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S1 Spinodal architected materials23

Spinodal decomposition [1] occurs when two phases spontaneously separate without nucleation of the system.24

Systems that allow spinodal-like phase separation exist in a local maximum energy state, and therefore,25

random fluctuations in the concentration of the two-phases reduce the free energy of the system causing the26

spontaneous separation. The spinodal separation of phases can be modeled by the Cahn–Hilliard equation27

[2, 3],28

∂c

∂t
= D∇2

(
c3 − c− ω∇2c

)
, (S1)

where c is the concentration of the two phases, D is a diffusion coefficient, and ω is related to the transition29

region between phases.30

S1.1 Definition of spinodal architected materials with tuned anisotropy31

Equation S1 is computationally expensive to solve and provides limited control over the spinodal decom-32

position phase separation; however, the phase field characterizing a spinodal phase decomposition of a33

homogeneous solution can be approximated by a Gaussian random field of the form,34

ϕ (x) =

√
2

N

N∑
i=1

cos (κni · x+ µi) , (S2)

as the number of waves, N , goes to infinity [4, 5]. Equation S2 is a more convenient representation of spinodal35

phase decomposition than Equation S1 and provides freedom to manipulate the form of the assciated phase36

field. Each wave in Equation S2 has the same amplitude and wavelength controlled by N and κ, respectively.37

The phase shift of wave i, µi ∈ U [0, 2π), is randomly sampled from a uniform distribution. When the38

number of wave vectors is large, ϕ (x) is statistically homogeneous. Furthermore, when the wave vectors,39

ni, i = 1, . . . , N , are randomly sampled from the unit sphere, i.e., ni ∈ U
[
S2

]
∀i, ϕ (x) is statistically40

isotropic; however, when the space of wave vectors is restricted, ϕ (x) becomes statistically anisotropic.41

The phase field, ϕ (x), has been interpreted as a mechanical (spinodal) architected material characterized42

by the level set function,43

χ (x) =


1 if ϕ (x) ≤ ϕcut (ρ)

0 otherwise,

(S3)

such that one phase of the spinodal phase decomposition is interpreted as solid material and the other as44
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Figure S1: Effect of spinodal feature size parameter, κ, and spinodal density, ρ, on the spinodal microstructure of the
isotropic spinodal class. By varying κ we can directly and arbitrarily tune the microstructure length scale, and by
varying ρ we can locally control the density of the architected material. Notice that for ρ = 0.25 the microstructure
starts to become disconnected.

void. The level set cutoff is defined as ϕcut (ρ) =
√
2erf−1 (2ρ− 1), where ρ controls the density of solid45

material [5]. In this context, κ in Equation S2 is interpreted as the spinodal feature size parameter that46

controls the length scale of the spinodal features. The influence of the spinodal feature size parameter, κ,47

and the spinodal density, ρ, are displayed in Figure S1 for an isotropic spinodal architected material.48

The associated spinodal architected materials considered here inherit the statistical properties of the phase49

field function, ϕ (x), and thus, by restricting the space of wave vectors, anisotropic mechanical properties50

of the spinodal architected material can be tuned [6, 7]. To define the four spinodal architected materials51

considered here, the space of wave vectors is restricted such that,52

ni ∈ U
[
{m ∈ S2 : (|m · e1| > cos θ1)⊕ (|m · e2| > cos θ2)⊕ (|m · e3| > cos θ3)}

]
, (S4)
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where e1, e2, and e3 form the Cartesian basis of R3 and θ1, θ2, θ3 ∈ [0, π/2] are cone angles [7]. The53

specific choice of isotropic, cubic, lamellar, and columnar spinodal architected materials used as candidates54

in topology optimization are defined by the following cone angles (refer to Figure 3 in the main text): 1) for55

isotropic, there is no restriction; 2) for cubic, θ1 = θ2 = θ3 = 30◦, 3) for lamellar, θ1 = 30◦, θ2 = θ3 = 0◦; and56

4) for columnar, θ1 = θ2 = 30◦, θ3 = 0◦. Note that to avoid sparse connections between the lamella of the57

lamellar spinodal microarchitectures, we restrict only 85% of the wave vectors to the cones defined above,58

and allow 15% to fall anywhere on the unit sphere. Although the cone angles for each case are fixed during59

the optimization, the four selected spinodal architected materials cover a significant portion of the design60

space since the topology optimization formulation can vary their porosity and orientation in 3D space.61

S1.2 Mechanical properties of candidate spinodal architected materials62

Mechanical properties of the spinodal architected materials are obtained using an educational Matlab imple-63

mentation [8] of computational homogenization [9] that outputs the homogenized stiffness elasticity tensor64

(in matrix notation) for a representative volume element of a given microstructural-material. The solid65

(base) material used has a Young’s modulus and Poisson’s ratio of 1 and 0.3, respectively. The compu-66

tational homogenization is performed considering the spinodal phase field (with κ = 100) and associated67

level set function defined on a unit cube, which is discretized into a 100× 100× 100 hexahedral (hex) finite68

element mesh. Due to statistical homogeneity, any region of the spinodal field behaves statistically the same69

as any other region [6]. As a result, it has been shown for isotropic spinodal architected materials that70

computational homogenization leads to almost identical mechanical properties for periodic and non-periodic71

realizations when N is large [5]. For practical reasons, the number of wave vectors used to approximate the72

spinodal phase field is limited here to a finite value, N = 1000, which limits the statistical homogeneity of73

the phase field. Thus, the homogenized mechanical properties for each class of spinodal architected materials74

are taken as the average of those obtained from 15 realizations of the phase field. The average and maximum75

relative standard deviation of these samples is 0.04 and 0.15, respectively. The low standard deviation shows76

the robustness of the spinodal mechanical properties and provides evidence that, given sufficient separation77

of scale, the spinodal mechanical properties are independent of the realization and are not negatively affected78

by the randomness of the spinodal features.79

S2 Spinodal topology optimization80

The classical homogenization-based topology optimization formulation proposed by Bendsoe and Kikuchi in81

1988 [10] is integrated with a recent multi-microstructural-material topology optimization formulation [11],82

5



to achieve a volume-constrained compliance minimization formulation that simultaneously determines the83

placement, orientation, and porosity of several classes of spinodal architected materials (spinodal topology84

optimization). The approach is summarized in Figure S2.85
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Figure S2: Overview of spinodal topology optimization.

S2.1 Problem setting and optimization formulation86

The spinodal topology optimization problem is stated as87

min
Z,ρ,α,β,γ

f = FTU (Z,ρ,α,β,γ)

s.t. gj =

∑
i∈Gj

∑
ℓ∈Ej

Aℓvℓi∑
ℓ∈Ej

Aℓ
− vj ≤ 0, j = 1, . . . ,K

with K (Z,ρ,α,β,γ)U (Z,ρ,α,β,γ) = F.

(S5)

In Equation S5, the objective function, f , is structural compliance and the constraint function, gj , enforces88

volume fraction limit, vj , for constraints j = 1, . . . ,K. Five sets of design variables are defined at the89
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centroids of Ne elements, {Ωℓ}N
e

ℓ=1, used to discretize the design domain, Ω. The spinodal selection design90

variable field, Z = {zℓ1, . . . , zℓm}Ne

ℓ=1, controls the presence or absence of each of the i = 1, . . . ,m candidate91

spinodal architected materials at each of the ℓ = 1, . . . , Ne elements, where component zℓi ∈ [0, 1]; the92

spinodal density design variable field, ρ = {ρℓ}N
e

ℓ=1, controls the local solid volume fraction of the spinodal93

architected material at each of the ℓ = 1, . . . , Ne elements, where component ρℓ ∈ [ρ, ρ] and 0 ≤ ρ, ρ ≤94

1 are selected based on manufacturing requirements; and the spinodal orientation design variable fields,95

α = {αℓ}N
e

ℓ=1, β = {βℓ}N
e

ℓ=1, and γ = {γℓ}N
e

ℓ=1, control the rotation of the spinodal architected materials at96

each of the ℓ = 1, . . . , Ne elements about the x3, x2, and x1 axes of a reference frame, respectively, where97

components αℓ, βℓ, γℓ ∈ [−π, π]. Note that the orientation design variables, α, β, and γ, are defined using98

modular arithmetic with a period of 2π. As a result, the domain of these design variables is topologically99

equivalent to a circle, which allows the angles to traverse directly from π to −π.100

To enforce well-posedness of the problem and a minimum length scale on the design, the elemental101

spinodal field, Y = {yℓ1, . . . , yℓm}Ne

ℓ=1, is obtained as yi = Pzi, where yi and zi are the ith column of Y and102

Z, respectively, and P is a regularization map (density filter [12, 13]) with coefficients103

Pij =
hijAj∑Ne

k=1 hikAk

, hij = max [0, (R− ||xi − xj ||2)q] . (S6)

In Equation S6, ||xi − xj ||2 is the Euclidean norm between the centroids of elements i and j, R is the filter104

radius, and q defines the order of the filter [14] (e.g., linear filter when q = 1). Additionally, to penalize105

intermediate values in spinodal architected material selection, a SIMP interpolation [15, 16] is coupled with106

a Heaviside projection [17, 18], Ỹ = {ỹℓ1, . . . , ỹℓm}Ne

ℓ=1, of the elemental spinodal field to obtain a penalized107

elemental spinodal field, W = {wℓ1, . . . , wℓm}Ne

ℓ=1, where component wℓi = ỹpℓi with p > 1. Components of108

the projected field are obtained as109

ỹℓi =
tanh (ξη) + tanh(ξ(yℓi − η))

tanh (ξη) + tanh(ξ(1− η))
, 1 ≥ η ≥ 0, ξ ≥ 0. (S7)

in which η is the value of the threshold for the Heaviside function approximation and ξ controls the sharpness110

of such approximation.111

The formulation in Equation S5 also includes j = 1, . . . ,K volume constraints that control any subset112

of the candidate materials in any subregion of the domain. As such, Gj and Ej represent the set of material113

and element indices associated with constraint j, respectively [19, 20, 21, 11]. Furthermore, Aℓ represents114

the volume of element ℓ; V = {vℓ1, . . . , vℓm}Ne

ℓ=1 is the material volume fraction for each of the i = 1, . . . ,m115

candidate spinodal architected materials at each of the ℓ = 1, . . . , Ne elements, where component vℓi = ỹℓiρℓ;116

and vj is the volume fraction limit for constraint j. When the subscript, j, is omitted, it is understood that117
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there is only one volume constraint.118

The same discretization used for the optimization problem is also used to solve for the displacement119

field, U, via the discretized state equations of static elasticity, K (Z,ρ,α,β,γ)U (Z,ρ,α,β,γ) = F. In120

the state equations, the stiffness matrix, K = ANe

ℓ=1kℓ, is assembled from the element stiffness matrices,121

Fi =
∫
Γ̃N

t ·Nids is the vector of design-independent nodal loads, t is the traction applied on the portion,122

Γ̃N , of the domain boundary, and N is the vector of interpolation (shape) functions used to interpolate123

quantities between the mesh nodal points.124

The mechanical properties of the spatially-varying spinodal architected materials are embedded in the125

element stiffness matrices,126

(kℓ)jk =

∫
Ωℓ

BT
j Dℓ (w

′
ℓ, ρℓ, αℓ, βℓ, γℓ)Bkdx, (S8)

where B is the strain-displacement matrix of shape function derivatives, w′
ℓ is the ℓth row of W, and Dℓ is127

the stiffness elasticity tensor (in matrix notation) in element ℓ. The stiffness elasticity matrix is obtained128

via a multi-material interpolation function,129

Dℓ =

m∑
i=1

wℓi

m∏
j=1
j ̸=i

(1− γ̃wℓj)M (αℓ, βℓ, γℓ)D
H
i (ρℓ)M

T (αℓ, βℓ, γℓ) , ℓ = 1, . . . , Ne, (S9)

that penalizes mixing between the candidate spinodal architected materials, where 0 < γ̃ < 1 controls the130

amount of allowable mixing [22, 21]; M is a matrix that performs the fourth-order tensor transformations131

in matrix notation (see Section S3.2); and DH
i (ρℓ) is the homogenized stiffness elasticity matrix of spinodal132

architected material i in element ℓ in the reference frame. Each component of the homogenized stiffness133

elasticity tensor is approximated as a function of spinodal density (pre-optimization) as
(
DH

i

)
jk

(ρℓ) =134

(Fi)jk (ρℓ), according to fitting function, Fi, for spinodal architected material i (see Section S3.1).135

It is noted that the orientation design variables make the optimization problem significantly more complex136

and prone to undesirable local optima. One way to mitigate this issue is to define a set of orientation design137

variables for each spinodal architected material at each point in the domain rather than a single set of138

orientation design variables. Here, the extra computational cost associated with this approach was deemed139

not worth the marginal gain in design freedom; however, most of these extra computations are highly140

parallelizable and a parallel GPU implementation could greatly increase the computational efficiency in141

considering this more comprehensive set of design variables.142
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S2.2 Gradient-based solution scheme143

The optimization problem in Equation S5 is solved using an iterative optimization algorithm based on144

gradient descent and the augmented Lagrangian (AL) method [23, 24]. In the AL method, we solve a series145

of unconstrained, surrogate problems where the AL function to be minimized in each outer iteration, t, is146

the sum of the original objective function, f , plus an adaptive penalty term that is a function of the original147

constraints, gj , j = 1, . . . ,K. The AL function is stated as148

AL(x)(t) = f(x) +

K∑
j=1

[
λ
(t)
j max(gj(x),−λ

(t)
j /µ(t)) +

µ(t)

2
max(gj(x),−λ

(t)
j /µ(t))2

]
, (S10)

where λ
(t)
j , j = 1, . . . ,K and µ(t) are penalization parameters that are updated every five inner optimization149

iterations as150

λ
(t+1)
j = λ

(t)
j + µmax(gj(x),−λ

(t)
j /µ(t)) and µ(t+1) = 1.25µ(t). (S11)

For well-posed problems like that in Equation S5, the AL method is guaranteed to converge to a feasible151

solution, given enough iterations.152

At each inner optimization iteration, k, we update the design variables according to153

x(k+1) = max

[
min

(
x(k) − τ (k)

∂(AL)

∂x
,x(k) +mv

)
,x(k) −mv

]
, (S12)

where x is a vector holding all design variables defined in Equation S5, mv is a move limit, and τ is a step154

size, which is updated at each inner iteration such that τ (k+1) = max(0.99τ (k), 0.01), with τ (0) = 1.155

We consider a staggered update during the first 150 inner optimization iterations, in which, every 25156

inner iterations, we run 30 additional sub-iterations that only update the orientation design variables. These157

sub-iterations are meant to promote spinodal microarchitecture alignment with the principal stress directions158

of the macrostructure and guide the optimization to a better local minimum.159

S2.3 Sensitivity analysis160

To update the design variables as described, the sensitivities of the objective function, f , and constraint161

functions, gj , j = 1, . . . ,K, with respect to each set of design variables are needed. Such derivatives of f are162

computed as163

∂f

∂zi
=

∂yi

∂zi

∂ỹi

∂yi

∂wi

∂ỹi

∂f

∂wi
, where

∂f

∂wℓi
= −UT ∂K

∂wℓi
U, (S13)
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∂f

∂ρℓ
= −UT ∂K

∂ρℓ
U, (S14)

∂f

∂αℓ
= −UT ∂K

∂αℓ
U,

∂f

∂βℓ
= −UT ∂K

∂βℓ
U, and

∂f

∂γℓ
= −UT ∂K

∂γℓ
U. (S15)

In Equation S13, the first three components are ∂yi/∂zi = PT ,164

∂ỹkj
∂yℓi

=


ξ(1− tanh2(ξ(yℓi − η)))

tanh (ξη) + tanh(ξ(1− η))
, if ℓ = k and j = i

0, otherwise,

and
∂wkj

∂ỹℓi
=


pỹp−1

ℓi , if ℓ = k and j = i

0, otherwise.

(S16)

The remaining derivatives in Equation S13 to Equation S15 all have the same form and require derivatives165

of the stiffness matrix, which can be computed at the element level. From Equation S8, it is clear that these166

derivatives rely on the derivatives of the stiffness elasticity matrix, which are computed as167

∂Dk

∂wℓi
=



m∏
j=1
j ̸=i

(1− γwℓj) [D
H
ℓi ]

′ −
m∑

p=1
p ̸=i

γwℓp

m∏
r=1
r ̸=p
r ̸=i

(1− γwℓr) [D
H
ℓp]

′, if ℓ = k

0, otherwise

(S17)

and168

∂Dk

∂ρℓ
=

m∑
i=1

wℓi

m∏
j=1
j ̸=i

(1− γ̃wℓj)
[DH

ki]
′

∂ρℓ
, (S18)

where ∂Dk/∂αℓ, ∂Dk/∂αℓ, and ∂Dk/∂αℓ have the same form as Equation S18. In Equation S17 and169

Equation S18, the notation is simplified by denoting [DH
ℓi ]

′ = MℓD
H
i (ρℓ)M

T
ℓ , where the simplified notation,170

Mℓ, indicates the dependence of M on αℓ, βℓ, γℓ. Then,171

∂[DH
ki]

′

∂ρℓ
= Mk

∂DH
i (ρk)

∂ρℓ
MT

k , where component

(
∂DH

i

)
pq

∂ρℓ
=


∂ (Fi)pq
∂ρℓ

, if ℓ = k

0, otherwise.

(S19)

Similar derivatives with respect to the orientation variables take the form172

∂[DH
ki]

′

∂αℓ
=


∂Mk

∂αℓ
DH

i MT
k +MkD

H
i

∂MT
k

∂αℓ
, if ℓ = k

0, otherwise,

(S20)
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with ∂[DH
ki]

′/∂βℓ and ∂[DH
ki]

′/∂γℓ of similar form.173

The derivative of the constraint functions with respect to each set of design variables are computed as174

∂gj
∂zi

=
∂yi

∂zi

∂ỹi

∂yi

∂vi

∂ỹi

∂gj
∂vi

and
∂gj
∂ρ

=
∂vi

∂ρ

∂gj
∂vi

. (S21)

In Equation S21, the components that have not been defined previously are175

∂vℓi
∂ỹjk

=


ρℓ, if ℓ = k and j = i

0, otherwise,

(S22)

∂vℓi
∂ρk

=


ỹℓi, if ℓ = k

0, otherwise, and

(S23)

∂gj
∂vℓi

=
Aℓ∑

ℓ∈Ej
Aℓ

. (S24)

S3 Spatially-varying stiffness elasticity tensor176

The topology optimization formulation proposed in Equation S5 allows the candidate spinodal microarchi-177

tectures to vary in porosity and orientation. Here, we describe how the homogenized stiffness elasticity178

tensor associated with spinodal microarchitecture i in element ℓ is computed during topology optimization179

according to the values of design variables, ρℓ, αℓ, βℓ, and γℓ. Numerical experiment indicates that positive180

definiteness of the homogenized stiffness elasticity tensor is preserved after these operations.181

S3.1 Spatially-varying porosity182

The homogenized stiffness elasticity matrix for spinodal architected material i in element ℓ, DH
i (ρℓ), is183

pre-computed in the reference (unprime) frame for ρ = 0.3, 0.4, 0.5, 0.6, 0.7. Each component is subsequently184

fitted with a fourth order polynomial of the form185

(Fi)jk =

4∑
s=0

(cs)jk ρ
s, (S25)

where cs, s = 0, . . . , 4 are coefficients that may differ for each jk component of DH
i (ρℓ). The data points186

(mean values of 15 spinodal realizations) and fitted curves are shown in Figure 3 of the main text for each187

non-zero component of the stiffness elasticity matrix associated with each spinodal architected material188

considered here.189
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S3.2 Spatially-varying orientation190

The rotation matrix, M (αℓ, βℓ, γℓ), used to orient the homogenized stiffness elasticity matrix is constructed191

from tensor transformation laws. In the following, the material and element indices, i and ℓ, as well as the192

superscript, H, indicating homogenized properties, are dropped for simplicity of notation.193

Material properties of the spinodal architected materials are described by the fourth order stiffness194

elasticity tensor Cijkℓ that relates Cauchy stress, σij , to linearized strain, εkℓ, via Hooke’s law, σij =195

Cijkℓεkℓ, i, j, k, ℓ = 1, 2, 3. Tensor transformation laws can be used to determine the stiffness elasticity196

tensor, C ′
ijkℓ, in any rotated (prime) frame relative to the reference (unprime) frame.197

Let R be a direction cosine matrix that transforms vectors from the reference to the rotated frame via198

a general rotation, i.e., x′
i = Rijxj . The direction cosine matrix can be constructed as the product of three199

proper orthogonal matrices,200

R1 (γ) =


1 0 0

0 cγ −sγ

0 sγ cγ

 , R2 (β) =


cβ 0 sβ

0 1 0

−sβ 0 cβ

 , R3 (α) =


cα −sα 0

sα cα 0

0 0 1

 , (S26)

such that201

R = RT
1 (γ)R2 (β)R

T
3 (α) =


cβcα cβsα sβ

−sγsβcα − cγsα −sαsγsβ + cγcα sγcβ

−cαcγsβ + sαsγ −sαcγsβ − sγcα cγcβ

 , (S27)

where s(·) and c(·) denote the sine and cosine of angle (·), respectively, and α, β, γ are rotation angles about202

the x3, x2, x1 axes, respectively.203

Recall that if vectors transform as x′
i = Rijxj , then second and fourth-order tensors transform as σ′

ij =204

RikRjℓσkℓ and C ′
ijkℓ = RimRjnRkoRℓpCmnop, respectively (similar expressions hold for transforming strain,205

εij , and the compliance elasticity tensor, Zijkℓ = C−1
ijkℓ). For convenience of computation, we convert to206

matrix notation by defining207
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{σ} =



σ1 = σ11

σ2 = σ22

σ3 = σ33

σ4 = σ23

σ5 = σ13

σ6 = σ12



, {ε} =



ε1 = ε11

ε2 = ε22

ε3 = ε33

ε4 = 2ε23

ε5 = 2ε13

ε6 = 2ε12



, and D =



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

symm C1313 C1312

C1212


. (S28)

From the stress and strain transformation laws in tensor notation, we can construct matrices, M and N208

that perform the transformations in matrix notation, where209

M =



R2
11 R2

12 R2
13 2R12R13 2R13R11 2R11R12

R2
21 R2

22 R2
23 2R22R23 2R23R21 2R21R22

R2
31 R2

32 R2
33 2R32R33 2R33R31 2R31R32

R21R31 R22R32 R23R33 R22R33+R23R32 R21R33+R23R31 R22R31+R21R32

R31R11 R32R12 R33R13 R12R33+R13R32 R13R31+R11R33 R11R32+R12R31

R11R21 R12R22 R13R23 R12R23+R13R22 R13R21+R11R23 R11R22+R12R21


(S29)

and210

N =



R2
11 R2

12 R2
13 R12R13 R13R11 R11R12

R2
21 R2

22 R2
23 R22R23 R23R21 R21R22

R2
31 R2

32 R2
33 R32R33 R33R31 R31R32

2R21R31 2R22R32 2R23R33 R22R33+R23R32 R21R33+R23R31 R22R31+R21R32

2R31R11 2R32R12 2R33R13 R12R33+R13R32 R13R31+R11R33 R11R32+R12R31

2R11R21 2R12R22 2R13R23 R12R23+R13R22 R13R21+R11R23 R11R22+R12R21


. (S30)

Then, substituting Hooke’s Law, {σ} = D{ε}, and the strain transformation law, {ε} = N−1{ε}′, into the211

stress transformation law, {σ}′ = M{σ}, we find that D′ = MDN−1 = MDMT = NTDN, where the last212

expression uses the fact that R−1 = RT since it is a product of proper orthogonal matrices [25].213

Note that the elastic surface plots provided alongside the spinodal architectures in the main text (see214

Figures 2 and 3) provide a visual representation of the tensor transformation by showing the (homogenized)215
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directional Young’s modulus, normalized to the Young’s modulus of the bulk material that the architecture216

is composed of. Consider the compliance elasticity matrix, S = D−1, of a spinodal architected material.217

The Young’s modulus along the x-direction of the reference (unprime) coordinate frame can be extracted218

as, E11 = 1/S11. The Young’s modulus in any other direction, E′
11, can be obtained in a similar way from219

S′, where S′ = D′−1 is the compliance elasticity matrix in a rotated (prime) coordinate frame, obtained220

according to the tensor transformation laws described above. A value of E′
11 can be obtained for any221

arbitrary rotation of the reference coordinate frame, according to rotation angles, α, β, and γ, about the x3,222

x2, x1 axes, respectively. The elastic surface plots show the value of E′
11 (as the radial coordinate) for each223

combination of rotation angles, α, β, and γ.224

S4 Additional details of the design examples225

In this section, algorithmic parameters and mesh information are provided for the three design examples226

provided in the main text. In addition, we provide the standard (solid) topology optimization solutions (i.e.,227

considering a single, solid, isotropic candidate material) and their objective function values, f0, used in the228

main text to evaluate the relative performance of the spinodal designs. Lastly, we include some additional229

discussion about the spinodal density distribution resulting from spinodal topology optimization.230

S4.1 Topology optimization algorithmic parameters and computational resources231

To control the magnitude of change in the design variables over the optimization iterations, we consider232

a move limit, mv = 0.05, for the spinodal selection and density design variables, Z and ρ; and a move233

limit, mv = 0.25 radians, for the orientation design variables α, β, and γ. To avoid undesirable local op-234

tima we perform five continuation steps on the material interpolation parameters: p = [1, 1.5, 2, 2.5, 3] and235

γ̃ = [0, 0.2, 0.5, 0.8, 1]. Each continuation step is said to converge after reaching the maximum number of236

iterations, MaxIter = [150, 100, 100, 50, 50], or the convergence tolerance, tol = 0.02 (where convergence is237

based on the change in the spinodal selection design variables from one iteration to the next). Once contin-238

uation on p and γ is completed, the ξ parameter that controls the sharpness of the Heaviside approximation239

(initially set to ξ = 0.1) is increased by 0.5 every 15 iterations until it reaches a maximum value of 25. The240

Heaviside threshold parameter, η = 0.5, throughout the whole optimization process. In each problem, the241

initial guess is specified such that the volume constraint is satisfied and each spinodal architected material242

has an equal volume (i.e., zℓi = v/ρℓ ∀ℓ, i with ρℓ = (ρ+ ρ)/2 ∀ℓ). At initialization, α = β = γ = 0.243

For the cantilever problems, the filter exponent and radius are q = 1 and R = 0.4 cm, respectively,244

and the problem is solved on half of the domain (symmetry enforced at the centerline of the beam, parallel245
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to the x1 − x3 plane) on a hex mesh with 324, 000 elements. For the GE bracket, the filter exponent and246

radius are q = 1 and R = 0.4 cm, respectively, and the problem is solved on a hex mesh with 464, 280247

elements generated inside a triangulated surface (STL) obtained from a STEP file of GE’s jet engine bracket248

[26]. For the craniofacial implant, the filter exponent and radius are q = 1 and R = 0.3 cm, respectively,249

and the problem is solved on a hex mesh with 395, 720 elements. To handle the low density regions we250

impose an Ersatz stiffness in the void elements equal to 10−4. All problems were run using a Python 3.6.9251

implementation on a machine with 24 Intel Xeon CPUs, 251 GB of RAM, and NVIDIA Titan Xp GPUs252

with 12 GB of RAM.253

S4.2 Standard topology optimization solutions254

Designs considering standard topology optimization with a single, solid, isotropic material are provided in255

Figure S3 for each of the three design problems considered in the main text. These designs are based on256

the same algorithmic parameters and volume fraction limits considered for the spinodal problems reported257

in the main text (i.e., v = 0.05 for the cantilever and the craniofacial implant; v = 0.075 for the GE jet258

engine bracket).259

Figure S3: Standard topology optimization solutions considering a single, solid, isotropic material for the cantilever
beam, GE jet engine bracket, and craniofacial implant.

S4.3 Spinodal density variation260

The spinodal density variation is displayed in Figure S4 for each of the three design problems with 0.3 ≤261

ρ ≤ 0.7 reported in the main text. Figure S4a provides the cut planes used in Figure S4b to show the262

spinodal density variation through the volume of each part. The spinodal density tends to be high in263

the interior of the structures and gradually decreases towards the boundaries. Similar spatially-varying264

spinodal density distribution in all optimized structures indicates that this type of arrangement maximizes265

the stiffness/weight ratio and highlights the value of providing freedom of spinodal density in the topology266

optimization framework. Furthermore, the histograms in Figure S4c clearly indicate that the upper and267
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lower limits of spinodal density are prioritized. Note that the density filter and penalty on intermediate268

values of the design variables are imposed only on the spinodal selection design variables, Z, but not on the269

spinodal density design variables, ρ.270

S5 Additive Manufacturing271

All physical models were fabricated using the Original Prusa SL1 masked-stereolightography 3D printer272

(Prusa Research, Czech Republic), which shines UV light onto the underside of a resin vat, masked by273

a 2560 × 1440 pixel liquid crystal display (LCD) according to pixelated images (slices), to cure the part274

layer-by-layer. The pixel edge length is 47.25 µm and we print with a 50 µm layerheight. The build volume275

is 120.96 × 68.04 × 150 mm. All models are built using Prusa’s Grey Tough acrylate-based photopolymer276

resin with 8.5 second exposure time per layer. Slicing and spinodal-embedding are done with an in-house277

Matlab code described below and the generated black-and-white png images for each layer are provided278

to the 3D printer. No support was needed for the cantilever structures; thus, the slices from the Matlab279

code were sent directly to the 3D printer. For the GE bracket and craniofacial implant, the pixel data were280

converted to a surface representation (STL) file and imported into PrusaSlicer for support generation. These281

STL files were at the slicing software’s file size upper limit; thus, a means to generate supports directly in282

the pixel representation will be desirable for larger-scale parts. Supports were only generated to support283

the macroscale features. Unsupported bridging features at the microscale had length scale well below the284

bridging capabilities of the m-SLA 3D printer.285

S5.1 Processing optimized spinodal-embedded parts for additive manufacturing286

The phase field representation of spinodal architected materials facilitates voxel-based communication of the287

spinodal-embedded topology optimized parts to a 3D printer. The build volume of the m-SLA 3D printer288

used here can be thought of as a 3D matrix of pixels (pixel grid). During printing, each pixel is filled with289

material or no material based on a binary pixelated image projected to the underside of the resin vat for290

each layer of the part. The coordinates of each pixel can be fed to the phase field function of each spinodal291

architected material to determine whether it should be assigned solid or void for that spinodal architected292

material.293

The topology optimization fields, Ỹ, ρ, α, β, and γ, defining the existance, porosity, and orientation of294

the spinodal architected materials, live on a coarser mesh than that of the spinodal features. To determine295

which spinodal architected material should exist in each pixel of the printer’s build volume, Ỹ is first projected296

to the printer’s fine pixel grid and smoothed to remove artifacts of the coarse topology optimization mesh.297
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Figure S4: Spinodal density variation of the cantilever beam, GE jet engine bracket, and craniofacial implant con-
sidering spinodal density, 0.3 ≤ ρ ≤ 0.7. a Spinodal architected material distribution and cut locations. b Spinodal
density variation through cross-sections of the part. c Histograms of spinodal density distribution.
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Note that due to the multi-material interpolation function, SIMP penalization, and Heaviside projection298

used during optimization, Ỹ is close to binary; however, some intermediate values and mixing may remain.299

After projecting Ỹ to the pixel grid, sets, Mi, i = 1, . . . ,m, are defined to contain pixels in which spinodal300

architected material i dominates (i.e., pixel ℓ ∈ Mi ⇐⇒ ỹℓi = max
j=1..m

(ỹℓj)). Additionally, to avoid301

evaluating the spinodal phase fields for pixels that are outside of the macrostructure part, P is defined as the302

set of pixels falling within the macrostructure part boundary. Then, for each of the four spinodal architected303

material considered here, a discrete version of the spinodal phase field,304

ϕ0
ℓi (xℓ) =

√
2

N

N∑
k=1

cos
(
κ
[
R

(
α̃ℓ, β̃ℓ, γ̃ℓ

)
nki

]
· xℓ + µk

)
, (S31)

is defined for i = 1, . . . ,m and for all ℓ ∈ P ∪Mi, where xℓ is the centroidal coordinate of pixel ℓ. The set of305

k = 1, . . . , N wave vectors, nki, precomputed for spinodal architected material i according to the appropriate306

θ1, θ2, θ3 restrictions, is rotated according to the values of α̃ℓ, β̃ℓ, and γ̃ℓ, which are projected to the fine307

pixel grid (without any smoothing) from the orientation design variables defined on the coarse topology308

optimization mesh. The spinodal feature size parameter, κ, controls the feature size of the printed spinodal309

architected materials and is chosen according to the printer’s resolution and the size of the macrostructure.310

The discrete phase field in Equation S31 defines a different spinodal architected material class and a311

different frame rotation for each pixel, which does not ensure that the spatially-varying spinodal architected312

material will be well-connected from one pixel to the next. Connectivity is enforced by interpolating the313

phase fields associated with each spinodal architected material according to (repeated from Equation 1 of314

the main text)315

ϕℓ (xℓ) =

∑m
i=1 max [0, (1− dH (xℓ,Mi) /Rϕ)]

1/2
ϕ0
ℓi

(
xℓ, α̃ℓ, β̃ℓ, γ̃ℓ

)
∑m

i=1 max [0, (1− dH (xℓ,Mi) /Rϕ)]
1/2

, (S32)

where dH is the Hausdorff distance, Rϕ is the radius of the interpolated phase field, and the 1/2 exponent is316

a penalization. A graphical representation of Equation S32 is provided in Figure S5 to elucidate the spinodal317

phase field interpolation that leads to smooth transition between them. Then, a discrete version of the level318

set function (repeated from Equation 2 of the main text),319

χℓ (xℓ) =


1 if ϕℓ (xℓ) ≥ ϕcut (ρ̃ℓ)

0 otherwise,

(S33)

is used to define the final solid-void assignment of each pixel, ℓ ∈ P, where ρ̃ℓ is projected from the coarse320

topology optimization mesh to the fine pixel grid (without any smoothing). Finally, two-dimensional (2D),321
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Figure S5: Graphical representation of the spinodal interpolation process described by Equation S32. a Two
adjacent regions assigned lamellar and columnar spinodal architected materials with a discrete interface between
them. b Lamellar and columnar spinodal microarchitectures generated via the phase fields represented by the term,

ϕ0
ℓi

(
xℓ, α̃ℓ, β̃ℓ, γ̃ℓ

)
, of Equation S32. c Interpolating term, max [0, (1− dH (xℓ,Mi) /Rϕ)]

1/2, of Equation S32. d

Interpretation of the lamellar and columnar spinodal microarchitectures associated with the phase fields obtained by
multiplying the previous two terms. e Final, spatially-varying spinodal microarchitecture obtained by adding the
two resulting phase fields to achieve a smooth transition between the lamellar and columnar spinodal architected
materials.

binary, pixelated images corresponding to each layer of the spinodal-embedded topology-optimized part are322

obtained directly from the discrete level set field and sent to the 3D printer. A flowchart of the entire process323

from optimization-based design to additive manufacturing is provided in the Figure S6.324

The proposed voxel-based strategy will open opportunities in manufacturing spinodal-embedded struc-325

tures using other materials, such as metals and composites, which have a broader range of properties (e.g.,326

stiffness, heat conductivity) and applications (e.g., mechanical components, biomedical implants). The pro-327

posed approach is general and extendable, but will need to be tailored for each manufacturing platform. For328

example, with the m-SLA approach considered here, spinodal density limits were set based on limits on the329

bicontinuous nature of the solid and void phases and pore size limits were controlled by the printer resolu-330

tion. In other systems, like laser powder bed fusion for metal parts, powder removal and desired geometric331

accuracy may require different limits on spinodal density and/or pore size. Additionally, the layer-wise pixel332

representation will need to be converted to a layer-wise scanpath. For only moderate scaling relative to the333

spinodal-embedded parts printed here, STL files become prohibitive and the toolpath will likely need to be334

generated directly from the pixel data.335

S5.2 Spinodal parameters for manufacturing336

To improve computational speed, the number of wave vectors is reduced to N = 100 when generating the337

physical phase field from the topology optimization results using Equation S31. The wavelength parameter,338

κ, used to control the length scale of the spinodal microarchitectures relative to the size of the macrostructure339
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Figure S6: Flowchart of entire process from defining the design space and performing topology optimization to
translating the data to a format the 3D printer can handle and manufacturing the part. The cantilever in the
background shows the progression (from top to bottom) of the spinodal representation during design, after projection,
and after manufacturing.
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is different for each printed model. The cantilever beams are printed with largest dimension of the macroscale340

at 14.4 cm and κ = 6 cm−1. The GE bracket and the craniofacial implant are printed with largest dimension341

of the macroscale at 17.9 cm and 8.1 cm, respectively, and κ = 4 cm−1. The radius of the interpolated phase342

field in Equation S32 is Rϕ = 0.2 cm for all problems.343
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