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1. Rigidly foldable ground states of four-parallelogram origami14

Here, we provide additional details about the four-parallelogram origami family of crease patterns. First, we discuss subsets15

and the limiting cases of previously studied patterns. Then, we parameterize the degenerate ground states of generic four-16

parallelogram origami. For completeness, we discuss this parameterization in regards to branching from the flattened state of17

developable crease patterns.18

A. Four-parallelogram origami and limiting cases. Four-parallelogram origami geometries can be specified by four sector angles19

and four edge lengths, both defined in the vicinity of a single vertex as shown in S1A. Since each face is a parallelogram,20

the adjacent sector angles are supplementary, π − α and the non-adjacent angles are identical. Furthermore, since there are21

only four parallelogram faces, the four edge lengths determine all eight of the edges in the unit cell. Hence, generic members22

correspond to a point in the eight-dimensional space of geometries where one such dimension simply rescales the entire sheet.23

This eight-dimensional space of geometries contains multiple subspaces of interest. First, developable crease patterns have24

the one-dimensional constraint on their four sector angles:25

αA + αB + αC + αD = 2π, [1]26

which is a seven-dimensional subspace. Similarly, orthotropic crease patterns have a four-dimensional constraint that couples27

their sector angles and edge directions:28

`1 · `2 = (r1 + r3) · (r2 + r4) = r1r2cosαA − r2r3cosαB + r3r4cosαC − r1r4cosαD = 0, , [2]29

which again is a seven-dimensional subspace. The Miura-ori belongs to the special case of developable, orthotropic crease30

patterns satisfying αA = αB , αC = αD = π − αA (1, 2). The eggbox belongs to the special case of orthotropic crease patterns31

satisfying αA = αB = αC = αD (3). Both of these crease patterns are special cases of the orthotropic Morph which itself32

satisfies αA = αB , αC = αD (4).33

B. Degenerate ground states. The ground states of these crease patterns are parameterized by the four dihedral angles defined34

in the vicinity of a vertex as shown in Fig. S1A. Since the crease pattern is spatially periodic, the remaining dihedral angles35

must be the complement of their parallel counterparts, 2π − γ. Hence, the unit cell can be rigidly folded provided that the36

changes to these four dihedral angles are compatible with the four sector angles. Such configurations can be provided by37

applying spherical trigonometry to the projection of the four-coordinated vertex onto the unit sphere as shown in Fig. S1B.38

The configurations of such a spherical quadrilateral are determined by triangulating the quadrilateral with a single great39

circle and enforcing compatibility between the two resulting spherical triangles shown in Fig. S1B. These triangles obey the40

spherical trigonometric relations:41

cosα24 = cosαA cosαD + sinαA sinαD cos γ1 = cosαB cosαC + sinαB sinαC cos γ3,

cosσ1 = cosαD − cosα24 cosαA
sinα24 sinαA

, cosσ4 = cosαA − cosα24 cosαD
sinα24 sinαD

,

cosσ2 = cosαC − cosα24 cosαB
sinα24 sinαC

, cosσ3 = cosαB − cosα24 cosαC
sinα24 sinαB

,

[3]

sin γ1

sinα24
= sinσ1

sinαD
= sinσ4

sinαA
,

sin γ3

sinα24
= sinσ2

sinαC
= sinσ3

sinαB
. [4]

These formulae give γ3 in terms of γ1 or vice versa noting there are always two solutions because arccos is multivalued over the42

unit circle. Once this is chosen, the diagonal α24 can be determined to compute the remaining interior angles σi and sum them43

for the last two dihedral angles γ2, γ4. Importantly, the arctan function ensures that the branches are appropriately determined:44

γ2 = arctan sin γ1 sinαD sinαA
cosαD − cosα24 cosαA

+ arctan sin γ1 sinαA sinαD
cosαA − cosα24 cosαD

[5]

γ4 = arctan sin γ3 sinαC sinαB
cosαC − cosα24 cosαB

+ arctan sin γ3 sinαB sinαC
cosαB − cosα24 cosαC

. [6]

Once these dihedral angles are determined at a single vertex, it is easy to see the compatibility of adjacent vertices in45

four-parallelogram origami by substitution of the appropriate sector angles: when the dihedral angles are fixed to be identical46

on an edge shared by two vertices, the supplementary condition on the sector angles ensures that the edges which are not47

shared have complementary dihedral angles.48

In principle, the choice to complete this parameterization by varying γ1 or γ3 is trivial; however, their domains are generically49

distinct because the domain of arccos used to compute the diagonal restricts the admissible dihedral angles. For example:50

γ1 = 0 =⇒ α24 = arccos
(

cosαA cosαD + sinαA sinαD
)
, [7]

γ1 = π =⇒ α24 = arccos
(

cosαA cosαD − sinαA sinαD
)
, [8]
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which must hold for γ3 replacing αA → αB and αD → αC though α24 is only real-valued provided the arguments are over the51

interval [0, 1] implying one edge may open or close while the other may be locked from doing so. Accordingly, the diagonal is52

bounded:53

αmin
24 = max

(
|αA − αD|, |αB − αC |

)
, αmax

24 = min
(
|αA + αD|, |αB + αC |

)
, [9]54

where the inner product |x| = min(x, 2π − x) is the geodesic length of the corresponding great circle taking x to always be55

positive valued. Hence, there are two distinct cases: the same sector angle pair determines both bounds or each sector angle pair56

determines a single bound. In the former, the corresponding dihedral angle’s domain contains both the opened state π and the57

closed state 0 (and hence also 2π implying the configuration space is a non-contractible loop. In the latter, the corresponding58

dihedral angle’s domain contains only contains 0 or π so that these two solutions join to form a single contractible loop in the59

configuration space. In special cases, both pairs simultaneously bound the diagonal so that the vertex is flat-foldable (in the60

generalized sense that two of the four dihedral angles may still be π) or developable.61

C. Folding near the flattened state. Generically, the diagonal satisfies62

cosα24 = cosαA cosαD + sinαA sinαD cos γ1, [10]63

which, in the flattened state of a developable crease pattern, γ1 = 0, take on the value:64

αf24 = min
(
αA + αD, 2π − (αA + αD)

)
. [11]65

Moreover the developability condition
∑

i
αAi = 2π indicates that the dividing great circle lies either along αA+αD or αB +αC .66

This means if σ1, σ2 are the two interior angles obtained by the great circle αf24 dividing γ2 then the γ2 = σ1 or σ2 where the67

alternate interior angle is zero. Suppose that this is σ1 so that αf24 = αB + αC where the following holds for σ2 under the68

substitution γ1 → γ3, αA → αB , and αD → αC . Then by the spherical law of sines and cosines:69

sinσ1

sinαD
= sin γ1

sinαf24
, cosαD = cosαA cosαf24 − sinαA sinαf24 cosσ1, tanσ1 = sin γ1 sinαA sinαD

cosαB − cosαA cosαf24
. [12]70

On the other hand, αf24 divides when the law of cosines satisfies:71

cosαf24 = cosαB cosαC + sinαB sinαC cos γ3. [13]72

Thus, expanding about σ1 = π and γ1 = π yields the linearly compatible differentials73

dγ2 = − dγ1 sinαA sinαD
cosαD − cosαA cosαf24

, dγ4 = − dγ1 sinαA sinαD
cosαA − cosαD cosαf24

,

dγ3 = ±
( sinαA sinαD(dγ1)2 + cosαB cosαC − cosαA cosαD

sinαB sinαC

) 1
2
,

[14]

which determine the linear planar modes that generate the two branches intersecting at the flattened state.74

2. Compatibility conditions in four-parallelogram origami75

Here, we explicitly derive the linear compatibility conditions and their solutions for four-parallelogram origami. We also76

compute the non-trivial face amplitudes for the antisymmetric bend mode and discuss normalization of the linear isometries.77

A. Four-parallelogram compatibility matrix. The main text characterizes linear isometries via compatibility constraints on78

vertex amplitudes and face amplitudes. Here, we discuss the physical meaning of these amplitudes and explicitly write the79

compatibility matrix for generic four-parallelogram origami sheets.80

First, consider a crease pattern composed of rigid quadrilateral faces that is only allowed to fold along its predefined creases,81

and assume that each vertex is four coordinated. For a single vertex, changes in the dihedral angle of each crease, φi, generate82

infinitesimal rotations of the adjoined panels that are constrained by the compatibility condition83 ∑
i

φiv̂i = 0, [15]84

so that these rotations vanish over a closed loop around the vertex. As discussed in the main text, this constraint admits85

local solutions of the form φi = (−1)iV v̂i+1 · v̂i+2 × v̂i+3 where V is the vertex amplitude that determines the magnitude of the86

folding along each of these creases and the edge index increases cyclically in counter-clockwise order around the vertex.87

This vertex amplitude is trivial when considering a single vertex, but specifies the relative amount of each folding mode when88

considering multiple crease-sharing vertices. For example, suppose two vertices, denoted by a and b, share an edge, denoted by89

i. Then a folding motion that is uniform along the crease, φai = φbi , requires that Vav̂ai+1 · v̂ai+2 × v̂ai+3 = Vbv̂bi+1 · v̂bi+2 × v̂bi+390
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where only the direction of the shared edge is necessarily equal, v̂ai = v̂bi . Thus, these two vertices fold compatibly when91

Vb = Va
(
v̂ai+1 · v̂ai+2 × v̂ai+3

)
/
(
v̂bi+1 · v̂bi+2 × v̂bi+3

)
. This extends to closure conditions on the geometry of vertices enclosing92

quadrilateral face similar to the “marching algorithms” developed in Refs. (5, 6).93

Second, consider an isolated quadrilateral face that is allowed to undergo low-energy bending deformations, provided that94

the face does not stretch. This bending can be described by a scalar on each edge, called the torsion τi, that determines the95

amount of rotation the bending induces on the local normal vector. Importantly, this bending induces displacements of the96

vertices of the faces so that the requirements for an isometry of the face are:97

∑
i

τiv̂i = 0, τ1v̂1 × v2 = τ4v̂4 × v3, [16]98

where the edge vectors point counterclockwise around the face. For parallelogram faces in particular, these constraints exhibit99

solutions of the form τi = (−1)iFvi where F is the face amplitude that determines the magnitude of the bending of the face.100

Similar to the amplitude of the four-coordinated vertex discussed above, this face amplitude is entirely trivial for a single101

face but specifies the relative amount of each bending mode when considering multiple crease-sharing faces. For example,102

suppose two faces, denoted by A and B, share an edge, denoted by i. Then a bending motion that is uniform along the crease,103

τAi = τBi , requires that FA = FB because the geometric factors are always identical. This remarkable result implies that104

origami sheets composed of any number of parallelogram faces always exhibits a mode that consists entirely of face bending,105

which we have not seen presented in the existing literature.106

The two examples above elucidate the physical significance of the vertex and face amplitudes in pure-folding and pure-bending107

modes, respectively; however, the strength of this formalism is best exemplified by considering modes that couple folding108

and bending and hence, couple the vertex and face amplitudes to one another. Traditionally, such modes are described by109

triangulating the quadrilateral faces so that each vertex is six coordinated and imposing the vertex compatibility condition in110

Eqn. (15), which no longer admits analytical solutions for arbitrary geometries.111

Instead, we consider compatibility along generic loops over the origami and acknowledge that such loops may be decomposed112

into loops around individual vertices, faces, and edges. The above analysis provides solutions to vertex and face compatibility113

in terms of the vertex and face amplitudes, while edge compatibility, which specifies the amount of rotation induced by a frame114

across the edge at each vertex that it touches and along the edge on each face that it touches, couples the vertex and face115

amplitudes to one another.116

Interestingly, we found that for origami sheets composed of parallelogram faces, the face amplitudes can be eliminated from117

these constraints via appropriate linear combinations of the edge compatibility conditions, thereby yielding mathematically118

convenient, self-adjoint (Hermitian) operator with the property that its nontrivial nullspace describes the vertex amplitudes119

consistent with an isometry. These same linear combinations of edge constraints can then be used to determine the face120

amplitudes from the vertex amplitudes of a linear isometry and accordingly, determine the rotations and displacements of121

elements of the origami sheet. Thus, the vertex and face amplitudes serve as mathematical tools that represent the relative122

amount of local isometries (folding and bending, respectively) that combines to yield a global isometry.123

The linear isometries of any parallelogram-based origami sheet are spanned by the vertex amplitudes satisfying the vertex124

compatibility condition125

∑
i′

(
ζai′

va
i′
Va −

ζa
′

i′+2

va
′
i′+2
Va

′
)

= 0, [17]126

in addition to the uniform face-bending mode where F = 1 on every face. In four-parallelogram origami, these local coefficients127

are proportional to the global coefficients:128

χi ≡
ri+2 · ri+3 × ri+4

R
= r̂i+2 · r̂i+3 × r̂i+4

ri
, R ≡ r1r2r3r4, [18]129

as shown in Table S2. Denoting the sums and differences χ±ij = χi ± χj , the corresponding compatibility matrix is:130

C =

χ
−
13 + χ−24 −χ−13 0 −χ−24
−χ−13 χ−13 − χ

−
24 χ−24 0

0 χ−24 −χ−13 − χ
−
24 χ−13

−χ−24 0 χ−13 −χ−13 + χ+
24

 . [19]131

Since the compatibility matrix anticommutes with the permutation operator, PdCPd = −C, it is off-block diagonal in the132

eigenbasis of this operator:133
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Csym = S−1CS =

0 0 0 0
0 0 χ−24 χ−13
0 χ−24 0 0
0 χ−13 0 0

 , S = 1
2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , Pd =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

|++〉 = 1
2

+1
+1
+1
+1

 , |−−〉 = 1
2

+1
−1
+1
−1

 , |+−〉 = 1
2

+1
+1
−1
−1

 , |−+〉 = 1
2

+1
−1
−1
+1

 .

[20]134

B. Mapping from vertex to face amplitudes. The vertex amplitudes, |V〉, that correspond to linear isometries, C |V〉 = 0,135

generically induce some bending of the faces as indicated by edge compatibility for arbitrary parallelogram-based origami136

sheets:137

FA
′
−FA = Va

′ ζa
′
i+2

va
′
i+2
− Va ζ

a
i

vai
. [21]138

Thus, the difference between the amplitude on a generic face and some reference face can be recursively determined by139

constructing a path between them. For consistency, such face amplitudes should be orthogonal to the uniform face-bending140

mode. For four-parallelogram origami, this procedure yields the following orthogonal basis for the linear isometries:141

|V+〉 = |++〉 , |F+〉 = 0, [22]

|V−〉 = N−
(
χ−13 |+−〉 − χ

−
24 |−+〉

)
, |F−〉 = N−2

(
χ+

13χ
−
24 |+−〉+ χ−13χ

+
24 |−+〉+ χ−13χ

−
24 |−−〉

)
, [23]

|V0〉 = 0, |F0〉 = N0 |++〉 , [24]

where the coefficients, N , are normalization factors. Note that these factors cannot simultaneously impose normalization of the142

vertices and face but instead can be chosen to satisfy 〈V|V〉+ 〈F|F〉 = 1.143

C. Mapping from amplitudes to dihedral angle changes. The description of the linear isometries of origami sheets in terms of144

the vertex and face amplitudes is equivalent to the common formalism in which face bending is represented in terms of bending145

along a virtual diagonal. This equivalence fixes the orientations of the edges and the positions of the vertices, but not the146

orientations of the faces, since the different schemes use different definitions for how the orientation varies along a face. Here,147

we discuss the mapping between these two formalisms.148

First, consider the parallelogram face shown in Fig. S2 which triangulated by introducing the virtual crease. In the amplitude149

formalism, there is an angular velocity gradient between the bottom left, (a,A), and top right, (a′, A), corners of the face:150

ω(a′,A)−ω(a,A) = τA1 r̂1 + τA2 r̂2 = −FA(r1− r2). In the dihedral angle formalism, there is an angular velocity gradient between151

the two triangular sections divided by the virtual crease: δ1
r2−r1
|r2−r1|

. The requirement that these two formalisms are equivalent152

enforces the relationship: δ1 = |r2 − r1|FA. Considering the triangulation of the generic four-parallelogram origami crease153

pattern shown in Fig. S2, the uniform face mode predicted by the amplitude formalism matches up with the mode with folding154

localized on the virtual creases.155

Next, consider the adjacent parallelogram faces shown in Fig. S2. In the amplitude formalism, there is an angular velocity156

gradient between the bottom right corner of the first face, (a′′, A), and the top left corner of the right face, (a′, A′), which is157

equal to: ω(a′,A′) − ω(a′′,A) = τA
′

2 r̂2 − φa
′

2 r̂2 = FAr2 − χ2Va
′
r2. In the dihedral angle formalism, there is an angular velocity158

gradient between the triangular sections of the left and right sides of the crease that is equal to: φ2r̂2. The requirement that159

these two formalisms are equivalent enforces the relationship: φ2 = (FA − χ2VA)r2. The symmetric mode predicted by the160

amplitude formalism matches up with the mode with folding localized on the real creases. However, this is not the case for the161

antismymetric mode predicted by the amplitude formalism which includes an additional term proportional to the face bending.162

We have two options for computing this (cross the edge and then travel along it, or go in the opposite order) but the edge163

compatibility condition is exactly the requirement that these give the same result. Thus, the nonuniform face orientations lead164

to different definitions in fold angles between the different formalisms for generic modes.165

3. Lattice strain and curvature166

Here, we explicitly derive the local stretches of the lattice vectors due to linear isometries and relate them to the intercellular167

rotations of the origami sheet.168

The changes in the lattice vectors measured from a corner in the vicinity of a particular vertex are obtained by the double169

integration between this vertex is adjacent cells:170
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∆(a,A)
1 =

(
τA1 v̂

a
1 − φPha2 v̂

Pha
2
)
× vPha1 + f1(A)× `1, [25]

∆(a,A)
2 =

(
τA4 v̂

a
2 + φPva1 v̂Pva1

)
× vPva2 + f2(A)× `2. [26]

Here, the vertex folds, φai , and face torsions, τAi , satisfy the compatibility conditions for linear isometries and f(A) accounts171

for any additional vertex folding due to the face that the corner is on as indicated by the solid gray paths in Fig. S3A. Note172

that such face-dependent vertex folding is always on either edge i = 2 or i = 4 for ∆1 and either edge i = 1 or i = 3 for ∆2.173

Furthermore, the lattice vectors can be written in terms of the local edge vectors as `1 = va1 − va3 and `2 = va2 − va4 , and take174

this same form under any permutation.175

A. Lattice vector stretches. First, consider their stretches computed by projection onto the same lattice vectors. Clearly, the176

face-dependent terms, f(A) vanish since their displacements are orthogonal to the lattice vector. Since the triple product177

coefficients of the torsions contain redundant edge vectors in both cases, these stretches are independent of face amplitude. In178

contrast, the triple product coefficients of the folds contain one nonredundant term that yields the vertex folding coefficients179

∆a
1 · `1 = −VPhavPha1 v

Pha
3 ζ

Pha
2 ζ

Pha
4 , [27]

∆a
2 · `2 = VPvavPva2 vPva4 ζPva1 ζPva3 , [28]

where the face dependence has been dropped because it is always negligible. Since these pairings of vertex folding coefficients180

are invariant under all permutations, the lattice vector stretches depend locally only on the vertex amplitude:181

∆a
1 · `1 = Rχ1χ3 〈a|Ph|V〉 , [29]

∆a
2 · `2 = −Rχ2χ4 〈a|Pv|V〉 , [30]

where the bra 〈a| projections the ket of vertex amplitudes, |V〉 onto the amplitude of vertex a.182

B. Lattice vector shears. Now, consider the shears of the lattice vectors computed by projection onto the transverse lattice183

vectors. While the projections no longer eliminate the face-dependent terms, f(A)× `, compatibility of the linear isometries184

ensures that any path can be used to compute changes to the lattice vectors; in particular, the path can be constructed so185

that f1(A) = f2(A) = f(A) as illustrated by the solid gray path in Fig. S3A, thereby eliminating the face dependence since186

symmetrizing over the two lattice directions adds the terms as f(A)(`1 × `2 + `2 × `1). Careful choice of local basis for writing187

the lattice vectors shows that:188

∆a
1 · `2 = τA1 v̂

a
1 × (−va3) · (va2 − va4)− φPha2 v̂

Pha
2 × vPha1 · (vPha2 − vPha4 ), [31]

∆a
2 · `1 = τA4 v̂

a
2 × (−va4) · (va1 − va3) + φPva1 v̂Pva1 × vPva2 · (vPva1 − vPva3 ), [32]

which simplifies by replacing the triple products with the associated vertex folding coefficients:189

∆a
1 · `2 = τA1 v

a
3
(
va2ζ

a
4 + va4ζ

a
2
)
− φPha2 v

Pha
1 v

Pha
4 ζ

Pha
3 , [33]

∆a
2 · `1 = τA4 v

a
4
(
va1ζ

a
3 + va3ζ

a
1
)

+ φPva1 vPva2 vPva3 ζ
Pha
4 . [34]

Finally, substitution of the local solutions yields:190

∆a
1 · `2 = −FAva1va3

(
va2ζ

a
4 + va4ζ

a
2
)

+ VPhava3va4ζa1 ζa2 , [35]

∆a
2 · `1 = −FAva2va4

(
va1ζ

a
3 + va3ζ

a
1
)
− VPvava3va4ζa1 ζa2 , [36]

and the symmetrized shear, ∆1 ·`2 +∆2 ·`1 = 0, vanishes after invoking the relationship between the face and vertex amplitudes191

and averaging over all cells.192
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C. Lattice curvatures. Finally, consider the difference between two locally defined changes to the lattice vectors as indicated by193

the two distinct black paths shown in Fig. S3B. Since the linear isometries satisfy position closure, this difference is equal to a194

rotation of the edge between their vertices, r(a,a′), by the lattice angular velocity and a rotation of the lattice vector by the195

angular velocity gradient between their corners:196

∆(a′,A′)
µ −∆(a,A)

µ = Ωµ × r(a,a′) +
(
ω(a,A) − ω(a′,A′))× `µ. [37]197

Projecting this difference onto the same lattice vector eliminates the second term. Moreover, since the lattice angular velocity198

must lie in the plane spanned by the lattice vectors, the triple product simplifies Ωµ × r(a,a′) · `µ = (r(a,a′) ·N)(Ωµ × `µ ·N)199

Hence, the rotation of the lattice vector is characterized by the local dependence of the changes to the lattice vectors:200

κµµ ≡ Ωµ × `µ ·N = −
(∆a′

µ −∆a
µ) · `µ

r(a,a′) ·N
, [38]201

where the corner dependence reduces to vertex dependence since the projection is onto the same lattice direction. This202

expression is valid for any two vertices in the unit cell.203

The same analysis can be applied to transverse projections where the lattice vector rotations vanish after symmetrization:204

κµν ≡ Ωµ × `ν ·N = −
(∆a′

µ −∆a
µ) · `ν + (∆a′

ν −∆a
ν) · `µ

2r(a,a′) ·N
, [39]205

which satisfies equality because Ωµ × `ν = Ων × `µ by compatibility. These off-diagonal curvatures are generated by the206

antisymmetric bend mode:207

κasym
12 = R

4 χ
+
13χ

+
24, [40]208

as well as the twist mode:209

κtwist
12 = −R2 . [41]210

D. Recovery of the Morph Poisson’s ratio. The formalism presented in the main text enables a clear connection between the211

symmetry of generic four-parallelogram origami crease patterns and their equal-and-opposite in-plane and out-of-plane Poisson’s212

ratios. Here, we show that our result recovers the prediction for the Morph subfamily derived via a more conventional formalism.213

Consider the limit of the Morph subfamily of crease patterns where the in-plane response of our theory is experimentally214

validated in other work. This family is characterized by the edge lengths c ≡ r1 = r3, a ≡ r4, and b ≡ r2 = a cosα/ cosβ and215

the sector angles β ≡ αA = αB and α ≡ αC = αD. Our result for the in-plane Poisson’s ratio is:216

νin = |`2|2

|`1|2
χ2χ4

χ1χ3
= |`2|2

|`1|2
r1r3

r2r4

sin γ1 sin γ3

sin γ2 sin γ4
, [42]217

(where the γi are dihedral angles) while the result for the Morph subfamily presented in Ref. (4) is:218

νin = |`2|2

|`1|2
c2 cosβ
a2 cosα

4 sinα sin β cos γ2
2 cos γ4

2
sin2 φ

, [43]219

,220

where r̂2 · r̂4 = cosφ. By assignment of the edge lengths, Eqn. (42) recovers Eqn. (43) provided that 4 sinα sin β cos γ2
2 cos γ4

2
sin2 φ =221

sin γ1 sin γ3
sin γ2 sin γ4

. Application of the trigonometric law of sines shows that sinφ = sinα sin γ1/ sin γ2
2 = sin β sin γ1/ sin γ4

2 , and the222

symmetry imposed by the sector angles of the Morph pattern implies that γ1 = γ3. Thus, invoking the trigonometric identity223

sin γ
2 cos γ2 = 1

2 sin γ confirms that the two expressions are identical.224

4. Lattice fundamental forms225

In continuous two-dimensional sheets, strain and curvature correspond to changes in the diagonal components of the first and226

second fundamental forms respectively. Here, we discuss this connection and derive all of the components of analogous lattice227

fundamental forms for four-parallelogram origami.228

A. Review of fundamental forms in continuous sheets. A continuous sheet is parameterized by coordinates on the two-229

dimensional surface which map to positions in the three-dimensional embedding space X = X(x1, x2). The first fundamental230

form (metric tensor) of the sheet are the coefficients that measure arclengths on the sheet in terms of the surface coordinates.231

These coefficients are given by the tangent vectors, t̂µ ≡ ∂µX, of the embedding:232

Iµν = t̂µ · t̂ν , [44]233

which is symmetric since the cross product is commutative. This first fundamental form becomes the identity, Iµν = δµν , when234

the entire sheet lies in a plane and is diagonal when the tangent vectors are orthogonal, t̂1 · t̂2 = 0. Infinitesimal changes to235
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this quantity, δI, give the strains of the sheet. The second fundamental form of the sheet are the coefficients that measure236

deflections of the sheet. These coefficients are given by the rotations of the tangent vectors, κµν ≡ ∂µt̂ν , out of the plane:237

IIµν = κµν ·N, [45]238

where N = t̂1 × t̂2 is the local normal vector of the sheet. The invariants of the second fundamental, II, give the mean239

curvature, H = TrII, and Gaussian curvature, K = DetII/DetI, which respectively vanish for flat and cylindrical (including240

flat) geometries. For initially flat sheets in particular, infinitesimal changes to the second fundamental form, δII, are exactly241

the mean curvature, H = TrδII, and the Gaussian curvature always vanishes to first-order in the deformation, K = 0.242

B. Analogous fundamental forms in discretized sheets. A discretized origami sheet is instead parameterized by cell indices,243

n = (n1, n2), which map to positions in three-dimensional space via the lattice vectors, `µ. Since the corrugation of the origami244

sheet suggests it functions closer to a slab than a membrane, it is appropriate to consider the geometry of the midplane defined245

as the average vertex position in each cell. The corresponding tangent vectors are the lattice vectors which do not rotate246

between cells so that the ground states have first and second lattice fundamental forms:247

Iµν = `µ · `ν , [46]
IIµν = 0. [47]

Recall that the lattice vectors are generically non-orthotropic, `µ · `ν 6= 0, so that the off-diagonal components of the first248

lattice fundamental form in Eq. 46 are generically non-vanishing; however, since this dot product is an invariant as indicated in249

Eq. 2 it cannot change for rigid deformations which preserve the edge lengths and sector angles. Moreover, the first fundamental250

form can be diagonalized by performing a change of basis from the lattice vectors, `µ, to a pair of orthogonal basis vectors, `′µ.251

Without loss of generality let the first basis vector be identical to the first lattice vector, `′1 ≡ `1. The second basis vector is252

then obtained by Gram-Schmidt orthogonalization: `′2 ≡ `2 − (`2 · ˆ̀
′
1)ˆ̀′1. The transformation between surface coordinates can253

then be obtained by application of the chain rule to the line elements254

∆s2 = Iµν
∂nµ
∂n′α

∂nν
∂n′β

∆n′α∆n′β = I ′αβ∆n′α∆n′β , [48]255

and inverting the partial derivatives. This transformation can be applied to the strain and curvature of the lattice along256

orthogonal directions with the caveat that the Poisson’s ratios are no longer equal and opposite.257

C. Screw-periodic origami. More generic crease patterns have screw-periodic (cylindrical) ground states (7) for which the258

lattice vectors rotate between cells via the lattice rotations, S, satisfying259

S1S2 = S2S1, [49]
`1 + S1`2 = `2 + S2`1. [50]

The computation of the second lattice fundamental form would follow as:260

IIµν = Sµ`ν ·N, [51]261

where N = `̂1 × `2 so that this quantity is automatically symmetric via Eq. (50). In this case, the zeroth-order second262

fundamental form does not correctly capture the curvature of the cylinder that this origami sheet discretizes; hence, this263

formalism must be augmented for more generic periodicities.264
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edge index i vertex amplitude V
vertex indices a, b, c, d face amplitude F
face indices A,B,C,D compatibility matrix C

global edge vector r global folding coefficient χ

local edge vector v edge products R

lattice vector ` change in lattice vector ∆
permutation operator P lattice angular velocity Ω

angular velocity ω intercellular strain ε

displacement u intercellular curvature κ

vertex folding angle φ Poisson’s ratio ν

local folding coefficient ζ sector angle α

face bending angle τ dihedral angle γ

Table S1. Notation used throughout the main text.
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ζi
vi

a b c d

1 χ1 −χ3 χ3 −χ1

2 χ2 −χ2 χ4 −χ4

3 −χ3 χ1 −χ1 χ3

4 −χ4 χ4 −χ2 χ2

Table S2. The local folding coefficients written in terms of the global folding coefficients.
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A B

C

Fig. S1. (A) The unit cell of four-parallelogram origami is characterized by the four sector angles, αA, αB , αC , and αD which are identical at non-adjacent corners and
supplementary, π − α, in adjacent corners for parallelogram faces. The configuration of such a geometry is specified by the four dihedral angles, γ1, γ2, γ3, and γ4 which are
complementary, 2π − γ, on parallel edges to maintain spatial periodicity. (B) The projection of the central vertex in panel (A) onto the unit cell yields a spherical quadrilateral,
whose edges have arc lengths subtending the sector angles and interior angles subtending the dihedral angles, that is triangulated via the great circle of arc length α24 which
divides the interior angles γ2 = σ1 + σ2 and γ4 = σ3 + σ4. (C) Illustration of the projection of a four-coordinated vertex onto the unit sphere. The four arrows correspond to
the directions of the edges emanating away from a vertex located at the center of the sphere.
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Fig. S2. Illustration of a triangulation of a four-parallelogram unit cell by the introduction of virtual creases (indicated by the dashed lines).
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A B

Fig. S3. An illustration of the local dependence on changes to the lattice vectors. (A) Changes to the lattice vectors depend on the face the corner is defined on as indicated by
the dashed gray paths in contrast to the solid black paths. Linear compatibility allows these paths to be modified, as indicated by the solid gray path, thereby relating the
changes in the lattice vector on all four corners in the vicinity of a single vertex. (B) Changes in the lattice vectors depend on the vertex the corner is defined on as indicated by
the two black paths. Linear compatibility implies that this difference is given by the displacement computed along the solid gray path.
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Movie S1. Animation of the rigid folding, along with the instantaneous Poisson’s ratio and dihedral angles,265

of a four-parallelogram origami sheet with a connected configuration space.266

Movie S2. Animation of the rigid folding, along with the instantaneous Poisson’s ratio and dihedral angles,267

of a four-parallelogram origami sheet with a a disconnected configuration space.268

Movie S3. Animation of the rigid folding, along with the instantaneous Poisson’s ratio and dihedral angles,269

of a flat-foldable four-parallelogram origami sheet.270

Movie S4. Animation of the rigid folding, along with the instantaneous Poisson’s ratio and dihedral angles,271

of a generalized flat-foldable four-parallelogram origami sheet.272
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