′2 axis by β. (D) Rotation about the x′1 axis
by γ.

To understand how these constants vary for different loading directions, we use tensor transformation36

laws to obtain the compliance elasticity tensor, Z ′ijk`, in a rotated (prime) frame. Let Aij be a direction37

cosine matrix that transforms vectors from the reference to the rotated frame via a general rotation, i.e.,38

x′i = Aijxj . To construct Aij , consider that the rotated frame is originally oriented with the reference frame39

(Fig. S1A), and orient it by first rotating about the x′3 axis by α, then about the x′2 axis by β, and finally40

about the x′1 axis by γ as illustrated in Fig. S1B-D. These rotations can be expressed in terms of proper41

orthogonal matrices as follows:42

R1 (γ) =

1 0 0
0 cγ −sγ
0 sγ cγ

 , R2 (β) =

 cβ 0 sβ
0 1 0
−sβ 0 cβ

 , R3 (α) =

cα −sα 0
sα cα 0
0 0 1

 (1)

where s(·) and c(·) denote the sine and cosine of angle (·), respectively.43

Let x be the position vector of the x′1 axis in the reference frame after rotating (see Fig. S1D). Then the44

coordinate transformation can be expressed as x = R3 (α)RT2 (β)R1 (γ)x′1, where we consider the transpose45

of R2 (β) since β is defined as a negative rotation (see Fig. S1C). We invert this coordinate transformation46

to find that:47

Aij = RT1 (γ)R2 (β)RT3 (α) =

 cβcα cβsα sβ
−sγsβcα − cγsα −sαsγsβ + cγcα sγcβ
−cαcγsβ + sαsγ −sαcγsβ − sγcα cγcβ

 (2)

Recall that if vectors transform as x′i = Aijxj , then we know that second and fourth-order tensors48

transform as ε′ij = AikAj`εk` and Z ′ijk` = AimAjnAkoA`pZmnop, respectively (similar expressions hold for49

transforming stress, σij , and the stiffness elasticity tensor, Cijk`). For convenience of computation, we50

convert to matrix (Voigt) notation by defining:51



{σ} =



σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = σ23

σ5 = σ31

σ6 = σ12


, {ε} =



ε1 = ε11
ε2 = ε22
ε3 = ε33
ε4 = 2ε23
ε5 = 2ε31
ε6 = 2ε12


, [D] =

[
Cppqq Cpprs
Cpprs Cpqrs

]
, and [S] =

[
Zppqq 2Zpprs
2Zpprs 4Zpqrs

]
(3)

From the stress and strain transformation laws in tensor notation, we can construct matrices, [M ] and [N ]52

that perform the transformations in matrix notation, where:53

[M ] =


A2

11 A2
12 A2

13 2A12A13 2A13A11 2A11A12

A2
21 A2

22 A2
23 2A22A23 2A23A21 2A21A22

A2
31 A2

32 A2
33 2A32A33 2A33A31 2A31A32

A21A31 A22A32 A23A33 A22A33+A23A32 A21A33+A23A31 A22A31+A21A32

A31A11 A32A12 A33A13 A12A33+A13A32 A13A31+A11A33 A11A32+A12A31

A11A21 A12A22 A13A23 A12A23+A13A22 A13A21+A11A23 A11A22+A12A21

 (4)

and54

[N ] =


A2

11 A2
12 A2

13 A12A13 A13A11 A11A12

A2
21 A2

22 A2
23 A22A23 A23A21 A21A22

A2
31 A2

32 A2
33 A32A33 A33A31 A31A32

2A21A31 2A22A32 2A23A33 A22A33+A23A32 A21A33+A23A31 A22A31+A21A32

2A31A11 2A32A12 2A33A13 A12A33+A13A32 A13A31+A11A33 A11A32+A12A31

2A11A21 2A12A22 2A13A23 A12A23+A13A22 A13A21+A11A23 A11A22+A12A21

 (5)

Then, substituting Hooke’s Law, {ε} = [S] {σ}, and the stress transformation law, {σ} = [M ]
−1 {σ}′, into55

the strain transformation law, {ε}′ = [N ] {ε}, we find that [S]
′

= [N ] [S] [M ]
−1

= [N ] [S] [N ]
T

, where the56

last expression comes from the fact that Aij = ATij since it is a product of proper orthogonal matrices. Now57

we can compute the tensile and shear moduli, E′11 = 1/S′11 and G′12 = 1/S′66, for any arbitrary orientation58

of the rotated coordinate frame by α, β, and γ. The above derivations are taken from Auld, 1973 (77) and59

Turley and Sines, 1971 (76).60

Fig. S2. Directional tensile and shear moduli plots. (A) Truncated octahedron unit cell geometry and
corresponding (B) directional tensile moduli, (C) directional shear moduli for various γ rotations of the rotated
frame, and (D) enveloped directional shear moduli for γ = 0, π/16, . . . , π.

To visualize the directional tensile and shear moduli of a given microstructural-material, we generate a61

3D surface plot where, for all possible rotations of the prime coordinate frame, a point is plotted along the62

x vector, which locates the rotated frame with respect to the reference frame, with radial coordinate equal63

to E′11 or G′12. It is noted that there is only one way to represent the directional tensile modulus (with64

the x′1 axis oriented in the radial direction of the reference frame), but there are infinite ways to represent65

the directional shear modulus depending on the orientation of the x′2 and x′3 axes about the x′1 axis. An66

illustrative example is provided in Fig. S2 for a periodic material composed of a truncated octahedron unit67



cell. Unless otherwise noted, the shear modulus plots reported in the main text represent an envelope of68

critical orientations of shear (γ = 0 and γ = π/2 for the cubic materials considered here).69

S2 Continuous multi-microstructure-embedding70

The multi-material slicing and multi-microstructure-embedding scheme described in the main text is sum-71

marized in the flowchart in Fig. S3.72

To complete the example shown in Fig. 1 and 3 of the main text, we show macro-slices, micro-slices,73

embedded-slices, and the macro-to-micro mapping used for the cantilever beam designed for two octahedron74

unit cells in Fig. S4A and for a face-x and center-x unit cell in Fig. S4B. Again, notice the smooth and75

continuous connectivity in the embedded-slices when considering the functionally graded structure.76

Considering the two-microstructural-material beam composed of simple cubic and truncated octahedron77

unit cells (refer to Fig. 1B, 2B, and 3 of the main text), we generate the functionally-graded tet mesh using78

R = 0, 0.010, 0.025, 0.050, 0.100, and 0.200 to demonstrate how the length scale of the transition region,79

connectivity of the microstructures, and objective function value are affected by the filter radius, R, used in80

functional grading. To ensure that a sufficient number of tet elements are encompassed by the radius during81

filtering, we refine the tet mesh near the microstructural-material interfaces for the cases of R ≤ 0.050.82

Note that R = 0 corresponds to the abrupt transition shown in Fig. 3C of the main text and R = 0.10083

corresponds to the functionally-graded transition shown in Fig. 3D of the main text.84

To achieve a well-connected interface between the microstructural-materials, the transition region must85

have a finite length. A rule of thumb is that the transition region should be at least as long as the edge86

length of the unit cells. In the printed part shown Fig. 1B, the edge length of the unit cells is 1.5 mm, which87

corresponds to an edgelength of 0.030 relative to the domain dimensions used during design and provided88

in Fig. 1 (the part was scaled up for manufacturing). When the filter radius is larger than 0.030 (i.e.,89

R = 0.050, 0.100, 0.200), the microstructures are well-connected at the interfaces. When the filter radius is90

smaller than 0.030 (i.e., R = 0.010, 0.0250), we still achieve relatively good connectivity, but the interface91

may not be as robust. The objective function values, f , provided in Fig. S5 are normalized to that of the case92

with R = 0, which has objective function value, f0. The normalized objective function values, f/f0, indicate93

that the length scale of the transition regions does not significantly affect the global elastic properties of the94

structure.95

S3 Effect of porous, anisotropic microstructural-materials in topol-96

ogy optimization97

The normalized objective function values, f/f0, in Fig. 4B-G of the main text, indicate how efficient each98

design is relative to the reference case in Fig. 4A (in terms of stiffness). The porous structures become more99

efficient as we increase the microstructural-material freedom (i.e., as the homogenized material properties100

of the available microstructural-materials become more diverse) because we are able to better represent101

the varying directions and magnitudes of the principal stresses. The beam in Fig. 4G, which has more102

microstructural-material freedom than the other multi-scale structures, is the most efficient, but still has103

much higher compliance than the solid, isotropic case because the design space is still limited by the available104

microstructural-materials. Moreover, using low volume fraction lattices as space filling structural elements105

forces material away from optimal regions and can lead to sub-optimal results. Although the solid, isotropic106

structure has superior stiffness, multi-scale structures tend to have increased buckling resistance (47) and107

can provide other biomimetic functionalities (e.g., buoyancy and impact resistance).108

S4 Effect of initial guess and continuation scheme on the material109

interpolation parameters110

The volume-constrained, compliance minimization problem in (1) is non-convex due to the material inter-111

polation functions that penalize intermediate densities and material mixing. The initial guess and other112



algorithmic parameters play a role in the local optimum found; however, the continuation scheme on p and113

γ described in the “Materials and methods” section helps bias the solution toward that of the convex one114

at the beginning of the optimization iterations (i.e., by starting with p = 1 and γ = 0 to recover the convex115

problem).116

To demonstrate the effectiveness of the continuation scheme in achieving a “good” local minimum, we117

re-run the 4-microstructural-material example from Fig. 4F considering four different initial guesses. In118

each case, one of the four candidate microstructural-materials dominates in the initial guess. Specifically, in119

each case, the initial densities of one of the microstructural-materials are specified at 0.85v and the other120

three microstructural-materials’ initial densities are specified at 0.05v. The results are provided in Fig. S6,121

where three of the four initial guesses (Fig. S6B-D) lead to results very similar to the one reported in the122

paper (repeated in Fig. S6A), which used a uniform initial guess. One of the four initial guesses arrives at a123

distinctly different local minimum (Fig. S6E) with different topology and a small region of microstructure 8124

arising in the design. The objective function values of all four designs (normalized to that of the structure in125

Fig. 4A) are very similar. In general, we expect to obtain a local minimum, and the initial guess influences126

which local minimum we find; however, typically the local minima have similar elastic responses.127

S5 Canopy and Eiffel tower-inspired structures128

The candidate microstructural-materials, design domains, and boundary conditions for the canopy and Eiffel129

tower-inspired structures are provided in Fig. S7.130

S6 Manufactured parts131

In Table S1, we report the dimensions of a bounding box enclosing the computer model (after scaling for132

printing) and the m-SLA physical model for each design reported in the paper. In general, the overall133

dimensions of the manufactured parts are within 1 mm of the expected dimensions.134

The support structures needed for printing the canopy structure, as designed in Rhino®, are shown in135

Fig. S8A. To save material, the support structures were embedded with octahedron unit cells with 2 mm136

edge length and 0.44 mm bar diameter. One half of the canopy structure before removing the support137

structure is shown on the build plate in Fig. S8B. The support structures were not fully attached the the138

canopy, making it relatively easy to remove them without damaging the delicate microstructures. In Fig.139

S8C, the canopy is shown before gluing the pieces together.140

In Fig. S9, two cross-sections of the Eiffel Tower-inspired structure highlight some interesting macrostruc-141

tural details: macroscale voids are present on the interior of the dome structure at floor 2 and the supports142

at the base branch several times to provide relatively uniform support at the first floor.143

Table S1: Bounding box dimensions of computer and physical models for each design (cm)

computer model physical model
Cantilever (octahedron and octahedron) 4.84× 4.96× 14.52 4.80× 5.05× 14.45
Cantilever (simple cubic and truncated octahedron) 4.84× 4.95× 14.52 4.80× 4.95× 14.45
Cantilever (face-x and center-x) 4.84× 5.07× 14.52 4.75× 5.05× 14.45
Canopy 11.72× 11.72× 14.65 11.60× 11.60× 14.40
Eiffel tower 8.09× 8.09× 26.30 8.10× 8.20× 25.95

S7 Movie captions144

Movie S1. Multiscale design and manufacturing. An animation of the design iterations, the post-145

processing needed to generate the transition regions, and the final manufactured part for the canopy structure.146

147

Movie S2. Slicing and multi-microstructure-embedding. An animation of macro-slices, micro-slices,148

and embedded slices over the height of the canopy structure.149



150

Movie S3. Microstructural-material property transitions. Animations showing how the unit cell151

geometries and associated material properties change over the transition regions for the two-microstructural-152

material cantilever beams.153



Fig. S3. Flowchart summarizing the overall process from design to manufacturing. On the left side, we
perform multi-material topology optimization, process the multi-material density data, and slice the macrostructure.
On the right side, we slice and tile the microstructures associated with the candidate microstructural-materials used
in topology optimization. Finally, we embed the micro-slices into the macro-slices and send the embedded-slices to
the 3D printer.



Fig. S4. Continuous multi-microstructure-embedding for two-microstructural-material cantilevers.
The cantilevers are composed of (A) two octahedron unit cells with different bar diameter and (B) a face-x and
a center-x unit cell. The transitional unit cells making up the macro-to-micro mapping in (A) are obtained by
interpolating the bar diameter. Those in (B) are obtained by composing the two unit cells into a set of hybrid unit
cells, where the face-x unit cell gradually disappears from one end and the center-x unit cell gradually disappears
from the other (with minimum bar diameter limited to 0.065 of the unit cell edge length for manufacturability). In
(A), 8 of the 14 transitional unit cells are shown and in (B), 8 of the 13 transitional unit cells are shown.



Fig. S5. Illustration of how the transition region length scale, microstructure connectivity, and ob-
jective function value are affected by the filter radius used in functional grading. The figure shows a
closeup of a portion of the functionally-graded tet mesh and associated macro-slices and embedded-slices for R = 0
(abrupt interfaces), R = 0.010, R = 0.025, R = 0.050, R = 0.100, and R = 0.200. The objective function values,
f/f0, which are normalized to that of the case with R = 0, indicate that the length scale of the transition regions
does not significantly affect the global elastic properties of the structure.



Fig. S6. Results considering different initial guesses for the example in Fig. 4F. (A) Uniform initial guess
used in Fig. 4F. For each case in (B - E), one microstructural-material dominates the initial guess with its densities
equal to 0.85v and all other microstructural-material densities equal to 0.05v. The schematic at the bottom indicates
the value of the design variables associated with each candidate material at the initial guess. Variable f0 refers to
the objective function value of the structure in Fig. 4A.



Fig. S7. Problem description for canopy and Eiffel Tower-inspired structures. (A) Candidate
microstructural-materials and associated normalized, directional tensile and shear moduli plots. (B) Domain and
boundary conditions for a hyperbolic paraboloid canopy structure subjected to a uniformly distributed, vertical load.
The canopy is a passive region occupied by microstructural-material 1, the red tube near the base is a passive region
occupied by solid, isotropic material 4, and the optimizable region can take microstructural-materials 2 and 3 with
volume fraction limited to v = 0.0096. (C) Domain and boundary conditions for an Eiffel Tower-inspired structure
subjected to uniformly-distributed, vertical loads at each floor, where the total force for floors 1, 2, 3, and the top
are 1, 0.766, 0.3, and 0.01, respectively. The optimizable region can take microstructural-materials 1, 2, and 3 with
volume fraction of bulk material limited to v = 0.008. The dimensions roughly mimic those of the Eiffel Tower (49).



Fig. S8. Manufacturing details for canopy structure. (A) Support structures required for printing the canopy
structure. (B) One half of the canopy structure before removing the support structure or removing it from the build
plate. (C) Canopy structure after removing the support and before gluing the pieces together. Photo Credit: Emily
D. Sanders, Georgia Institute of Technology.

Fig. S9. Additional details of Eiffel Tower-inspired structure. (A) Cross-section through floor 2; (B)
cross-section through base. Photo Credit: Emily D. Sanders, Georgia Institute of Technology.
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