
US 20220092240A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0092240 A1

Chi et al . (43) Pub . Date : Mar. 24 , 2022

Publication Classification (54) SYSTEM FOR MACHINE LEARNING - BASED
ACCELERATION OF A TOPOLOGY
OPTIMIZATION PROCESS (51) Int . Ci .

G06F 30/27
G06F 30/23

(52) U.S. CI .
CPC

(2006.01)
(2006.01) (71) Applicants : Siemens Aktiengesellschaft , Munich

(DE) ; Georgia Tech Research
Corporation , Atlanta , GA (US) G06F 30/27 (2020.01) ; G06F 30/23

(2020.01)

(57) ABSTRACT
(72) Inventors : Heng Chi , Plainsboro , NJ (US) ; Yuyu

Zhang , Atlanta , GA (US) ; Tsz Ling
Elaine Tang , Plainsboro , NJ (US) ;
Janani Venugopalan , Plainsboro , NJ
(US) ; Lucia Mirabella , Plainsboro , NJ
(US) ; Le Song , Atlanta , GA (US) ;
Glaucio Paulino , Mableton , GA (US)

(21) Appl . No .: 17 / 422,282

(22) PCT Filed : Jan. 29 , 2020

A system and method for accelerating topology optimization
of a design includes a topology optimization module con
figured to determine state variables of the topology using a
two - scale topology optimization using design variables for a
coarse - scale mesh and a fine - scale mesh for a number of
optimization steps . A machine learning module includes a
fully connected deep neural network having a tunable num
ber of hidden layers configured to execute an initial training
of a machine learning - based model using the history data ,
determine a predicted sensitivity value related to the design
variables using the trained machine learning model , execute
an online update of the machine learning - based model using
updated history data , and update the design variables based
on the predicted sensitivity value . The model predictions
reduce the number of two - scale optimizations for each
optimization step to occur only for initial training and for
online model updates .

(86) PCT No .: PCT / US2020 / 015600
$ 371 (c) (1) ,
(2) Date : Jul . 12 , 2021

Related U.S. Application Data
(60) Provisional application No. 62 / 798,153 , filed on Jan.

29 , 2019 .

200 1st Online
Update of
MLM with

new
training
data

2nd Online
Update of
MLM with

new
training
data

Wi = 5

NE- 10 .

Ni Ne = 10
201

5 10 15 20 25 30 35
1 .

Standard finite element
optimization to compute

state variables and
sensitivity G

Predict Sensitivity ?
using trained MLM

Standard
finite element
optimization
to compute
exact data

Predict Sensitivity ?
using updated MLM

Collect
history

data and
use for
Initial
MLM

Training

100

110

Patent Application Publication

111

Memory Topology Optimization

105

112 114

Coarse - Scale Mapping

Processor

Fine - Scale Mapping

115

Mar. 24 , 2022 Sheet 1 of 7

Machine Learning Module

US 2022/0092240 A1

FIG . 1

200

1st Online Update of MLM with new training data

2nd Online Update of MLM with new training data

Patent Application Publication

W = 5

. Ne = 10

N N

Ne = 10

201

5

10

1 15 5

20

25

35

Standard finite element optimization to compute state variables and sensitivity G

30 Standard finite element optimization to compute exact data

Mar. 24 , 2022 Sheet 2 of 7

Predict Sensitivity G using trained MLM

Predict Sensitivity G using updated MLM

Collect history data and use for Initial MLM Training

US 2022/0092240 A1

FIG . 2

300

Fine - scale mesh elements

Patent Application Publication

301

.??????

Via

302

Sensitivity

302d
302c

302a
302b

Mar. 24 , 2022 Sheet 3 of 7

Coarse - scale mesh element

3

X

3

313

311

Input Layer

312

Hidden Layers

Output Layer

US 2022/0092240 A1

FIG . 3

Patent Application Publication Mar. 24 , 2022 Sheet 4 of 7 US 2022/0092240 A1

T T

Coarse - scale mesh Fine - scale mesh

411 412

FIG . 4

??????????

V

401

524

523

533

534

Patent Application Publication

? ?

ta

Mapping of stiffness

2,12 ;

521

522

Mar. 24 , 2022 Sheet 5 of 7

531

512

511

532

Fine - scale elements

Coarse - scale element

US 2022/0092240 A1

FIG . 5

610

Patent Application Publication

630

Decompose global design into local instances based on coarse - scale mesh

620

631

650

Mar. 24 , 2022 Sheet 6 of 7

Remove void instances

621

O

ODL

Collect training instances

US 2022/0092240 A1

629

639

FIG . 6

700
710

730

STORAGE 740

741

742

720

Patent Application Publication

ROM 731

PROCESSORS

743

BIOS 733

DISK / MEDIA CONTROLLER

RAM 732

721

SYSTEM BUS

OPERATING SYSTEM 734

760

770

APPLICATION PROGRAMS 735

USER INPUT INTERFACE

NETWORK INTERFACE

OTHER PROGRAM MODULES 736

Mar. 24 , 2022 Sheet 7 of 7

761

772

X

773

.

771

US 2022/0092240 A1

FIG . 7

US 2022/0092240 A1 Mar. 24 , 2022
1

SYSTEM FOR MACHINE LEARNING - BASED
ACCELERATION OF A TOPOLOGY

OPTIMIZATION PROCESS

TECHNICAL FIELD
[0001] This application relates to topology optimization
useful for engineering shapes of material in the context of
withstanding various operating conditions . More particu
larly , this application relates to machine learning - based
acceleration of a topology optimization process .

following FIGURES , wherein like reference numerals refer
to like elements throughout the drawings unless otherwise
specified .
[0006] FIG . 1 is a block diagram for an example of a
system for accelerated simulation setup in accordance with
embodiments of the disclosure .
[0007] FIG . 2 illustrates an example of a method for
accelerated simulation setup in accordance with embodi
ments of the disclosure .
[0008] FIG . 4 illustrates an example of coarse - scale and
fine - scale meshes for a cantilever beam design problem .
[0009] FIG . 3 shows an example architecture of a fully
connected DNN model according to embodiments of this
disclosure .
[0010] FIG . 5 illustrates a mapping of fine - scale elements
to a coarse - scale element in accordance with embodiments
of the disclosure .
[0011] FIG . 6 illustrates a 2D representation of two mesh
scales for a cantilever beam design problem .
[0012] FIG . 7 shows an exemplary computing environ
ment within which embodiments of the disclosure may be
implemented .

a

DETAILED DESCRIPTION

BACKGROUND
[0002] Topology Optimization has gained a lot of interest
in engineering for its ability of generating automatically
innovative shapes , such as in the field of additive manufac
turing , that can withstand the operating conditions typical of
the context in which the engineering component is utilized ,
while optimizing on one or more objectives . However , the
traditional approach to perform topology optimization is
computationally very expensive , as it requires solving a
multi - physics problem multiple times to evaluate both the
physics variables and sensitivity during the optimization
cycle . Finite elements analysis (FEA) , which is based on the
finite element method (FEM) , it is a technique that makes
use of computers to predict the behavior of varied types of
physical systems such as deformation of solids , heat con
duction and fluid flow . Geometry of an object is defined by
elements of a mesh and analyzed for external influences (i.e. ,
boundary conditions) .
[0003] Parallel computing or graphical processing unit
(GPU) based programming are sometimes employed for
topology optimization to reduce the generation time of one
optimized design . Some other approaches have been found
in the literature that try to use past data acquired during past
runs of the topology optimization study to speed up a new
instance of the same topology optimization case . However ,
such approaches have limited applicability as the informa
tion learned from past cases are not likely to transfer to new
optimization cases which may vastly differ with the past

a

ones .

SUMMARY

[0004] A system and method for accelerating topology
optimization of a design includes a topology optimization
module configured to determine state variables of the topol
ogy using a two - scale topology optimization using design
variables for a coarse - scale mesh and a fine - scale mesh for
a number of optimization steps . A machine learning module
includes a fully connected deep neural network having a
tunable number of hidden layers configured to execute an
initial training of a machine learning - based model using the
history data , determine a predicted sensitivity value related
to the design variables using the trained machine learning
model , execute an online update of the machine learning
based model using updated history data , and update the
design variables based on the predicted sensitivity value .
The model predictions reduce the number of two - scale
optimizations for each optimization step to occur only for
initial training and for online model updates .

[0013] Methods and systems are disclosed for a topology
optimization process enhanced by an algorithm that learns
from a current iteration of the topology optimization process
rather than relying on past data . A machine learning - based
topology optimization framework provides a general
approach which greatly accelerates the design process of
large - scale problems in 3D . The machine learning based
model is trained using the history data of topology optimi
zation , which data may be collected during topology opti
mization and , therefore , does not require a separate stage for
collecting samples to train machine learning - based models .
Thus , the training occurs in real time during the topology
optimization process rather than prior to it . The proposed
framework adopts a tailored two - scale topology optimiza
tion formulation and introduces a localized training strategy .
The localized training strategy can improve both the scal
ability and accuracy of the proposed framework . The pro
posed framework incorporates an online update scheme
which continuously improves the accuracy of the machine
learning module (or surrogate) by updating based on new
data generated from physical simulations . Implementation
of such a framework for topology optimization results in
reduction of computational costs and significant time sav
ings , particularly evident for large - scale and multi - physics
(e.g. thermal - flow) problems .
[0014] A topology optimization formulation for the clas
sical compliance - minimization problem is briefly described
as follows . Herein , it is assumed that the design domain is
discretized by a finite element mesh and a standard density
based approach is adopted , where the material distribution is
characterized by an element - wise constant function .
[0015] An objective is to find the structural topology
which has the most stiffness under a prescribed load and
boundary conditions (i.e. , least possible displacement for the
given boundary conditions under the prescribed load) . For
example , multi - variable analysis for optimizing the topology
may involve balancing a variable displacement of points on
a designed body to measure stiffness against a volume
constraint that minimizes the material cost to construct the
designed body . In other words , a preferred design may have

a

a

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Non - limiting and non - exhaustive embodiments of
the present embodiments are described with reference to the

US 2022/0092240 A1 Mar. 24 , 2022
2

tion is needed to perform the design variable update . Sen
sitivity vector G with respect to vector z , and sensitivity
vector G for filtered design variable vector z is computed by
the following equations :

significant voids to minimize material while not sacrificing
too much stiffness necessary to support the design load .
Global measure of displacements is the “ compliance ” , or
strain energy , of the structure . For a given finite element
mesh with N nodes and M elements , the applied global force
vector is denoted as fER ANX1 . The vector of design vari
ables z , whose ith component zi is the design variable
associated with the ith element . Within this setting , an
objective for topology optimization is to minimize compli
ance and can be expressed by the following :

ac (5) Gi = :-p (7 :) p- | (u ;) " k?u ;, dzi

G = PTG (6)

min c (x) = f ' (2) (1) =

where u , the displacement vector of the ith element .
In contrast , the sensitivity of the volume constraint function
gv is simply given by the following : Z

s.t. gv (z) = v * 7 - Vmax 50
0 < 1 Vie { 1 , M }

ô gv (7) with K (7) u (x) = f and z = Pz , = Ptv . az

where : c (z) is the compliance function ,
[0016] (Z) ER (dNxl) is the global displacement vector ,
[0017] v is a vector whose ith component v ; is the volume
of element i ,
[0018] gv is a volume constraint function ,
[0019] Z is a filtered design variable vector ,
[0020] P is the density filter matrix ,
[0021] K is the global stiffness matrix , and
[0022] Vmax is the maximum allowable volume imposed
on the design .
To ensure the well - posedness of the formulation and impose
a minimum length scale on the design , the filtered design
variable vector z is used , where P is the density filter matrix
whose (ij) th component is given by :

Once the sensitivities of both the objective and constraint
functions are obtained , a Modified Optimality Criteria
(MOC) method (e.g. , as proposed by Ma et al . , 1993) is
applied to update the design variables . The MOC design
update algorithm is able to handle sensitivities with positive
values , which could potentially occur in the machine learn
ing - based framework of this disclosure . It should be noted
that the proposed machine learning - based framework also
works with any gradient - based design update scheme (e.g. ,
the Method of Moving Asymptotes (MMA) by Svanberg ,
1987) . For a design variable vector z (k) at the optimization
step k , the MOC method updates the design variable vector
for the optimization step k + 1 as follows :

(8)
() (2) z) (k + 1) max (0 , R - | ** – x D)

Ekes (j) (R – [XX – x }]) ' (P) j

max / min , 2 - m) if zB s maxl wmin , 2) – m)
min (1 , zky + m) if min 1 , + m) s (BA) ,

z (B?k) ? otherwise

zi

where m is the move limit and n is the damping coefficient .
The coefficient B ; *) is given by : (k)

where R is the radius of the density filter , S (j) denotes the set
of indices of elements whose centroids fall within radius R
of the centroid of the jth element , and x , * and x , * stand for
the centroid of the ith and jth elements , respectively .
[0023] The standard Solid Isotropic Microstructures with
Penalization (SIMP) scheme is adopted to penalize the
intermediate densities throughout . In the SIMP scheme , the
global stiffness matrix K is interpolated as :

(9)
BK) = G ; (z (k))

[E ; (P) ;; V ;] A '

where u is a shift parameter taken to be the maximum value ?
of positive sensitivities , given by the following : K (z) = UE ; k (3) =

(10) G (zk) u = max 0 , max
? ; (P) : V ; » = 2) (, 0

(k 1

where : k , " is the element stiffness matrix for the jth element
when the material is solid ,

[0024] U represents the standard assembly procedure in
the finite element method (FEM) , and

[0025] E ; is interpolated stiffness of element j normal
ized by the Young's modulus of the solid material given
by :
E ; = Emin + (1 + Emin) y

where : Emin is Ersatz stiffness (e.g. , 10-4) , and p is the SIMP
penalization parameter (e.g. , p = 3) . The sensitivity informa

and where A > 0 is the Lagrangian multiplier found using a
bisection algorithm (e.g. , Bendsoe and Sigmund , 2013) such
that the volume constraint function gv (z (k + 1)) = 0 is satisfied .
[0026] FIG . 1 shows a block diagram of a topology
optimization system in accordance with embodiments of this
disclosure . In an embodiment , topology optimization system
100 includes a processor 105 and memory 110 on which is
stored a topology optimization module 111 and a machine

US 2022/0092240 A1 Mar. 24 , 2022
3

F

F

parameter N , is used to control the frequency of the online
update , meaning that the online update is performed every
N , optimization steps after the initial prediction step (N , +
W1) . In the online update of the machine learning - based
model , the data is collected from standard finite element
analysis of previous steps for a defined window size Wu .

F

learning module 115. To execute a two - scale topology
optimization , a coarse scale mapping module 112 and fine
scale mapping module 114 generate coarse - scale and fine
scale mapping of topology elements useful for solving state
equations when performing nodal displacement analyses on
a test model for the topology design . The topology optimi
zation system 100 synergistically integrates machine learn
ing with topology optimization to achieve accelerated and
improved designs . Using an iterative process involving
hundreds of steps , the topology optimization is performed
where for each new design , the structural response of the
current design needs to be solved to compute the sensitivity
of the objective function . For large - scale topology optimi
zation , this procedure is computationally intensive .
[0027] A large amount of historical data (e.g. , design
variables , their corresponding sensitivities , and displace
ment solutions) is generated during topology optimization ,
but typically , not all of the historical data is fully explored
and used . In view of this , a universal machine learning
approach is proposed herein to learn the mapping between
the current design and their corresponding sensitivities from
historical data . Once the machine learning model is trained ,
it can be employed in the later optimization steps to directly
predict the sensitivities based on the current design without
solving the state equations .
[0028] The training of the machine learning module 115
consists of two stages : an initial training stage and several
online update stages . To control when to start each stage ,
parameters for initial training step N , and online update
frequency Ny are introduced . Additionally , to control the
amount of history data used in training , parameters are
introduced for window size W , for steps of initial training
and window size Wy for steps of an online update . As for the
machine learning - based model , a fully - connected Deep
Neural Network (DNN) may be employed for machine
learning module 115. Other machine learning - based models ,
such as the Convolutional Neural Network (CNN) , can also
be adopted by the machine learning module 115 .
[0029] For initial training of the machine learning module
115 , the optimization starts with a standard finite element
analysis (e.g. , solving the state equation and computing the
sensitivity based on Eq . (6) in the first N , + W - 1 optimiza
tion steps , and collect the history data from the last W , steps
(i.e. step N , to step N , + W - 1) to initially train a machine
learning - based model . In an aspect , data can be discarded
from step 1 to step N - 1 because for a small initial set of
iterations , results generally have significant variations and
are biased to the initial guess . Subsequently , starting from
optimization step N , + W ,, instead of following the standard
finite element analysis , the trained machine learning - based
model is applied to directly predict the sensitivities . By
doing this , the computationally expensive task of solving the
state equations and computing the sensitivities can be
avoided .

(0030) To improve accuracy of the predicted sensitivity in
the long term by machine learning module 115 , the machine
learning - based model is repeatedly updated online by peri
odically switching back to the standard finite element analy
sis for one optimization step to generate new data . The

[0031] FIG . 2 is an illustration of an example of the
integrated topology optimization and machine learning pro
cess in accordance embodiments of this disclosure . A set of
topology optimization steps 201 are shown , where update
parameter selections include initial training step N = 10 ,
initial training window size W = 5 , update frequency Nr = 10
and update window size Wy = 2 . Accordingly , the optimiza
tion starts with the standard finite element analysis optimi
zation procedure in the first 14 steps and uses the data
generated from step 10 to step 14 to train the machine
learning - based model . Starting from optimization step 15 ,
the machine learning - based model is used to predict the
sensitivity . Because the online update frequency is N = 10 ,
the process switches back to the standard finite element
analysis optimization procedure at optimization step 25 to
generate new data for one step . Based on setting window
W = 2 , the data in optimization steps 14 and 25 generated by
standard finite element analysis optimization are used as the
input for a first online update the machine learning - based
model , which are the last two steps in which finite element
analysis data was retrieved . As alternative illustrative
example for W = 5 , then data from steps 11-14 and 25 would
be used for the update , being the last five steps in which
finite element analysis data was generated and obtained . The
updated machine learning - based model is used to predict the
sensitivity in the following steps and to recursively update
the model every 10 steps according with update frequency
Nr = 10) until either the convergence criteria are fulfilled , or
the maximum allowable step is reached . As shown in FIG .
2 , the 2nd online update occurs at step 35 , using standard
finite element analysis data from steps 25 and 35 to update
the machine learning - based model .

F

1 U

U

1 [0032] In an embodiment , a two - scale topology optimiza
tion setup , a coarse - scale and a fine - scale , is applied to the
topology optimization framework . This allows full use of the
local information in the historical data and ensures that the
machine learning - based model is both scalable and able to
make accurate sensitivity predictions . On the fine - scale
mesh , all the design variable updates are performed for
every optimization step but only solve the state equations in
those steps that collect the training data . On the other hand ,
no design variable update is performed on the coarse - scale
mesh , but the state equation is solved at every optimization
step based on the stiffness distribution mapped from fine
scale mesh . Strain information on the coarse - scale mesh ,
together with the filtered design variables on the fine - scale
mesh , are used as inputs to the machine learning - based
model . Algorithm 1 , below , summarizes the topology opti
mization described above .

US 2022/0092240 A1 Mar. 24. 2022
4

max

h

9 =

Algorithm 1 : Proposed framework of universal
machine learning for topology optimization .

1 Input : z (0) , R , T ol , Itermax , NO.NF , WO and W ,
2 Form filter matrix P :
3 for k = 0 to Itermax do
4 | Solve the state equation on coarse - scale mesle
5 | if k < 10+ WO or mod (max (k – NO - WO , 10 Np) = 0) then
6 | | Solve the state equation on fine - scale mest
7 || Evaluate sensitivities G and G based on (5) and (60
8 | | Store history dat :

|| in k = N + W © - 1 then
10 ||| Initial training of the machine learning model using last w step of collected dat
11 | | else if mod (max (k - N- W © , 1) Np) = 0 then
12 || | Perform online update of the machine learning model using last Wy step of collected

||| dat :
13 || end
14 | else

15 || Use the machine learning model to predict CO
16 ! | Compute the predicted sensitivity as ? = PO?O
17 | end
18 | Update zk 1) using (8) based on either G or CO
19 end
20 if @zk 1) - zk2000 s T ol then
21 | Output : optimization converged and plot final desigr
22 end

=

indicates text missing or illegible when filed

2 on fine - scale mesh 301 , which is generated by fine - scale
mapping module 114. For example , fine - scale elements 301
are mapped to coarse - scale mesh element 302 divided into
sectors 302a , 302b , 302c , 302d according to shading of
corresponding quadrant clusters of the fine - scale mesh ele
ments 301 , where the shading represents state variable
values (e.g. , strain) computed by the topology optimization
module 111 for the current optimization step . The output
layer 313 is obtained by applying a linear transformation of
the output of the last hidden layer as :

y = Wohn (12)

where W is also a weight matrix , which will also be
learned according to the training data . Herein , the output y
is chosen as the sensitivity of the compliance with respected
to the filtered design variables . In an aspect , a Parametric
Rectified Linear Unit (PRELU) is used as the activation
function , which generalizes the traditional rectified unit and
is shown to achieve impressive performance on image
classification tasks . The PRELU activation function is
defined as follows :

out

[0033] In embodiments of this disclosure , machine learn
ing module 115 employs fully - connected Deep Neural Net
works (DNNs) as the universal function approximator that
takes the input from the two - scale topology optimization
module 111 and predicts the sensitivities of the compliance
function . The topology optimization system 100 is indepen
dent of any specific implementation of the machine learning
module 115. Thus , other machine learning - based models ,
such as Convolutional Neural Networks (CNNs) and
Residual Networks (ResNets) , as well as their variants like
the Densely Connected Convolutional Networks
(DenseNets) can be directly applied in the proposed frame
work .
[0034] FIG . 3 shows an example architecture of a fully
connected DNN model according to embodiments of this
disclosure . In an embodiment , the DNN model consists of
one input layer 311 , multiple hidden layers 312 , and one
output layer 313. Each hidden layer has a set of neurons ,
each of which takes an input value and performs a non - linear
activation to generate its output value . The number of hidden
layers 312 is a hyper - parameter and can be tuned according
to the trade - off between the computational complexity and
model accuracy . Let us denote Nn as the total number of
hidden layers 312 in the DNN model . During prediction ,
each hidden layer takes the output of previous adjacent layer
as input , and performs feed - forward computation as follows :

h ; = o (W / hi - 1 + bi , i = { 1 , ... , N } (11)

where h , is the output of the ith hidden layer ;
[0035] Wi is the weight vector ;
[0036] bi is the bias of the ith layer that can be randomly

initialized and then optimized during model training ;
and

[0037] 0 () is a non - linear activation function .
[0038] By convention , ho designates the input of the input
layer 311 , which is taken to be a vector collecting the filtered
design variables ž ; from the fine - scale mesh 301 and strain
vectors from the coarse - scale mesh 302. Coarse - scale map
ping module 112 generates the coarse - scale mesh 302 based

a

0 (x) = max (0 , x) + a * min (0 , x) (13)
h

where : ? is a learnable parameter , and
[0039] x is the input of each neuron in the DNN .
To train the DNN model , the training data is collected from
full finite element evaluations in the topology optimization
as the supervision signal . In an embodiment , an Adam
optimization algorithm is used during the training for sto
chastic gradient - based optimization . In the initial training ,
all the learnable parameters in the DNN are randomly
initialized . In each subsequent online update , the optimized
parameters are taken from the last training step as an initial
estimation and are updated based on the new training data
received .
[0040] The proposed integrated framework of this disclo
sure achieves both accuracy and scalability so that it can be
efficiently applied to design problems of any size . Instead of
applying brute force to the machine learning - based model to

US 2022/0092240 A1 Mar. 24 , 2022
5

computed as the weighted average of the interpolated stiff
ness of all the fine - scale elements that fall within in the
sub - region , namely , k

(14) Cyk ? » Wi Ei ,

? . ok W ;
lied ieg

where E ; is the interpolated stiffness of element i in the
fine - scale mesh , and w , et is the weight assigned to E ; in
sub - region Q. If element i in the fine - scale mesh falls completely within Q. " , then the weight is taken to be w ,. " i = 1 .
Otherwise , if element i falls into a total of n sub - regions , the
weight is taken to be

a

W ; =

n

for all sub - regions Q * With the stiffness mapping and
assuming that all coarse - scale elements are identical , the
global stiffness matrix Kº on the coarse - scale mesh is
computed as :

ng (15) * = US6 UI * (B5) ! = EF * (B %) D.By

learn the mapping between the filtered design variables and
their corresponding sensitivities , the topology optimization
formulations are tailored to make best use of the data
generated in its history .
[0041] According to Equations (5) and (6) , the sensitivity
of each element depends on both the design variable and the
state variables (e.g. , nodal displacements) of that element .
However , the information about the state variables of each
element is not available unless the state equation is solved .
In order to provide sufficient information to the machine
learning - based model and , at the same time , avoid the most
time - consuming step of solving the state equation , a topol
ogy optimization formulation with two discretization levels
is introduced herein : a coarse - scale mesh and a fine - scale
mesh . As mentioned , the design variables z (and the corre
sponding filtered design variables 2) live on the fine - scale
discretization and are updated every optimization step .
However , on the fine - scale mesh , the state equations are only
solved in those optimization steps when collecting training
data for the machine learning - based model . One the con
trary , on the coarse - scale mesh , no optimization is per
formed , but the state equation is solved at every optimization
step to provide information about state variables to be fed to
the machine learning - based model .
[0042] FIG . 4 illustrates an example of coarse - scale and
fine - scale meshes for a cantilever beam design problem .
Although FIG . 4 depicts a 2D illustration , all numerical
examples presented herein focus on 3D problems . Topology
of a 3D cantilever beam 401 is represented by coarse - scale
mesh 412 and fine - scale mesh 411 , each comprising regular
hexahedral (brick) finite elements with linear displacement
interpolations and it is assumed that the fine - scale mesh 411
is fully embedded in the coarse - scale mesh 412. Under this
assumption and because of the regularity of the two meshes
411 , 412 , every element in the coarse - scale mesh 412
contains the same number of elements in the fine - scale mesh
411. Accordingly , block size NB is a defined parameter that
quantifies how many fine - scale elements are contained on
each side of a coarse - scale mesh element . For example , the
illustration in FIG . 4 has a block size of NB = 5 , meaning
every element in the coarse - scale mesh 412 constrains
5x5 = 25 elements of fine - scale mesh 411 .
[0043] FIG . 5 illustrates a mapping of fine - scale elements
to a coarse - scale element in accordance with embodiments
of the disclosure . Because the design update is only per
formed on the fine - scale mesh , the stiffness distribution of
the fine - scale mesh is mapped to the coarse - scale mesh at
every optimization step . As an example of mapping , a 5x5
portion of fine scale elements 511 are shown in FIG . 5 to be
mapped to a single coarse - scale element 512. This mapping
process can be repeated to map the entire array of fine - scale
mesh elements of the topology to respective coarse scale
elements . The mapping is defined in the following manner .
For a given coarse - scale finite element 512 with nodes 531 ,
532 , 533 , 534 and a total of ng integration Gauss points 521 ,
522 , 523 , 524 , the coarse - scale finite element 512 is divided
into a total of ng sub - regions and each sub - region is asso
ciated with one of its integration Gauss points 521 , 522 , 523 ,
524. Herein , for a 2D analysis , ng = 4 as shown in FIG . 5 , and
for a 3D analysis , ng = 8 . In addition , for coarse - scale finite
element k , each sub - region Q , (= 1 , ... , 4 in 2D , or j = 1 , .

8 in 3D) is associated with the jth Gauss point . Under this
convention , the mapped stiffness at the jth integration point
of coarse - scale element k , which is denoted as E , CK , is

a

where Do is the constitutive matrix of the solid phase , and
B ; and Jº are the strain - displacement matrix and the Jaco
bian of iso - parametric mapping at the jth integration point of
a coarse - scale element , respectively . The nodal displacement
vector u of the coarse - scale mesh can then be obtained by
solving the state equation as

UC = K9 (16)

where fº is the applied force vector on the coarse - scale
mesh .
[0044] Next described are embodiments for integration of
the machine learning module and two - scale topology opti
mization . To promote a more scalable framework , a local
ized training strategy is applied for the machine learning
based model which capitalizes the main features of the
two - scale topology optimization formulation . Instead of
treating each global design as an individual training sample ,
each element is viewed in the coarse - scale mesh together
with its enclosed fine - scale elements as an independent
training instance .
[0045] FIG . 6 illustrates a 2D representation of two mesh
scales for a cantilever beam design problem . The localizing
training strategy provides advantages compared against a
global strategy . The global design of a cantilever beam
design consisting of a mesh of fine - scale elements 610 is
decomposed into local instances 620. Localized instances
are arranged from first coarse - scale instance 621 to last
instance 629 , and collected as training instances 630 , with
instance 631 corresponding to element 621 , and training
instance 639 corresponding to localized instance 629. By
localizing the training input data , the total number and
diversity of the training samples for the fully - connected
DNN is significantly increased . From a machine learning

a

a

C ,
3

US 2022/0092240 A1 Mar. 24 , 2022
6

where Kº is the local stiffness associated with solid materials
that is identical for each element . Alternatively , sensitivity G
can be expressed in terms of element - level strain vectors ,

ng (19)
G ; = – p (z ;] p - 1 [(€ ;) " Dºcj] =

j = 1

perspective , more diverse training samples can provide more
accurate predictions . Also , localizing the training input
allows bounding the size as well as memory requirement of
the fully - connected DNN for problems of any size . Other
wise , the size of the fully - connected DNN and its associated
memory requirement will increase as the size of the problem
increases , leading to an unscalable and inefficient machine
learning - based model .
[0046] With the localized training strategy , a proper con
stitution of the training data for the machine learning - based
model achieves accurate predictions . Each training sample is
constructed based on the dependence of sensitivity and the
availability of information in the two mesh levels .
[0047] In an embodiment , the training data from the
fine - scale mesh is the design variables z (or closely - related
variables) in each training instance . The filtered design
variables z may be chosen as the input data from the
fine - scale mesh for having smoother distribution than the
design variables due to the effect of the density filter P.
Accordingly , output data may be chosen to be the sensitivi
ties of the objective function with respect to the filtered
design variables z within each instance . We denote ?
prediction of sensitivity G by the machine learning - based
model . Once prediction ? is solved , the prediction for
sensitivity G , denoted as ? , can be efficiently obtained based
on Equation (6) as follows :

where E ; is the strain vector at the jth integration point of
element i , and Dº is the modulus matrix of the solid material .
According to expressions (18) and (19) , G , depends on the
nodal displacement vector u , through a quadratic form deter
mined by matrix Kº , while its dependence on the element
level strain vector is a quadratic form determined by matrix
Dº . When training the DNN , a learning of the coefficients ,
or equivalently the eigenvalues and their associated eigen
vectors , occurs for matrices Kº or Dº . With respect to matrix
Kº , it is a positive semi - definite matrix with six eigenvalues
that equal 0 representing the rigid body motions . Therefore ,
the quadratic form (u) ? Kºu , in expression (18) may be
expressed as :

as a
n - 6 n (20)

0 (13) " Kºu ; = 1x [(98) " uj] + [(98) " uj] =

k = 1 k = n - 5

? = pI? (16a)

n 6

a

2

[0048] Unlike the fine - scale mesh , the structural responses
on the coarse - scale mesh are known at every optimization .
Thus , the input training data from the coarse - scale mesh is
taken as the state variables on the coarse - scale mesh .
Because all the information about the state variables is
accessible , including for example , the displacement , strain ,
and stress fields , one of state variables should be selected as
the input training data to the machine learning - based model
from the coarse - scale mesh to obtain the most accurate
prediction . In an embodiment , the nodal displacement vector
u of each coarse - scale element is selected as the state
variable based on Equation (5) . Alternatively , the strain
vectors at all the integration points of each coarse - scale
element may be used as the state variable for training input
data . For the kth coarse - scale element , k denotes a vector
collecting the strain vectors at all the integration points of
that element , namely :

Chy , where a
Cok * Yxy ; C * Yxz , CK , Vyz , Ckyt .

is the strain vector obtained at the jth integration point of the
kth coarse - scale element . The strain vector ex
computed from the nodal displacement vector uz of ele
ment k following the standard finite element procedure using
the values of the gradients of the shape functions at the jth
integration point of that element .
[0049] The following is a demonstration of rationale for
different predication accuracy obtained by training the DNN
with different sets of input data , namely nodal displacement
vector ur or strain vector Exc.k. Recall that from Equation
(5) that sensitivity G is given by :

G : = - p @ ya - (:) kºu (18)

where :
[0050] n is the total number of displacement DOFs in the
element ;
[0051] 19 ... ,, - 6 are the positive eigenvalues of Kº with
91 , ... , In - 6 being their corresponding eigenvectors ; and
[0052] In - 59 · , In are the eigenvectors associated with
the eigenvalues 2-0 .
According to the above expressions , due to the presence of
eigenvalues that equal zero ax = 0) , it is impossible to
correctly learn vectors In - 5 , 9n from the training data .
As a result , learning all the coefficients of matrix Kº with on
the nodal displacement vector becomes an ill - posed task .
Unlike matrix Kº , the Dº matrix is strictly positive definite ,
thus , learning all of its coefficients is a well - posed task .
[0053] In an embodiment , training efficiency is improved
by removing void training instances 650 when collecting
training instances , as shown in FIG . 6. Due to the nature of
topology optimization , void training instances are common
in the training data . A void training instance is referred to a
training sample with all its enclosed filtered design variables
being a zero value . In a void training instance , the exact
sensitivities of all the design variables should be zero no
matter what the input strain vector is . Typically , the void
training instances could constitute a large portion of the
training data , especially in later stages of topology optimi
zation . However , the information contained therein is quite
limited as compared to other training instances which con
tain non - zero filtered design variables . In an embodiment , a
removing strategy includes only a small fraction of ran
domly selected void instances in the training data and the
remainder is discarded . In an aspect , probability parameter
Pk is used for the probability of keeping each void instance .
For example , if a parameter value is chosen such as P = 0.1 ,
each void training instance has a 10 % chance of being
included in the training data . This proposed strategy of
removing void training instances can greatly improve the

Ck C = [81 CK = { & xxi Ck C , EK Eng ?? ?? ca KEzz .

C , can be
?

C k

US 2022/0092240 A1 Mar. 24 , 2022
7

2

efficiency of the training of the machine learning - based
model without sacrificing accuracy . In an aspect , keeping a
small number of randomly selected void instances in the
training data can improve the predication accuracy of the
DNN compared to either keeping or removing all the void
instances .
[0054] Test trials for the integrated framework of topology
optimization with machine learning - based models described
above demonstrate significant improvement in computa
tional efficiency , particularly as the mesh size increases . The
design process is significantly accelerated by selecting larger
block size NB for the coarse - scale mesh . For example , with
block size NB = 15 , the solution was achieved six times faster
than using a standard finite element analysis topology opti
mization approach .
[0055] FIG . 7 illustrates an example of a computing envi
ronment within which embodiments of the present disclo
sure may be implemented . A computing environment 700
includes a computer system 710 that may include a com
munication mechanism such as a system bus 721 or other
communication mechanism for communicating information
within the computer system 710. The computer system 710
further includes one or more processors 720 coupled with
the system bus 721 for processing the information . In an
embodiment , computing environment 700 corresponds to a
topology optimization system , in which the computer sys
tem 710 relates to a computer described below in greater
detail .
[0056] The processors 720 may include one or more
central processing units (CPUs) , graphical processing units
(GPUs) , or any other processor known in the art . More
generally , a processor as described herein is a device for
executing machine - readable instructions stored on a com
puter readable medium , for performing tasks and may com
prise any one or combination of , hardware and firmware . A
processor may also comprise memory storing machine
readable instructions executable for performing tasks . A
processor acts upon information by manipulating , analyzing ,
modifying , converting or transmitting information for use by
an executable procedure or an information device , and / or by
routing the information to an output device . A processor may
use or comprise the capabilities of a computer , controller or
microprocessor , for example , and be conditioned using
executable instructions to perform special purpose functions
not performed by a general purpose computer . A processor
may include any type of suitable processing unit including ,
but not limited to , a central processing unit , a microproces
sor , a Reduced Instruction Set Computer (RISC) micropro
cessor , a Complex Instruction Set Computer (CISC) micro
processor , a microcontroller , an Application Specific
Integrated Circuit (ASIC) , a Field - Programmable Gate
Array (FPGA) , a System - on - a - Chip (SOC) , a digital signal
processor (DSP) , and so forth . Further , the processor (s) 720
may have any suitable microarchitecture design that
includes any number of constituent components such as , for
example , registers , multiplexers , arithmetic logic units ,
cache controllers for controlling read / write operations to
cache memory , branch predictors , or the like . The micro
architecture design of the processor may be capable of
supporting any of a variety of instruction sets . A processor
may be coupled (electrically and / or as comprising execut
able components) with any other processor enabling inter
action and / or communication there between . A user inter
face processor or generator is a known element comprising

electronic circuitry or software or a combination of both for
generating display images or portions thereof . A user inter
face comprises one or more display images enabling user
interaction with a processor or other device .
[0057] The system bus 721 may include at least one of a
system bus , a memory bus , an address bus , or a message bus ,
and may permit exchange of information (e.g. , data (includ
ing computer - executable code) , signaling , etc.) between
various components of the computer system 710. The sys
tem bus 721 may include , without limitation , a memory bus
or a memory controller , a peripheral bus , an accelerated
graphics port , and so forth . The system bus 721 may be
associated with any suitable bus architecture including ,
without limitation , an Industry Standard Architecture (ISA) ,
a Micro Channel Architecture (MCA) , an Enhanced ISA
(EISA) , a Video Electronics Standards Association (VESA)
architecture , an Accelerated Graphics Port (AGP) architec
ture , a Peripheral Component Interconnects (PCI) architec
ture , a PCI - Express architecture , a Personal Computer
Memory Card International Association (PCMCIA) archi
tecture , a Universal Serial Bus (USB) architecture , and so
forth .
[0058] Continuing with reference to FIG . 7 , the computer
system 710 may also include a system memory 730 coupled
to the system bus 721 for storing information and instruc
tions to be executed by processors 720. The system memory
730 may include computer readable storage media in the
form of volatile and / or nonvolatile memory , such as read
only memory (ROM) 731 and / or random access memory
(RAM) 732. The RAM 732 may include other dynamic
storage device (s) (e.g. , dynamic RAM , static RAM , and
synchronous DRAM) . The ROM 731 may include other
static storage device (s) (e.g. , programmable ROM , erasable
PROM , and electrically erasable PROM) . In addition , the
system memory 730 may be used for storing temporary
variables or other intermediate information during the
execution of instructions by the processors 720. A basic
input / output system 733 (BIOS) containing the basic rou
tines that help to transfer information between elements
within computer system 710 , such as during start - up , may be
stored in the ROM 731. RAM 732 may contain data and / or
program modules that are immediately accessible to and / or
presently being operated on by the processors 720. System
memory 730 may additionally include , for example , oper
ating system 734 , application modules 735 , and other pro
gram modules 736. Application modules 735 may include
aforementioned modules described for FIG . 1 and may also
include a user portal for development of the application
program , allowing input parameters to be entered and modi
fied as necessary .
[0059] The operating system 734 may be loaded into the
memory 730 and may provide an interface between other
application software executing on the computer system 710
and hardware resources of the computer system 710. More
specifically , the operating system 734 may include a set of
computer - executable instructions for managing hardware
resources of the computer system 710 and for providing
common services to other application programs (e.g. , man
aging memory allocation among various application pro
grams) . In certain example embodiments , the operating
system 734 may control execution of one or more of the
program modules depicted as being stored in the data
storage 740. The operating system 734 may include any
operating system now known or which may be developed in

US 2022/0092240 A1 Mar. 24 , 2022
8

the future including , but not limited to , any server operating
system , any mainframe operating system , or any other
proprietary or non - proprietary operating system .
[0060] The computer system 710 may also include a
disk / media controller 743 coupled to the system bus 721 to
control one or more storage devices for storing information
and instructions , such as a magnetic hard disk 741 and / or a
removable media drive 742 (e.g. , floppy disk drive , compact
disc drive , tape drive , flash drive , and / or solid state drive) .
Storage devices 740 may be added to the computer system
710 using an appropriate device interface (e.g. , a small
computer system interface (SCSI) , integrated device elec
tronics (IDE) , Universal Serial Bus (USB) , or FireWire) .
Storage devices 741 , 742 may be external to the computer
system 710 .
[0061] The computer system 710 may include a user input
interface or graphical user interface (GUI) 761 , which may
comprise one or more input devices , such as a keyboard ,
touchscreen , tablet and / or a pointing device , for interacting
with a computer user and providing information to the
processors 720 .
[0062] The computer system 710 may perform a portion or
all of the processing steps of embodiments of the invention
in response to the processors 720 executing one or more
sequences of one or more instructions contained in a
memory , such as the system memory 730. Such instructions
may be read into the system memory 730 from another
computer readable medium of storage 740 , such as the
magnetic hard disk 741 or the removable media drive 742 .
The magnetic hard disk 741 and / or removable media drive
742 may contain one or more data stores and data files used
by embodiments of the present disclosure . The data store
740 may include , but are not limited to , databases (e.g. ,
relational , object - oriented , etc.) , file systems , flat files , dis
tributed data stores in which data is stored on more than one
node of a computer network , peer - to - peer network data
stores , or the like . Data store contents and data files may be
encrypted to improve security . The processors 720 may also
be employed in a multi - processing arrangement to execute
the one or more sequences of instructions contained in
system memory 730. In alternative embodiments , hard
wired circuitry may be used in place of or in combination
with software instructions . Thus , embodiments are not lim
ited to any specific combination of hardware circuitry and
software .

[0063] As stated above , the computer system 710 may
include at least one computer readable medium or memory
for holding instructions programmed according to embodi
ments of the invention and for containing data structures ,
tables , records , or other data described herein . The term
" computer readable medium ” as used herein refers to any
medium that participates in providing instructions to the
processors 720 for execution . A computer readable medium
may take many forms including , but not limited to , non
transitory , non - volatile media , volatile media , and transmis
sion media . Non - limiting examples of non - volatile media
include optical disks , solid state drives , magnetic disks , and
magneto - optical disks , such as magnetic hard disk 741 or
removable media drive 742. Non - limiting examples of vola
tile media include dynamic memory , such as system memory
730. Non - limiting examples of transmission media include
coaxial cables , copper wire , and fiber optics , including the
wires that make up the system bus 721. Transmission media

may also take the form of acoustic or light waves , such as
those generated during radio wave and infrared data com
munications .
[0064] Computer readable medium instructions for carry
ing out operations of the present disclosure may be assem
bler instructions , instruction - set - architecture (ISA) instruc
tions , machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C ++ or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user's computer ,
partly on the user's computer , as a stand - alone software
package , partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user's computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present disclosure .
[0065] Aspects of the present disclosure are described
herein with reference to illustrations of methods , apparatus
(systems) , and computer program products according to
embodiments of the disclosure . It will be understood that
each block of the illustrations , and combinations of blocks
in the illustrations , may be implemented by computer read
able medium instructions .
[0066] The computing environment 700 may further
include the computer system 710 operating in a networked
environment using logical connections to one or more
remote computers , such as remote computing device 773 .
The network interface 770 may enable communication , for
example , with other remote devices 773 or systems and / or
the storage devices 741 , 742 via the network 771. Remote
computing device 773 may be a personal computer (laptop
or desktop) , a mobile device , a server , a router , a network
PC , a peer device or other common network node , and
typically includes many or all of the elements described
above relative to computer system 710. When used in a
networking environment , computer system 710 may include
modem 772 for establishing communications over a network
771 , such as the Internet . Modem 772 may be connected to
system bus 721 via user network interface 770 , or via
another appropriate mechanism .
[0067] Network 771 may be any network or system gen
erally known in the art , including the Internet , an intranet , a
local area network (LAN) , a wide area network (WAN) , a
metropolitan area network (MAN) , a direct connection or
series of connections , a cellular telephone network , or any
other network or medium capable of facilitating communi
cation between computer system 710 and other computers
(e.g. , remote computing device 773) . The network 771 may
be wired , wireless or a combination thereof wired connec

US 2022/0092240 A1 Mar. 24 , 2022
9

tions may be implemented using Ethernet , Universal Serial
Bus (USB) , RJ - 6 , or any other wired connection generally
known in the art . Wireless connections may be implemented
using Wi - Fi , WiMAX , and Bluetooth , infrared , cellular
networks , satellite or any other wireless connection meth
odology generally known in the art . Additionally , several
networks may work alone or in communication with each
other to facilitate communication in the network 771 .
[0068] It should be appreciated that the program modules ,
applications , computer - executable instructions , code , or the
like depicted in FIG . 7 as being stored in the system memory
730 are merely illustrative and not exhaustive and that
processing described as being supported by any particular
module may alternatively be distributed across multiple
modules or performed by a different module . In addition ,
various program module (s) , script (s) , plug - in (s) , Applica
tion Programming Interface (s) (API (s)) , or any other suit
able computer - executable code hosted locally on the com
puter system 710 , the remote device 773 , and / or hosted on
other computing device (s) accessible via one or more of the
network (s) 771 , may be provided to support functionality
provided by the program modules , applications , or com
puter - executable code depicted in FIG . 7 and / or additional
or alternate functionality . Further , functionality may be
modularized differently such that processing described as
being supported collectively by the collection of program
modules depicted in FIG . 7 may be performed by a fewer or
greater number of modules , or functionality described as
being supported by any particular module may be supported ,
at least in part , by another module . In addition , program
modules that support the functionality described herein may
form part of one or more applications executable across any
number of systems or devices in accordance with any
suitable computing model such as , for example , a client
server model , a peer - to - peer model , and so forth . In addition ,
any of the functionality described as being supported by any
of the program modules depicted in FIG . 7 may be imple
mented , at least partially , in hardware and / or firmware
across any number of devices .
[0069] It should further be appreciated that the computer
system 710 may include alternate and / or additional hard
ware , software , or firmware components beyond those
described or depicted without departing from the scope of
the disclosure . More particularly , it should be appreciated
that software , firmware , or hardware components depicted
as forming part of the computer system 710 are merely
illustrative and that some components may not be present or
additional components may be provided in various embodi
ments . While various illustrative program modules have
been depicted and described as software modules stored in
system memory 730 , it should be appreciated that function
ality described as being supported by the program modules
may be enabled by any combination of hardware , software ,
and / or firmware . It should further be appreciated that each of
the above - mentioned modules may , in various embodi
ments , represent a logical partitioning of supported func
tionality . This logical partitioning is depicted for ease of
explanation of the functionality and may not be representa
tive of the structure of software , hardware , and / or firmware
for implementing the functionality . Accordingly , it should be
appreciated that functionality described as being provided
by a particular module may , in various embodiments , be
provided at least in part by one or more other modules .
Further , one or more depicted modules may not be present

in certain embodiments , while in other embodiments , addi
tional modules not depicted may be present and may support
at least a portion of the described functionality and / or
additional functionality . Moreover , while certain modules
may be depicted and described as sub - modules of another
module , in certain embodiments , such modules may be
provided as independent modules or as sub - modules of other
modules .
[0070] Although specific embodiments of the disclosure
have been described , one of ordinary skill in the art will
recognize that numerous other modifications and alternative
embodiments are within the scope of the disclosure . For
example , any of the functionality and / or processing capa
bilities described with respect to a particular device or
component may be performed by any other device or
component . Further , while various illustrative implementa
tions and architectures have been described in accordance
with embodiments of the disclosure , one of ordinary skill in
the art will appreciate that numerous other modifications to
the illustrative implementations and architectures described
herein are also within the scope of this disclosure . In
addition , it should be appreciated that any operation , ele
ment , component , data , or the like described herein as being
based on another operation , element , component , data , or the
like can be additionally based on one or more other opera
tions , elements , components , data , or the like . Accordingly ,
the phrase " based on , ” or variants thereof , should be inter
preted as “ based at least in part on . ”
[0071] The block diagrams in the Figures illustrate the
architecture , functionality , and operation of possible imple
mentations of systems , methods , and computer program
products according to various embodiments of the present
disclosure . In this regard , each block in the block diagrams
may represent a module , segment , or portion of instructions ,
which comprises one or more executable instructions for
implementing the specified logical function (s) . In some
alternative implementations , the functions noted in the block
may occur out of the order noted in the Figures . For
example , two blocks shown in succession may , in fact , be
executed substantially concurrently , or the blocks may
sometimes be executed in the reverse order , depending upon
the functionality involved . It will also be noted that each
block of the block diagrams illustration , and combinations
of blocks in the block diagrams illustration , can be imple
mented by special purpose hardware - based systems that
perform the specified functions or acts or carry out combi
nations of special purpose hardware and computer instruc
tions .
What is claimed is :
1. A system for accelerating topology optimization of a

design , comprising :
a topology optimization module configured to compute

state variables of the topology using a two - scale topol
ogy optimization for a number of optimization steps
using design variables mapped to a fine - scale mesh and
the state variables mapped to a coarse - scale mesh ,
wherein the state variables are computed using finite
element analysis based on a simulated load and bound
ary conditions on the objective design and are accu
mulated with corresponding design variables as history
data ;

a machine learning module comprising a machine learn
ing - based model having a tunable number of hidden
layers configured to :

US 2022/0092240 A1 Mar. 24 , 2022
10

a

a

a

execute an initial training of the machine learning
based model using the history data for a first number
of optimization steps (W1) ;

determine a predicted sensitivity value related to the
design variables using the trained machine learning
based model for each of a second number of opti
mization steps (NF) ;

execute an online update of the machine learning - based
model using updated history data for a third number
of optimization steps (WU) ;

update the design variables based on the predicted
sensitivity value for each optimization step ;

and
recursively repeat the optimization steps until the

updated design variables are within a tolerance of
prior updated design variables ;

wherein the topology optimization module executes the
two - scale optimization only prior to and during the
first number of optimization steps (W) that generate
the history data for the initial training of the machine
learning - based model and during optimization steps
for a duration of the third number of steps (W)
initiated periodically at an update frequency equal to
the second number of optimization steps (N2) for
generating the updated history data .

2. The system of claim 1 , further comprising :
a fine - scale mapping module configured to define the

fine - scale mesh using hexahedral elements to represent
an objective topology of the design ; and

a course - scale mapping module configured to define the
course - scale mesh of the hexahedral elements , wherein
the fine - scale mesh is completely embedded in the
course - scale mesh .

3. The system of claim 2 , wherein design variables on the
fine - scale mesh are updated every optimization step and
state variables are computed on the fine - scale mesh only
when collecting history data for training the machine learn
ing - based model .

4. The system of claim 1 , wherein the topology optimi
zation module is further configured to filter the design
variables using a filter matrix (P) for smoothing the distri
bution .

5. The system of claim 1 , wherein the state variables
include at least one of :

displacement of coarse - scale mesh elements ,
strain on coarse - scale mesh elements , and
stress on coarse - scale mesh elements .
6. The system of claim 1 , wherein the state variables are

computed using strain vectors at all integration Gauss points
of each coarse - scale mesh element .

7. A method for accelerating topology optimization of a
design , comprising :

computing state variables of the topology using a two
scale topology optimization for a number of optimiza
tion steps using design variables mapped to a fine - scale

mesh and the state variables mapped to a coarse - scale
mesh , wherein the state variables are computed using
finite element analysis based on a simulated load and
boundary conditions on the objective design and are
accumulated with corresponding design variables as
history data ;

executing an initial training of a machine learning - based
model using the history data for a first number of
optimization steps (W) ;

determining a predicted sensitivity value related to the
design variables using the trained machine learning
based model for each of a second number of optimi
zation steps (NP) ;

executing an online update of the machine learning - based
model using updated history data for a third number of
optimization steps (WU) ;

updating the design variables based on the predicted
sensitivity value for each optimization step ;

and
recursively repeating the optimization steps until the

updated design variables are within a tolerance of prior
updated design variables ;

wherein the two - scale optimization is executed only prior
to and during the first number of optimization steps
(W) that generate the history data for the initial train
ing of the machine learning - based model and during
optimization steps for a duration of the third number of
steps (WU) initiated periodically at an update frequency
equal to the second number of optimization steps (NP)
for generating the updated history data .

8. The method of claim 7 , further comprising
defining the fine - scale mesh using hexahedral elements to

represent an objective topology of the design ;
wherein the fine - scale mesh is completely embedded in

the course - scale mesh .
9. The method of claim 7 , wherein design variables on the

fine - scale mesh are updated every optimization step and
state variables are computed on the fine - scale mesh only
when collecting history data for training the machine learn
ing - based model .

10. The method of claim 7 , further comprising filtering the
design variables using a filter matrix (P) for smoothing the
distribution .

11. The method of claim 10 , wherein the state variables
include at least one of :

displacement of coarse - scale mesh elements ,
strain on coarse - scale mesh elements , and
stress on coarse - scale mesh elements .
12. The method of claim 7 , wherein the state variables are

computed using strain vectors at all integration Gauss points
of each coarse - scale mesh element .

*

