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SYSTEM FOR MACHINE LEARNING - BASED 
ACCELERATION OF A TOPOLOGY 

OPTIMIZATION PROCESS 

TECHNICAL FIELD 
[ 0001 ] This application relates to topology optimization 
useful for engineering shapes of material in the context of 
withstanding various operating conditions . More particu 
larly , this application relates to machine learning - based 
acceleration of a topology optimization process . 

following FIGURES , wherein like reference numerals refer 
to like elements throughout the drawings unless otherwise 
specified . 
[ 0006 ] FIG . 1 is a block diagram for an example of a 
system for accelerated simulation setup in accordance with 
embodiments of the disclosure . 
[ 0007 ] FIG . 2 illustrates an example of a method for 
accelerated simulation setup in accordance with embodi 
ments of the disclosure . 
[ 0008 ] FIG . 4 illustrates an example of coarse - scale and 
fine - scale meshes for a cantilever beam design problem . 
[ 0009 ] FIG . 3 shows an example architecture of a fully 
connected DNN model according to embodiments of this 
disclosure . 
[ 0010 ] FIG . 5 illustrates a mapping of fine - scale elements 
to a coarse - scale element in accordance with embodiments 
of the disclosure . 
[ 0011 ] FIG . 6 illustrates a 2D representation of two mesh 
scales for a cantilever beam design problem . 
[ 0012 ] FIG . 7 shows an exemplary computing environ 
ment within which embodiments of the disclosure may be 
implemented . 

a 

DETAILED DESCRIPTION 

BACKGROUND 
[ 0002 ] Topology Optimization has gained a lot of interest 
in engineering for its ability of generating automatically 
innovative shapes , such as in the field of additive manufac 
turing , that can withstand the operating conditions typical of 
the context in which the engineering component is utilized , 
while optimizing on one or more objectives . However , the 
traditional approach to perform topology optimization is 
computationally very expensive , as it requires solving a 
multi - physics problem multiple times to evaluate both the 
physics variables and sensitivity during the optimization 
cycle . Finite elements analysis ( FEA ) , which is based on the 
finite element method ( FEM ) , it is a technique that makes 
use of computers to predict the behavior of varied types of 
physical systems such as deformation of solids , heat con 
duction and fluid flow . Geometry of an object is defined by 
elements of a mesh and analyzed for external influences ( i.e. , 
boundary conditions ) . 
[ 0003 ] Parallel computing or graphical processing unit 
( GPU ) based programming are sometimes employed for 
topology optimization to reduce the generation time of one 
optimized design . Some other approaches have been found 
in the literature that try to use past data acquired during past 
runs of the topology optimization study to speed up a new 
instance of the same topology optimization case . However , 
such approaches have limited applicability as the informa 
tion learned from past cases are not likely to transfer to new 
optimization cases which may vastly differ with the past 

a 

ones . 

SUMMARY 

[ 0004 ] A system and method for accelerating topology 
optimization of a design includes a topology optimization 
module configured to determine state variables of the topol 
ogy using a two - scale topology optimization using design 
variables for a coarse - scale mesh and a fine - scale mesh for 
a number of optimization steps . A machine learning module 
includes a fully connected deep neural network having a 
tunable number of hidden layers configured to execute an 
initial training of a machine learning - based model using the 
history data , determine a predicted sensitivity value related 
to the design variables using the trained machine learning 
model , execute an online update of the machine learning 
based model using updated history data , and update the 
design variables based on the predicted sensitivity value . 
The model predictions reduce the number of two - scale 
optimizations for each optimization step to occur only for 
initial training and for online model updates . 

[ 0013 ] Methods and systems are disclosed for a topology 
optimization process enhanced by an algorithm that learns 
from a current iteration of the topology optimization process 
rather than relying on past data . A machine learning - based 
topology optimization framework provides a general 
approach which greatly accelerates the design process of 
large - scale problems in 3D . The machine learning based 
model is trained using the history data of topology optimi 
zation , which data may be collected during topology opti 
mization and , therefore , does not require a separate stage for 
collecting samples to train machine learning - based models . 
Thus , the training occurs in real time during the topology 
optimization process rather than prior to it . The proposed 
framework adopts a tailored two - scale topology optimiza 
tion formulation and introduces a localized training strategy . 
The localized training strategy can improve both the scal 
ability and accuracy of the proposed framework . The pro 
posed framework incorporates an online update scheme 
which continuously improves the accuracy of the machine 
learning module ( or surrogate ) by updating based on new 
data generated from physical simulations . Implementation 
of such a framework for topology optimization results in 
reduction of computational costs and significant time sav 
ings , particularly evident for large - scale and multi - physics 
( e.g. thermal - flow ) problems . 
[ 0014 ] A topology optimization formulation for the clas 
sical compliance - minimization problem is briefly described 
as follows . Herein , it is assumed that the design domain is 
discretized by a finite element mesh and a standard density 
based approach is adopted , where the material distribution is 
characterized by an element - wise constant function . 
[ 0015 ] An objective is to find the structural topology 
which has the most stiffness under a prescribed load and 
boundary conditions ( i.e. , least possible displacement for the 
given boundary conditions under the prescribed load ) . For 
example , multi - variable analysis for optimizing the topology 
may involve balancing a variable displacement of points on 
a designed body to measure stiffness against a volume 
constraint that minimizes the material cost to construct the 
designed body . In other words , a preferred design may have 

a 
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BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] Non - limiting and non - exhaustive embodiments of 
the present embodiments are described with reference to the 
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tion is needed to perform the design variable update . Sen 
sitivity vector G with respect to vector z , and sensitivity 
vector G for filtered design variable vector z is computed by 
the following equations : 

significant voids to minimize material while not sacrificing 
too much stiffness necessary to support the design load . 
Global measure of displacements is the “ compliance ” , or 
strain energy , of the structure . For a given finite element 
mesh with N nodes and M elements , the applied global force 
vector is denoted as fER ANX1 . The vector of design vari 
ables z , whose ith component zi is the design variable 
associated with the ith element . Within this setting , an 
objective for topology optimization is to minimize compli 
ance and can be expressed by the following : 

ac ( 5 ) Gi = :-p ( 7 : ) p- | ( u ; ) " k?u ;, dzi 

G = PTG ( 6 ) 

min c ( x ) = f ' ( 2 ) ( 1 ) = 

where u , the displacement vector of the ith element . 
In contrast , the sensitivity of the volume constraint function 
gv is simply given by the following : Z 

s.t. gv ( z ) = v * 7 - Vmax 50 
0 < 1 Vie { 1 , M } 

ô gv ( 7 ) with K ( 7 ) u ( x ) = f and z = Pz , = Ptv . az 

where : c ( z ) is the compliance function , 
[ 0016 ] ( Z ) ER ( dNxl ) is the global displacement vector , 
[ 0017 ] v is a vector whose ith component v ; is the volume 
of element i , 
[ 0018 ] gv is a volume constraint function , 
[ 0019 ] Z is a filtered design variable vector , 
[ 0020 ] P is the density filter matrix , 
[ 0021 ] K is the global stiffness matrix , and 
[ 0022 ] Vmax is the maximum allowable volume imposed 
on the design . 
To ensure the well - posedness of the formulation and impose 
a minimum length scale on the design , the filtered design 
variable vector z is used , where P is the density filter matrix 
whose ( ij ) th component is given by : 

Once the sensitivities of both the objective and constraint 
functions are obtained , a Modified Optimality Criteria 
( MOC ) method ( e.g. , as proposed by Ma et al . , 1993 ) is 
applied to update the design variables . The MOC design 
update algorithm is able to handle sensitivities with positive 
values , which could potentially occur in the machine learn 
ing - based framework of this disclosure . It should be noted 
that the proposed machine learning - based framework also 
works with any gradient - based design update scheme ( e.g. , 
the Method of Moving Asymptotes ( MMA ) by Svanberg , 
1987 ) . For a design variable vector z ( k ) at the optimization 
step k , the MOC method updates the design variable vector 
for the optimization step k + 1 as follows : 

( 8 ) 
( ) ( 2 ) z ) ( k + 1 ) max ( 0 , R - | ** – x D ) 

Ekes ( j ) ( R – [ XX – x } ] ) ' ( P ) j 

max / min , 2 - m ) if zB s maxl wmin , 2 ) – m ) 
min ( 1 , zky + m ) if min 1 , + m ) s ( BA ) , 

z ( B?k ) ? otherwise 

zi 

where m is the move limit and n is the damping coefficient . 
The coefficient B ; * ) is given by : ( k ) 

where R is the radius of the density filter , S ( j ) denotes the set 
of indices of elements whose centroids fall within radius R 
of the centroid of the jth element , and x , * and x , * stand for 
the centroid of the ith and jth elements , respectively . 
[ 0023 ] The standard Solid Isotropic Microstructures with 
Penalization ( SIMP ) scheme is adopted to penalize the 
intermediate densities throughout . In the SIMP scheme , the 
global stiffness matrix K is interpolated as : 

( 9 ) 
BK ) = G ; ( z ( k ) ) 

[ E ; ( P ) ;; V ; ] A ' 

where u is a shift parameter taken to be the maximum value ? 
of positive sensitivities , given by the following : K ( z ) = UE ; k ( 3 ) = 

( 10 ) G ( zk ) u = max 0 , max 
? ; ( P ) : V ; » = 2 ) ( , 0 

( k 1 

where : k , " is the element stiffness matrix for the jth element 
when the material is solid , 

[ 0024 ] U represents the standard assembly procedure in 
the finite element method ( FEM ) , and 

[ 0025 ] E ; is interpolated stiffness of element j normal 
ized by the Young's modulus of the solid material given 
by : 
E ; = Emin + ( 1 + Emin ) y 

where : Emin is Ersatz stiffness ( e.g. , 10-4 ) , and p is the SIMP 
penalization parameter ( e.g. , p = 3 ) . The sensitivity informa 

and where A > 0 is the Lagrangian multiplier found using a 
bisection algorithm ( e.g. , Bendsoe and Sigmund , 2013 ) such 
that the volume constraint function gv ( z ( k + 1 ) ) = 0 is satisfied . 
[ 0026 ] FIG . 1 shows a block diagram of a topology 
optimization system in accordance with embodiments of this 
disclosure . In an embodiment , topology optimization system 
100 includes a processor 105 and memory 110 on which is 
stored a topology optimization module 111 and a machine 
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F 

F 

parameter N , is used to control the frequency of the online 
update , meaning that the online update is performed every 
N , optimization steps after the initial prediction step ( N , + 
W1 ) . In the online update of the machine learning - based 
model , the data is collected from standard finite element 
analysis of previous steps for a defined window size Wu . 

F 

learning module 115. To execute a two - scale topology 
optimization , a coarse scale mapping module 112 and fine 
scale mapping module 114 generate coarse - scale and fine 
scale mapping of topology elements useful for solving state 
equations when performing nodal displacement analyses on 
a test model for the topology design . The topology optimi 
zation system 100 synergistically integrates machine learn 
ing with topology optimization to achieve accelerated and 
improved designs . Using an iterative process involving 
hundreds of steps , the topology optimization is performed 
where for each new design , the structural response of the 
current design needs to be solved to compute the sensitivity 
of the objective function . For large - scale topology optimi 
zation , this procedure is computationally intensive . 
[ 0027 ] A large amount of historical data ( e.g. , design 
variables , their corresponding sensitivities , and displace 
ment solutions ) is generated during topology optimization , 
but typically , not all of the historical data is fully explored 
and used . In view of this , a universal machine learning 
approach is proposed herein to learn the mapping between 
the current design and their corresponding sensitivities from 
historical data . Once the machine learning model is trained , 
it can be employed in the later optimization steps to directly 
predict the sensitivities based on the current design without 
solving the state equations . 
[ 0028 ] The training of the machine learning module 115 
consists of two stages : an initial training stage and several 
online update stages . To control when to start each stage , 
parameters for initial training step N , and online update 
frequency Ny are introduced . Additionally , to control the 
amount of history data used in training , parameters are 
introduced for window size W , for steps of initial training 
and window size Wy for steps of an online update . As for the 
machine learning - based model , a fully - connected Deep 
Neural Network ( DNN ) may be employed for machine 
learning module 115. Other machine learning - based models , 
such as the Convolutional Neural Network ( CNN ) , can also 
be adopted by the machine learning module 115 . 
[ 0029 ] For initial training of the machine learning module 
115 , the optimization starts with a standard finite element 
analysis ( e.g. , solving the state equation and computing the 
sensitivity based on Eq . ( 6 ) in the first N , + W - 1 optimiza 
tion steps , and collect the history data from the last W , steps 
( i.e. step N , to step N , + W - 1 ) to initially train a machine 
learning - based model . In an aspect , data can be discarded 
from step 1 to step N - 1 because for a small initial set of 
iterations , results generally have significant variations and 
are biased to the initial guess . Subsequently , starting from 
optimization step N , + W ,, instead of following the standard 
finite element analysis , the trained machine learning - based 
model is applied to directly predict the sensitivities . By 
doing this , the computationally expensive task of solving the 
state equations and computing the sensitivities can be 
avoided . 

( 0030 ) To improve accuracy of the predicted sensitivity in 
the long term by machine learning module 115 , the machine 
learning - based model is repeatedly updated online by peri 
odically switching back to the standard finite element analy 
sis for one optimization step to generate new data . The 

[ 0031 ] FIG . 2 is an illustration of an example of the 
integrated topology optimization and machine learning pro 
cess in accordance embodiments of this disclosure . A set of 
topology optimization steps 201 are shown , where update 
parameter selections include initial training step N = 10 , 
initial training window size W = 5 , update frequency Nr = 10 
and update window size Wy = 2 . Accordingly , the optimiza 
tion starts with the standard finite element analysis optimi 
zation procedure in the first 14 steps and uses the data 
generated from step 10 to step 14 to train the machine 
learning - based model . Starting from optimization step 15 , 
the machine learning - based model is used to predict the 
sensitivity . Because the online update frequency is N = 10 , 
the process switches back to the standard finite element 
analysis optimization procedure at optimization step 25 to 
generate new data for one step . Based on setting window 
W = 2 , the data in optimization steps 14 and 25 generated by 
standard finite element analysis optimization are used as the 
input for a first online update the machine learning - based 
model , which are the last two steps in which finite element 
analysis data was retrieved . As alternative illustrative 
example for W = 5 , then data from steps 11-14 and 25 would 
be used for the update , being the last five steps in which 
finite element analysis data was generated and obtained . The 
updated machine learning - based model is used to predict the 
sensitivity in the following steps and to recursively update 
the model every 10 steps according with update frequency 
Nr = 10 ) until either the convergence criteria are fulfilled , or 
the maximum allowable step is reached . As shown in FIG . 
2 , the 2nd online update occurs at step 35 , using standard 
finite element analysis data from steps 25 and 35 to update 
the machine learning - based model . 

F 

1 U 

U 

1 [ 0032 ] In an embodiment , a two - scale topology optimiza 
tion setup , a coarse - scale and a fine - scale , is applied to the 
topology optimization framework . This allows full use of the 
local information in the historical data and ensures that the 
machine learning - based model is both scalable and able to 
make accurate sensitivity predictions . On the fine - scale 
mesh , all the design variable updates are performed for 
every optimization step but only solve the state equations in 
those steps that collect the training data . On the other hand , 
no design variable update is performed on the coarse - scale 
mesh , but the state equation is solved at every optimization 
step based on the stiffness distribution mapped from fine 
scale mesh . Strain information on the coarse - scale mesh , 
together with the filtered design variables on the fine - scale 
mesh , are used as inputs to the machine learning - based 
model . Algorithm 1 , below , summarizes the topology opti 
mization described above . 
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9 = 

Algorithm 1 : Proposed framework of universal 
machine learning for topology optimization . 

1 Input : z ( 0 ) , R , T ol , Itermax , NO.NF , WO and W , 
2 Form filter matrix P : 
3 for k = 0 to Itermax do 
4 | Solve the state equation on coarse - scale mesle 
5 | if k < 10+ WO or mod ( max ( k – NO - WO , 10 Np ) = 0 ) then 
6 | | Solve the state equation on fine - scale mest 
7 || Evaluate sensitivities G and G based on ( 5 ) and ( 60 
8 | | Store history dat : 

|| in k = N + W © - 1 then 
10 ||| Initial training of the machine learning model using last w step of collected dat 
11 | | else if mod ( max ( k - N- W © , 1 ) Np ) = 0 then 
12 || | Perform online update of the machine learning model using last Wy step of collected 

||| dat : 
13 || end 
14 | else 

15 || Use the machine learning model to predict CO 
16 ! | Compute the predicted sensitivity as ? = PO?O 
17 | end 
18 | Update zk 1 ) using ( 8 ) based on either G or CO 
19 end 
20 if @zk 1 ) - zk2000 s T ol then 
21 | Output : optimization converged and plot final desigr 
22 end 

= 

indicates text missing or illegible when filed 

2 on fine - scale mesh 301 , which is generated by fine - scale 
mapping module 114. For example , fine - scale elements 301 
are mapped to coarse - scale mesh element 302 divided into 
sectors 302a , 302b , 302c , 302d according to shading of 
corresponding quadrant clusters of the fine - scale mesh ele 
ments 301 , where the shading represents state variable 
values ( e.g. , strain ) computed by the topology optimization 
module 111 for the current optimization step . The output 
layer 313 is obtained by applying a linear transformation of 
the output of the last hidden layer as : 

y = Wohn ( 12 ) 

where W is also a weight matrix , which will also be 
learned according to the training data . Herein , the output y 
is chosen as the sensitivity of the compliance with respected 
to the filtered design variables . In an aspect , a Parametric 
Rectified Linear Unit ( PRELU ) is used as the activation 
function , which generalizes the traditional rectified unit and 
is shown to achieve impressive performance on image 
classification tasks . The PRELU activation function is 
defined as follows : 

out 

[ 0033 ] In embodiments of this disclosure , machine learn 
ing module 115 employs fully - connected Deep Neural Net 
works ( DNNs ) as the universal function approximator that 
takes the input from the two - scale topology optimization 
module 111 and predicts the sensitivities of the compliance 
function . The topology optimization system 100 is indepen 
dent of any specific implementation of the machine learning 
module 115. Thus , other machine learning - based models , 
such as Convolutional Neural Networks ( CNNs ) and 
Residual Networks ( ResNets ) , as well as their variants like 
the Densely Connected Convolutional Networks 
( DenseNets ) can be directly applied in the proposed frame 
work . 
[ 0034 ] FIG . 3 shows an example architecture of a fully 
connected DNN model according to embodiments of this 
disclosure . In an embodiment , the DNN model consists of 
one input layer 311 , multiple hidden layers 312 , and one 
output layer 313. Each hidden layer has a set of neurons , 
each of which takes an input value and performs a non - linear 
activation to generate its output value . The number of hidden 
layers 312 is a hyper - parameter and can be tuned according 
to the trade - off between the computational complexity and 
model accuracy . Let us denote Nn as the total number of 
hidden layers 312 in the DNN model . During prediction , 
each hidden layer takes the output of previous adjacent layer 
as input , and performs feed - forward computation as follows : 

h ; = o ( W / hi - 1 + bi , i = { 1 , ... , N } ( 11 ) 

where h , is the output of the ith hidden layer ; 
[ 0035 ] Wi is the weight vector ; 
[ 0036 ] bi is the bias of the ith layer that can be randomly 

initialized and then optimized during model training ; 
and 

[ 0037 ] 0 ( ) is a non - linear activation function . 
[ 0038 ] By convention , ho designates the input of the input 
layer 311 , which is taken to be a vector collecting the filtered 
design variables ž ; from the fine - scale mesh 301 and strain 
vectors from the coarse - scale mesh 302. Coarse - scale map 
ping module 112 generates the coarse - scale mesh 302 based 

a 

0 ( x ) = max ( 0 , x ) + a * min ( 0 , x ) ( 13 ) 
h 

where : ? is a learnable parameter , and 
[ 0039 ] x is the input of each neuron in the DNN . 
To train the DNN model , the training data is collected from 
full finite element evaluations in the topology optimization 
as the supervision signal . In an embodiment , an Adam 
optimization algorithm is used during the training for sto 
chastic gradient - based optimization . In the initial training , 
all the learnable parameters in the DNN are randomly 
initialized . In each subsequent online update , the optimized 
parameters are taken from the last training step as an initial 
estimation and are updated based on the new training data 
received . 
[ 0040 ] The proposed integrated framework of this disclo 
sure achieves both accuracy and scalability so that it can be 
efficiently applied to design problems of any size . Instead of 
applying brute force to the machine learning - based model to 
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computed as the weighted average of the interpolated stiff 
ness of all the fine - scale elements that fall within in the 
sub - region , namely , k 

( 14 ) Cyk ? » Wi Ei , 

? . ok W ; 
lied ieg 

where E ; is the interpolated stiffness of element i in the 
fine - scale mesh , and w , et is the weight assigned to E ; in 
sub - region Q. If element i in the fine - scale mesh falls completely within Q. " , then the weight is taken to be w ,. " i = 1 . 
Otherwise , if element i falls into a total of n sub - regions , the 
weight is taken to be 

a 

W ; = 

n 

for all sub - regions Q * With the stiffness mapping and 
assuming that all coarse - scale elements are identical , the 
global stiffness matrix Kº on the coarse - scale mesh is 
computed as : 

ng ( 15 ) * = US6 UI * ( B5 ) ! = EF * ( B % ) D.By 

learn the mapping between the filtered design variables and 
their corresponding sensitivities , the topology optimization 
formulations are tailored to make best use of the data 
generated in its history . 
[ 0041 ] According to Equations ( 5 ) and ( 6 ) , the sensitivity 
of each element depends on both the design variable and the 
state variables ( e.g. , nodal displacements ) of that element . 
However , the information about the state variables of each 
element is not available unless the state equation is solved . 
In order to provide sufficient information to the machine 
learning - based model and , at the same time , avoid the most 
time - consuming step of solving the state equation , a topol 
ogy optimization formulation with two discretization levels 
is introduced herein : a coarse - scale mesh and a fine - scale 
mesh . As mentioned , the design variables z ( and the corre 
sponding filtered design variables 2 ) live on the fine - scale 
discretization and are updated every optimization step . 
However , on the fine - scale mesh , the state equations are only 
solved in those optimization steps when collecting training 
data for the machine learning - based model . One the con 
trary , on the coarse - scale mesh , no optimization is per 
formed , but the state equation is solved at every optimization 
step to provide information about state variables to be fed to 
the machine learning - based model . 
[ 0042 ] FIG . 4 illustrates an example of coarse - scale and 
fine - scale meshes for a cantilever beam design problem . 
Although FIG . 4 depicts a 2D illustration , all numerical 
examples presented herein focus on 3D problems . Topology 
of a 3D cantilever beam 401 is represented by coarse - scale 
mesh 412 and fine - scale mesh 411 , each comprising regular 
hexahedral ( brick ) finite elements with linear displacement 
interpolations and it is assumed that the fine - scale mesh 411 
is fully embedded in the coarse - scale mesh 412. Under this 
assumption and because of the regularity of the two meshes 
411 , 412 , every element in the coarse - scale mesh 412 
contains the same number of elements in the fine - scale mesh 
411. Accordingly , block size NB is a defined parameter that 
quantifies how many fine - scale elements are contained on 
each side of a coarse - scale mesh element . For example , the 
illustration in FIG . 4 has a block size of NB = 5 , meaning 
every element in the coarse - scale mesh 412 constrains 
5x5 = 25 elements of fine - scale mesh 411 . 
[ 0043 ] FIG . 5 illustrates a mapping of fine - scale elements 
to a coarse - scale element in accordance with embodiments 
of the disclosure . Because the design update is only per 
formed on the fine - scale mesh , the stiffness distribution of 
the fine - scale mesh is mapped to the coarse - scale mesh at 
every optimization step . As an example of mapping , a 5x5 
portion of fine scale elements 511 are shown in FIG . 5 to be 
mapped to a single coarse - scale element 512. This mapping 
process can be repeated to map the entire array of fine - scale 
mesh elements of the topology to respective coarse scale 
elements . The mapping is defined in the following manner . 
For a given coarse - scale finite element 512 with nodes 531 , 
532 , 533 , 534 and a total of ng integration Gauss points 521 , 
522 , 523 , 524 , the coarse - scale finite element 512 is divided 
into a total of ng sub - regions and each sub - region is asso 
ciated with one of its integration Gauss points 521 , 522 , 523 , 
524. Herein , for a 2D analysis , ng = 4 as shown in FIG . 5 , and 
for a 3D analysis , ng = 8 . In addition , for coarse - scale finite 
element k , each sub - region Q , ( = 1 , ... , 4 in 2D , or j = 1 , . 

8 in 3D ) is associated with the jth Gauss point . Under this 
convention , the mapped stiffness at the jth integration point 
of coarse - scale element k , which is denoted as E , CK , is 

a 

where Do is the constitutive matrix of the solid phase , and 
B ; and Jº are the strain - displacement matrix and the Jaco 
bian of iso - parametric mapping at the jth integration point of 
a coarse - scale element , respectively . The nodal displacement 
vector u of the coarse - scale mesh can then be obtained by 
solving the state equation as 

UC = K9 ( 16 ) 

where fº is the applied force vector on the coarse - scale 
mesh . 
[ 0044 ] Next described are embodiments for integration of 
the machine learning module and two - scale topology opti 
mization . To promote a more scalable framework , a local 
ized training strategy is applied for the machine learning 
based model which capitalizes the main features of the 
two - scale topology optimization formulation . Instead of 
treating each global design as an individual training sample , 
each element is viewed in the coarse - scale mesh together 
with its enclosed fine - scale elements as an independent 
training instance . 
[ 0045 ] FIG . 6 illustrates a 2D representation of two mesh 
scales for a cantilever beam design problem . The localizing 
training strategy provides advantages compared against a 
global strategy . The global design of a cantilever beam 
design consisting of a mesh of fine - scale elements 610 is 
decomposed into local instances 620. Localized instances 
are arranged from first coarse - scale instance 621 to last 
instance 629 , and collected as training instances 630 , with 
instance 631 corresponding to element 621 , and training 
instance 639 corresponding to localized instance 629. By 
localizing the training input data , the total number and 
diversity of the training samples for the fully - connected 
DNN is significantly increased . From a machine learning 

a 

a 

C , 
3 
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where Kº is the local stiffness associated with solid materials 
that is identical for each element . Alternatively , sensitivity G 
can be expressed in terms of element - level strain vectors , 

ng ( 19 ) 
G ; = – p ( z ; ] p - 1 [ ( € ; ) " Dºcj ] = 

j = 1 

perspective , more diverse training samples can provide more 
accurate predictions . Also , localizing the training input 
allows bounding the size as well as memory requirement of 
the fully - connected DNN for problems of any size . Other 
wise , the size of the fully - connected DNN and its associated 
memory requirement will increase as the size of the problem 
increases , leading to an unscalable and inefficient machine 
learning - based model . 
[ 0046 ] With the localized training strategy , a proper con 
stitution of the training data for the machine learning - based 
model achieves accurate predictions . Each training sample is 
constructed based on the dependence of sensitivity and the 
availability of information in the two mesh levels . 
[ 0047 ] In an embodiment , the training data from the 
fine - scale mesh is the design variables z ( or closely - related 
variables ) in each training instance . The filtered design 
variables z may be chosen as the input data from the 
fine - scale mesh for having smoother distribution than the 
design variables due to the effect of the density filter P. 
Accordingly , output data may be chosen to be the sensitivi 
ties of the objective function with respect to the filtered 
design variables z within each instance . We denote ? 
prediction of sensitivity G by the machine learning - based 
model . Once prediction ? is solved , the prediction for 
sensitivity G , denoted as ? , can be efficiently obtained based 
on Equation ( 6 ) as follows : 

where E ; is the strain vector at the jth integration point of 
element i , and Dº is the modulus matrix of the solid material . 
According to expressions ( 18 ) and ( 19 ) , G , depends on the 
nodal displacement vector u , through a quadratic form deter 
mined by matrix Kº , while its dependence on the element 
level strain vector is a quadratic form determined by matrix 
Dº . When training the DNN , a learning of the coefficients , 
or equivalently the eigenvalues and their associated eigen 
vectors , occurs for matrices Kº or Dº . With respect to matrix 
Kº , it is a positive semi - definite matrix with six eigenvalues 
that equal 0 representing the rigid body motions . Therefore , 
the quadratic form ( u ) ? Kºu , in expression ( 18 ) may be 
expressed as : 

as a 
n - 6 n ( 20 ) 

0 ( 13 ) " Kºu ; = 1x [ ( 98 ) " uj ] + [ ( 98 ) " uj ] = 

k = 1 k = n - 5 

? = pI? ( 16a ) 

n 6 

a 

2 

[ 0048 ] Unlike the fine - scale mesh , the structural responses 
on the coarse - scale mesh are known at every optimization . 
Thus , the input training data from the coarse - scale mesh is 
taken as the state variables on the coarse - scale mesh . 
Because all the information about the state variables is 
accessible , including for example , the displacement , strain , 
and stress fields , one of state variables should be selected as 
the input training data to the machine learning - based model 
from the coarse - scale mesh to obtain the most accurate 
prediction . In an embodiment , the nodal displacement vector 
u of each coarse - scale element is selected as the state 
variable based on Equation ( 5 ) . Alternatively , the strain 
vectors at all the integration points of each coarse - scale 
element may be used as the state variable for training input 
data . For the kth coarse - scale element , k denotes a vector 
collecting the strain vectors at all the integration points of 
that element , namely : 

Chy , where a 
Cok * Yxy ; C * Yxz , CK , Vyz , Ckyt . 

is the strain vector obtained at the jth integration point of the 
kth coarse - scale element . The strain vector ex 
computed from the nodal displacement vector uz of ele 
ment k following the standard finite element procedure using 
the values of the gradients of the shape functions at the jth 
integration point of that element . 
[ 0049 ] The following is a demonstration of rationale for 
different predication accuracy obtained by training the DNN 
with different sets of input data , namely nodal displacement 
vector ur or strain vector Exc.k. Recall that from Equation 
( 5 ) that sensitivity G is given by : 

G : = - p @ ya - ( :) kºu ( 18 ) 

where : 
[ 0050 ] n is the total number of displacement DOFs in the 
element ; 
[ 0051 ] 19 ... ,, - 6 are the positive eigenvalues of Kº with 
91 , ... , In - 6 being their corresponding eigenvectors ; and 
[ 0052 ] In - 59 · , In are the eigenvectors associated with 
the eigenvalues 2-0 . 
According to the above expressions , due to the presence of 
eigenvalues that equal zero ax = 0 ) , it is impossible to 
correctly learn vectors In - 5 , 9n from the training data . 
As a result , learning all the coefficients of matrix Kº with on 
the nodal displacement vector becomes an ill - posed task . 
Unlike matrix Kº , the Dº matrix is strictly positive definite , 
thus , learning all of its coefficients is a well - posed task . 
[ 0053 ] In an embodiment , training efficiency is improved 
by removing void training instances 650 when collecting 
training instances , as shown in FIG . 6. Due to the nature of 
topology optimization , void training instances are common 
in the training data . A void training instance is referred to a 
training sample with all its enclosed filtered design variables 
being a zero value . In a void training instance , the exact 
sensitivities of all the design variables should be zero no 
matter what the input strain vector is . Typically , the void 
training instances could constitute a large portion of the 
training data , especially in later stages of topology optimi 
zation . However , the information contained therein is quite 
limited as compared to other training instances which con 
tain non - zero filtered design variables . In an embodiment , a 
removing strategy includes only a small fraction of ran 
domly selected void instances in the training data and the 
remainder is discarded . In an aspect , probability parameter 
Pk is used for the probability of keeping each void instance . 
For example , if a parameter value is chosen such as P = 0.1 , 
each void training instance has a 10 % chance of being 
included in the training data . This proposed strategy of 
removing void training instances can greatly improve the 

Ck C = [ 81 CK = { & xxi Ck C , EK Eng ?? ?? ca KEzz . 

C , can be 
? 

C k 
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efficiency of the training of the machine learning - based 
model without sacrificing accuracy . In an aspect , keeping a 
small number of randomly selected void instances in the 
training data can improve the predication accuracy of the 
DNN compared to either keeping or removing all the void 
instances . 
[ 0054 ] Test trials for the integrated framework of topology 
optimization with machine learning - based models described 
above demonstrate significant improvement in computa 
tional efficiency , particularly as the mesh size increases . The 
design process is significantly accelerated by selecting larger 
block size NB for the coarse - scale mesh . For example , with 
block size NB = 15 , the solution was achieved six times faster 
than using a standard finite element analysis topology opti 
mization approach . 
[ 0055 ] FIG . 7 illustrates an example of a computing envi 
ronment within which embodiments of the present disclo 
sure may be implemented . A computing environment 700 
includes a computer system 710 that may include a com 
munication mechanism such as a system bus 721 or other 
communication mechanism for communicating information 
within the computer system 710. The computer system 710 
further includes one or more processors 720 coupled with 
the system bus 721 for processing the information . In an 
embodiment , computing environment 700 corresponds to a 
topology optimization system , in which the computer sys 
tem 710 relates to a computer described below in greater 
detail . 
[ 0056 ] The processors 720 may include one or more 
central processing units ( CPUs ) , graphical processing units 
( GPUs ) , or any other processor known in the art . More 
generally , a processor as described herein is a device for 
executing machine - readable instructions stored on a com 
puter readable medium , for performing tasks and may com 
prise any one or combination of , hardware and firmware . A 
processor may also comprise memory storing machine 
readable instructions executable for performing tasks . A 
processor acts upon information by manipulating , analyzing , 
modifying , converting or transmitting information for use by 
an executable procedure or an information device , and / or by 
routing the information to an output device . A processor may 
use or comprise the capabilities of a computer , controller or 
microprocessor , for example , and be conditioned using 
executable instructions to perform special purpose functions 
not performed by a general purpose computer . A processor 
may include any type of suitable processing unit including , 
but not limited to , a central processing unit , a microproces 
sor , a Reduced Instruction Set Computer ( RISC ) micropro 
cessor , a Complex Instruction Set Computer ( CISC ) micro 
processor , a microcontroller , an Application Specific 
Integrated Circuit ( ASIC ) , a Field - Programmable Gate 
Array ( FPGA ) , a System - on - a - Chip ( SOC ) , a digital signal 
processor ( DSP ) , and so forth . Further , the processor ( s ) 720 
may have any suitable microarchitecture design that 
includes any number of constituent components such as , for 
example , registers , multiplexers , arithmetic logic units , 
cache controllers for controlling read / write operations to 
cache memory , branch predictors , or the like . The micro 
architecture design of the processor may be capable of 
supporting any of a variety of instruction sets . A processor 
may be coupled ( electrically and / or as comprising execut 
able components ) with any other processor enabling inter 
action and / or communication there between . A user inter 
face processor or generator is a known element comprising 

electronic circuitry or software or a combination of both for 
generating display images or portions thereof . A user inter 
face comprises one or more display images enabling user 
interaction with a processor or other device . 
[ 0057 ] The system bus 721 may include at least one of a 
system bus , a memory bus , an address bus , or a message bus , 
and may permit exchange of information ( e.g. , data ( includ 
ing computer - executable code ) , signaling , etc. ) between 
various components of the computer system 710. The sys 
tem bus 721 may include , without limitation , a memory bus 
or a memory controller , a peripheral bus , an accelerated 
graphics port , and so forth . The system bus 721 may be 
associated with any suitable bus architecture including , 
without limitation , an Industry Standard Architecture ( ISA ) , 
a Micro Channel Architecture ( MCA ) , an Enhanced ISA 
( EISA ) , a Video Electronics Standards Association ( VESA ) 
architecture , an Accelerated Graphics Port ( AGP ) architec 
ture , a Peripheral Component Interconnects ( PCI ) architec 
ture , a PCI - Express architecture , a Personal Computer 
Memory Card International Association ( PCMCIA ) archi 
tecture , a Universal Serial Bus ( USB ) architecture , and so 
forth . 
[ 0058 ] Continuing with reference to FIG . 7 , the computer 
system 710 may also include a system memory 730 coupled 
to the system bus 721 for storing information and instruc 
tions to be executed by processors 720. The system memory 
730 may include computer readable storage media in the 
form of volatile and / or nonvolatile memory , such as read 
only memory ( ROM ) 731 and / or random access memory 
( RAM ) 732. The RAM 732 may include other dynamic 
storage device ( s ) ( e.g. , dynamic RAM , static RAM , and 
synchronous DRAM ) . The ROM 731 may include other 
static storage device ( s ) ( e.g. , programmable ROM , erasable 
PROM , and electrically erasable PROM ) . In addition , the 
system memory 730 may be used for storing temporary 
variables or other intermediate information during the 
execution of instructions by the processors 720. A basic 
input / output system 733 ( BIOS ) containing the basic rou 
tines that help to transfer information between elements 
within computer system 710 , such as during start - up , may be 
stored in the ROM 731. RAM 732 may contain data and / or 
program modules that are immediately accessible to and / or 
presently being operated on by the processors 720. System 
memory 730 may additionally include , for example , oper 
ating system 734 , application modules 735 , and other pro 
gram modules 736. Application modules 735 may include 
aforementioned modules described for FIG . 1 and may also 
include a user portal for development of the application 
program , allowing input parameters to be entered and modi 
fied as necessary . 
[ 0059 ] The operating system 734 may be loaded into the 
memory 730 and may provide an interface between other 
application software executing on the computer system 710 
and hardware resources of the computer system 710. More 
specifically , the operating system 734 may include a set of 
computer - executable instructions for managing hardware 
resources of the computer system 710 and for providing 
common services to other application programs ( e.g. , man 
aging memory allocation among various application pro 
grams ) . In certain example embodiments , the operating 
system 734 may control execution of one or more of the 
program modules depicted as being stored in the data 
storage 740. The operating system 734 may include any 
operating system now known or which may be developed in 
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the future including , but not limited to , any server operating 
system , any mainframe operating system , or any other 
proprietary or non - proprietary operating system . 
[ 0060 ] The computer system 710 may also include a 
disk / media controller 743 coupled to the system bus 721 to 
control one or more storage devices for storing information 
and instructions , such as a magnetic hard disk 741 and / or a 
removable media drive 742 ( e.g. , floppy disk drive , compact 
disc drive , tape drive , flash drive , and / or solid state drive ) . 
Storage devices 740 may be added to the computer system 
710 using an appropriate device interface ( e.g. , a small 
computer system interface ( SCSI ) , integrated device elec 
tronics ( IDE ) , Universal Serial Bus ( USB ) , or FireWire ) . 
Storage devices 741 , 742 may be external to the computer 
system 710 . 
[ 0061 ] The computer system 710 may include a user input 
interface or graphical user interface ( GUI ) 761 , which may 
comprise one or more input devices , such as a keyboard , 
touchscreen , tablet and / or a pointing device , for interacting 
with a computer user and providing information to the 
processors 720 . 
[ 0062 ] The computer system 710 may perform a portion or 
all of the processing steps of embodiments of the invention 
in response to the processors 720 executing one or more 
sequences of one or more instructions contained in a 
memory , such as the system memory 730. Such instructions 
may be read into the system memory 730 from another 
computer readable medium of storage 740 , such as the 
magnetic hard disk 741 or the removable media drive 742 . 
The magnetic hard disk 741 and / or removable media drive 
742 may contain one or more data stores and data files used 
by embodiments of the present disclosure . The data store 
740 may include , but are not limited to , databases ( e.g. , 
relational , object - oriented , etc. ) , file systems , flat files , dis 
tributed data stores in which data is stored on more than one 
node of a computer network , peer - to - peer network data 
stores , or the like . Data store contents and data files may be 
encrypted to improve security . The processors 720 may also 
be employed in a multi - processing arrangement to execute 
the one or more sequences of instructions contained in 
system memory 730. In alternative embodiments , hard 
wired circuitry may be used in place of or in combination 
with software instructions . Thus , embodiments are not lim 
ited to any specific combination of hardware circuitry and 
software . 

[ 0063 ] As stated above , the computer system 710 may 
include at least one computer readable medium or memory 
for holding instructions programmed according to embodi 
ments of the invention and for containing data structures , 
tables , records , or other data described herein . The term 
" computer readable medium ” as used herein refers to any 
medium that participates in providing instructions to the 
processors 720 for execution . A computer readable medium 
may take many forms including , but not limited to , non 
transitory , non - volatile media , volatile media , and transmis 
sion media . Non - limiting examples of non - volatile media 
include optical disks , solid state drives , magnetic disks , and 
magneto - optical disks , such as magnetic hard disk 741 or 
removable media drive 742. Non - limiting examples of vola 
tile media include dynamic memory , such as system memory 
730. Non - limiting examples of transmission media include 
coaxial cables , copper wire , and fiber optics , including the 
wires that make up the system bus 721. Transmission media 

may also take the form of acoustic or light waves , such as 
those generated during radio wave and infrared data com 
munications . 
[ 0064 ] Computer readable medium instructions for carry 
ing out operations of the present disclosure may be assem 
bler instructions , instruction - set - architecture ( ISA ) instruc 
tions , machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , or 
either source code or object code written in any combination 
of one or more programming languages , including an object 
oriented programming language such as Smalltalk , C ++ or 
the like , and conventional procedural programming lan 
guages , such as the “ C ” programming language or similar 
programming languages . The computer readable program 
instructions may execute entirely on the user's computer , 
partly on the user's computer , as a stand - alone software 
package , partly on the user's computer and partly on a 
remote computer or entirely on the remote computer or 
server . In the latter scenario , the remote computer may be 
connected to the user's computer through any type of 
network , including a local area network ( LAN ) or a wide 
area network ( WAN ) , or the connection may be made to an 
external computer ( for example , through the Internet using 
an Internet Service Provider ) . In some embodiments , elec 
tronic circuitry including , for example , programmable logic 
circuitry , field - programmable gate arrays ( FPGA ) , or pro 
grammable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of the 
present disclosure . 
[ 0065 ] Aspects of the present disclosure are described 
herein with reference to illustrations of methods , apparatus 
( systems ) , and computer program products according to 
embodiments of the disclosure . It will be understood that 
each block of the illustrations , and combinations of blocks 
in the illustrations , may be implemented by computer read 
able medium instructions . 
[ 0066 ] The computing environment 700 may further 
include the computer system 710 operating in a networked 
environment using logical connections to one or more 
remote computers , such as remote computing device 773 . 
The network interface 770 may enable communication , for 
example , with other remote devices 773 or systems and / or 
the storage devices 741 , 742 via the network 771. Remote 
computing device 773 may be a personal computer ( laptop 
or desktop ) , a mobile device , a server , a router , a network 
PC , a peer device or other common network node , and 
typically includes many or all of the elements described 
above relative to computer system 710. When used in a 
networking environment , computer system 710 may include 
modem 772 for establishing communications over a network 
771 , such as the Internet . Modem 772 may be connected to 
system bus 721 via user network interface 770 , or via 
another appropriate mechanism . 
[ 0067 ] Network 771 may be any network or system gen 
erally known in the art , including the Internet , an intranet , a 
local area network ( LAN ) , a wide area network ( WAN ) , a 
metropolitan area network ( MAN ) , a direct connection or 
series of connections , a cellular telephone network , or any 
other network or medium capable of facilitating communi 
cation between computer system 710 and other computers 
( e.g. , remote computing device 773 ) . The network 771 may 
be wired , wireless or a combination thereof wired connec 
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tions may be implemented using Ethernet , Universal Serial 
Bus ( USB ) , RJ - 6 , or any other wired connection generally 
known in the art . Wireless connections may be implemented 
using Wi - Fi , WiMAX , and Bluetooth , infrared , cellular 
networks , satellite or any other wireless connection meth 
odology generally known in the art . Additionally , several 
networks may work alone or in communication with each 
other to facilitate communication in the network 771 . 
[ 0068 ] It should be appreciated that the program modules , 
applications , computer - executable instructions , code , or the 
like depicted in FIG . 7 as being stored in the system memory 
730 are merely illustrative and not exhaustive and that 
processing described as being supported by any particular 
module may alternatively be distributed across multiple 
modules or performed by a different module . In addition , 
various program module ( s ) , script ( s ) , plug - in ( s ) , Applica 
tion Programming Interface ( s ) ( API ( s ) ) , or any other suit 
able computer - executable code hosted locally on the com 
puter system 710 , the remote device 773 , and / or hosted on 
other computing device ( s ) accessible via one or more of the 
network ( s ) 771 , may be provided to support functionality 
provided by the program modules , applications , or com 
puter - executable code depicted in FIG . 7 and / or additional 
or alternate functionality . Further , functionality may be 
modularized differently such that processing described as 
being supported collectively by the collection of program 
modules depicted in FIG . 7 may be performed by a fewer or 
greater number of modules , or functionality described as 
being supported by any particular module may be supported , 
at least in part , by another module . In addition , program 
modules that support the functionality described herein may 
form part of one or more applications executable across any 
number of systems or devices in accordance with any 
suitable computing model such as , for example , a client 
server model , a peer - to - peer model , and so forth . In addition , 
any of the functionality described as being supported by any 
of the program modules depicted in FIG . 7 may be imple 
mented , at least partially , in hardware and / or firmware 
across any number of devices . 
[ 0069 ] It should further be appreciated that the computer 
system 710 may include alternate and / or additional hard 
ware , software , or firmware components beyond those 
described or depicted without departing from the scope of 
the disclosure . More particularly , it should be appreciated 
that software , firmware , or hardware components depicted 
as forming part of the computer system 710 are merely 
illustrative and that some components may not be present or 
additional components may be provided in various embodi 
ments . While various illustrative program modules have 
been depicted and described as software modules stored in 
system memory 730 , it should be appreciated that function 
ality described as being supported by the program modules 
may be enabled by any combination of hardware , software , 
and / or firmware . It should further be appreciated that each of 
the above - mentioned modules may , in various embodi 
ments , represent a logical partitioning of supported func 
tionality . This logical partitioning is depicted for ease of 
explanation of the functionality and may not be representa 
tive of the structure of software , hardware , and / or firmware 
for implementing the functionality . Accordingly , it should be 
appreciated that functionality described as being provided 
by a particular module may , in various embodiments , be 
provided at least in part by one or more other modules . 
Further , one or more depicted modules may not be present 

in certain embodiments , while in other embodiments , addi 
tional modules not depicted may be present and may support 
at least a portion of the described functionality and / or 
additional functionality . Moreover , while certain modules 
may be depicted and described as sub - modules of another 
module , in certain embodiments , such modules may be 
provided as independent modules or as sub - modules of other 
modules . 
[ 0070 ] Although specific embodiments of the disclosure 
have been described , one of ordinary skill in the art will 
recognize that numerous other modifications and alternative 
embodiments are within the scope of the disclosure . For 
example , any of the functionality and / or processing capa 
bilities described with respect to a particular device or 
component may be performed by any other device or 
component . Further , while various illustrative implementa 
tions and architectures have been described in accordance 
with embodiments of the disclosure , one of ordinary skill in 
the art will appreciate that numerous other modifications to 
the illustrative implementations and architectures described 
herein are also within the scope of this disclosure . In 
addition , it should be appreciated that any operation , ele 
ment , component , data , or the like described herein as being 
based on another operation , element , component , data , or the 
like can be additionally based on one or more other opera 
tions , elements , components , data , or the like . Accordingly , 
the phrase " based on , ” or variants thereof , should be inter 
preted as “ based at least in part on . ” 
[ 0071 ] The block diagrams in the Figures illustrate the 
architecture , functionality , and operation of possible imple 
mentations of systems , methods , and computer program 
products according to various embodiments of the present 
disclosure . In this regard , each block in the block diagrams 
may represent a module , segment , or portion of instructions , 
which comprises one or more executable instructions for 
implementing the specified logical function ( s ) . In some 
alternative implementations , the functions noted in the block 
may occur out of the order noted in the Figures . For 
example , two blocks shown in succession may , in fact , be 
executed substantially concurrently , or the blocks may 
sometimes be executed in the reverse order , depending upon 
the functionality involved . It will also be noted that each 
block of the block diagrams illustration , and combinations 
of blocks in the block diagrams illustration , can be imple 
mented by special purpose hardware - based systems that 
perform the specified functions or acts or carry out combi 
nations of special purpose hardware and computer instruc 
tions . 
What is claimed is : 
1. A system for accelerating topology optimization of a 

design , comprising : 
a topology optimization module configured to compute 

state variables of the topology using a two - scale topol 
ogy optimization for a number of optimization steps 
using design variables mapped to a fine - scale mesh and 
the state variables mapped to a coarse - scale mesh , 
wherein the state variables are computed using finite 
element analysis based on a simulated load and bound 
ary conditions on the objective design and are accu 
mulated with corresponding design variables as history 
data ; 

a machine learning module comprising a machine learn 
ing - based model having a tunable number of hidden 
layers configured to : 
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execute an initial training of the machine learning 
based model using the history data for a first number 
of optimization steps ( W1 ) ; 

determine a predicted sensitivity value related to the 
design variables using the trained machine learning 
based model for each of a second number of opti 
mization steps ( NF ) ; 

execute an online update of the machine learning - based 
model using updated history data for a third number 
of optimization steps ( WU ) ; 

update the design variables based on the predicted 
sensitivity value for each optimization step ; 

and 
recursively repeat the optimization steps until the 

updated design variables are within a tolerance of 
prior updated design variables ; 

wherein the topology optimization module executes the 
two - scale optimization only prior to and during the 
first number of optimization steps ( W ) that generate 
the history data for the initial training of the machine 
learning - based model and during optimization steps 
for a duration of the third number of steps ( W ) 
initiated periodically at an update frequency equal to 
the second number of optimization steps ( N2 ) for 
generating the updated history data . 

2. The system of claim 1 , further comprising : 
a fine - scale mapping module configured to define the 

fine - scale mesh using hexahedral elements to represent 
an objective topology of the design ; and 

a course - scale mapping module configured to define the 
course - scale mesh of the hexahedral elements , wherein 
the fine - scale mesh is completely embedded in the 
course - scale mesh . 

3. The system of claim 2 , wherein design variables on the 
fine - scale mesh are updated every optimization step and 
state variables are computed on the fine - scale mesh only 
when collecting history data for training the machine learn 
ing - based model . 

4. The system of claim 1 , wherein the topology optimi 
zation module is further configured to filter the design 
variables using a filter matrix ( P ) for smoothing the distri 
bution . 

5. The system of claim 1 , wherein the state variables 
include at least one of : 

displacement of coarse - scale mesh elements , 
strain on coarse - scale mesh elements , and 
stress on coarse - scale mesh elements . 
6. The system of claim 1 , wherein the state variables are 

computed using strain vectors at all integration Gauss points 
of each coarse - scale mesh element . 

7. A method for accelerating topology optimization of a 
design , comprising : 

computing state variables of the topology using a two 
scale topology optimization for a number of optimiza 
tion steps using design variables mapped to a fine - scale 

mesh and the state variables mapped to a coarse - scale 
mesh , wherein the state variables are computed using 
finite element analysis based on a simulated load and 
boundary conditions on the objective design and are 
accumulated with corresponding design variables as 
history data ; 

executing an initial training of a machine learning - based 
model using the history data for a first number of 
optimization steps ( W ) ; 

determining a predicted sensitivity value related to the 
design variables using the trained machine learning 
based model for each of a second number of optimi 
zation steps ( NP ) ; 

executing an online update of the machine learning - based 
model using updated history data for a third number of 
optimization steps ( WU ) ; 

updating the design variables based on the predicted 
sensitivity value for each optimization step ; 

and 
recursively repeating the optimization steps until the 

updated design variables are within a tolerance of prior 
updated design variables ; 

wherein the two - scale optimization is executed only prior 
to and during the first number of optimization steps 
( W ) that generate the history data for the initial train 
ing of the machine learning - based model and during 
optimization steps for a duration of the third number of 
steps ( WU ) initiated periodically at an update frequency 
equal to the second number of optimization steps ( NP ) 
for generating the updated history data . 

8. The method of claim 7 , further comprising 
defining the fine - scale mesh using hexahedral elements to 

represent an objective topology of the design ; 
wherein the fine - scale mesh is completely embedded in 

the course - scale mesh . 
9. The method of claim 7 , wherein design variables on the 

fine - scale mesh are updated every optimization step and 
state variables are computed on the fine - scale mesh only 
when collecting history data for training the machine learn 
ing - based model . 

10. The method of claim 7 , further comprising filtering the 
design variables using a filter matrix ( P ) for smoothing the 
distribution . 

11. The method of claim 10 , wherein the state variables 
include at least one of : 

displacement of coarse - scale mesh elements , 
strain on coarse - scale mesh elements , and 
stress on coarse - scale mesh elements . 
12. The method of claim 7 , wherein the state variables are 

computed using strain vectors at all integration Gauss points 
of each coarse - scale mesh element . 
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