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A B S T R A C T   

The multi-degree of freedom Resch pattern forms most of its surfaces by tuning the folding angles of its creases. 
In this research, we program the triangular Resch pattern to naturally achieve surfaces with various curvatures 
by predefining the neutral angle and stiffness of the creases for the whole pattern. We simulate the free unfolding 
of tessellations by combining a “bar-and-hinge” model with an explicit meshless method, namely, the finite 
particle method. The effects of the damping factor, crease stiffness, and neutral angle on the unfolding process 
are investigated. The neutral angle of the creases plays a critical role in determining the final stable shape of the 
pattern. Then, we break the natural symmetry of the tessellations by changing the neutral angle and applying 
specific constraints to active creases to create stable unfolding surfaces with various curvatures. This study 
provides a foundation for the development of programmed curvatures of metamaterials that can be folded into 
origami patterns with multiple degrees of freedom.   

1. Introduction 

Deforming flat sheets into curved geometries is an ancient mathe-
matical problem. To create arbitrarily complex three-dimensional (3D) 
structures from two-dimensional (2D) sheets, it is necessary to transform 
flat sheets using a method such as Gauss’s Theorema Egregium or 
Chebyshev’s solution for modelling curved cloth [1]. Flat sheets can be 
easily bent and rolled into simple curved shapes, such as arches and 
cylinders. However, to achieve complex shapes, such as spherical and 
hyperbolic geometries, it is necessary to distort and shear flat sheets. For 
example, to create a hyperbolic surface, different materials, such as flat 
metal sheets and fibre-reinforced composite laminates must be plasti-
cally stretched and sheared [2–5]. 

The main disadvantage of achieving complex 3D surface geometries 
through the deformation of 2D sheets is that this method damages stiff 
materials. Fortunately, origami provides an alternative method for 
obtaining complex 3D surface geometries from rigid 2D materials with 
various surfaces [6,7]. The rich mathematical underpinning and tunable 
mechanical properties of origami, in combination with a variety of 
advancing technologies, have led to exciting applications in science and 
engineering [8–11]. For example, the principles of origami have been 
used to guide the design of tunable bandgap structures [12,13], solar 

cells and antennas [8,14,15], self-folding robots [14,16,17], and meta-
materials [18–22]. 

The use of origami for making 3D curved surfaces has attracted 
considerable attention among researchers [6,23]. Many advances have 
been achieved in the development of methods for fitting origami pat-
terns to 3D surfaces [24,25]. Schenk and Guest [26] identified the saddle 
and twist deformation modes of the nonrigid Miura pattern and found 
that this origami tessellation was suitable for complex surface fitting. 
Gattas et al. [27] explored five rigidly foldable “first-level derivatives” of 
the Miura pattern, which could achieve an overall single or double 
curvature. Dudte et al. [28] developed a generalized optimization al-
gorithm to solve the inverse problem of fitting an intrinsically curved 
surface with the Miura pattern. Although the exact curvature of intrin-
sically curved surfaces could not be guaranteed with this algorithm, 
various 3D surfaces could be approximated using flat, foldable, and rigid 
origami tessellations. 

In addition to the Miura pattern, several other origami tessellations 
have been used for fitting curved surfaces [29,30]. Resch and Chris-
tiansen [31] attempted to fold the Resch pattern into the shape of an egg, 
namely, the Vegreville Easter egg. To do so, they had to cut some of the 
middle tucks of the Resch pattern in such a manner that it became a 
Kagome lattice capable of fitting surfaces [32]. Tachi [33] demonstrated 
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that the smooth rigid folding of (triangulated) periodic tessellations into 
domed shapes was obstructed by excessively large tessellated sheets; 
under such conditions, only cylindrical surfaces could be obtained from 
periodic tessellations. Nassar et al. [34] reached a similar conclusion. 

The aforementioned studies mainly focused on folding flat sheets to 
produce specific shapes and geometric patterns. However, since the 
unfolding of an origami tessellation from a fully folded state is driven by 
the energy stored in its creases, it can achieve a natural equilibrium 
configuration. Rich 3D geometries can be achieved by unfolding origami 
tessellations with multiple degrees of freedom (DOFs). Different crease 
stiffnesses and unfolding sequences lead to distinct curvatures in the 
final configuration. Thus, origami tessellations can be unfolded to pro-
gram a surface. In this study, we explored how to tune a suitable surface 
curvature by unfolding the Resch pattern to an intermediate level of 
deployment between the fully folded state and the 2D-sheet state. 

The numerical analysis of origami patterns is mainly conducted 
through reduced models, which focus on the approximate global 
behavior of a pattern rather than high-resolution study of local de-
formations [35–37]. In the “bar-and-hinge” model proposed by Schenk 
and Guest [26], an origami pattern is triangulated to form a truss 
framework with constrained rotational hinges. Improved versions of this 
model can be used to analyze the bending of the Miura pattern [38], 
optimize the topology of origami structures [39] and geometry 
description of a cylindrical origami structures with waterbomb pattern 
[40]. Most models used for the numerical analysis of origami patterns 
involve linear analysis of small deformations. However, Barbieri et al. 
[41] used large deformations and large rotations within a first-order 
shear plate theory to simulate folding as sharp discontinuities in the 
Euler rotations of nonlinear plates. Liu and Paulino [42,43] developed a 
general nonlinear formulation that considered material and geometric 
nonlinearities for the structural analysis of origami structures associated 
with arbitrary “bar-and-hinge” models. 

Although current numerical models for the analysis of origami pat-
terns can analyze rigid and nonrigid origami motions, most of them use a 
static or quasi-static folding process for analysis [44–47]. Some re-
searchers have studied the dynamic folding behavior of origami struc-
tures. Fang et al. [48] performed an experimental and analytical study 
on the dynamic folding of stacked Miura-Ori structure with intrinsic 
bi-stability. Sadeghi and Li [49] examined a rapid and reversible origami 
dynamic folding method by exploiting a combination of resonance 

excitation, asymmetric multi-stability, and active control. Wu et al. [50] 
studied the transient dynamics of a Miura-Origami tube during free 
deployment. So, it is worthwhile to investigate the dynamic unfolding of 
origami tessellations to reach their natural unfolded configurations; this 
process is driven by the energy stored in the creases. Yu et al. [51,52] 
verified that an explicit meshless method called the finite particle 
method (FPM) can simultaneously calculate large rigid body motions 
and large geometrical changes of deployable structures based on the 
straight-rod hinge and angulated-rod hinge. Furthermore, Yu et al. [53] 
showed the possibility of combining “bar-and-hinge” model and the 
FPM for dynamic analysis of origami. Therefore, in this study, the 
“bar-and-particle” model was proposed by combining the “bar--
and-hinge” model with the FPM to simulate the dynamic unfolding of 
the triangular Resch pattern and program this pattern to naturally 
achieve surfaces with various curvatures. 

The remainder of this paper is structured as follows. The parameters 
of the Resch pattern are described in Section 2. Section 3 describes the 
modelling of the Resch tessellation with the proposed method for 
capturing the dynamics of unfolding. Section 4 details how the curvature 
of the Resch pattern’s intermediate unfolded states is varied by locally 
tuning the mechanical properties of the creases (i.e., the neutral angles), 
and Section 5 presents the conclusions of this study. 

2. Kinematics and parameters of the triangular Resch pattern 

The triangular Resch pattern comprises multiple equal-sized trian-
gular units. Fig. 1(a) shows the 2D crease pattern with three loops and 
the fully folded state of the triangular Resch pattern [54–56]. The first 
loop is regarded as one unit of the triangular Resch pattern (Fig. 1b). 
Magliozzi et al. [57] reported that arbitrarily controlling all the DOFs of 
a multiple-DOF origami pattern is impossible. In the present study, 
starting from the fully folded configuration, the Resch pattern is 
unfolded using only the elastic energy stored in the creases and without 
using any additional bars or constraints. Thus, the structure is unfolded 
naturally, and no blocks occur during the unfolding process. 

As displayed in Fig. 1(c), one fully folded unit contains three types of 
creases with different folding angles, namely, 0◦, 90◦, and 120◦ Because 
the unfolding of the triangular Resch pattern is triggered by the elastic 
energy stored in the creases, this pattern has maximum energy in the 
fully folded state. The crease with a dihedral angle of 0◦ stores 

Fig. 1. Triangular Resch pattern. (a) The 2D crease pattern with three loops and the fully folded state of the pattern. (b) The 2D crease pattern and the fully folded 
state of one unit of the triangular Resch pattern. (c) Three types of creases with different folding angles of one unit, namely, 0◦, 90◦, and 120◦ The panel color in (c) 
corresponds to the panel color in (b). 
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considerably more energy than do the creases with the other folding 
angles when the pattern is fully folded. 

3. Fundamentals of the FPM for origami unfolding simulation 

In this section, the “bar-and-hinge” model is first combined with the 
FPM as the “bar-and-particle” model for conducting origami modelling 
in the FPM and simulating the dynamic unfolding of the triangular Resch 
pattern. Second, the equilibrium equation of an arbitrary particle in the 
origami system is constructed and solved through explicit time inte-
gration. Third, each component of the particle force (axial deformation 
of the creases, rotational deformation of the hinges, and damping) and 
the contact between adjacent particles are derived. 

The FPM is tailored for nonlinear dynamic analysis. As per Newton’s 
second law, each particle is in dynamic equilibrium during the unfolding 
of origami tessellations. The motion equation for each particle is explicit 
and can be easily solved without iteration. Through the use of a fictitious 
motion, the rigid body motion and pure deformation can be separated 
from the particle displacement. Therefore, geometric nonlinearity is 
addressed naturally by this method [52,58]. Researchers have used the 
FPM to study the dynamic unfolding process of origami tessellations, 
and their results have revealed the global dynamic response and free 
unfolding trajectories of origami structures [59,60]. 

3.1. Bar-and-particle model and equation of motion of a particle 

The triangular Resch pattern is modelled as a triangulated truss with 
particles, bars, and constrained rotational springs, as indicated in Fig. 2. 
Particles are placed on the vertices of the origami panels, and bars are 
placed along straight fold lines. Rotational springs are placed along the 
bars between two adjacent panels to model the folding of creases. The 
structural mass is concentrated at the particles, whereas the bars has no 
mass. Each particle has three translational DOFs. According to Newton’s 
second law, the motion equation for an arbitrary particle α is as follows: 

mαd̈α = fint
α + fspr

α + fdmp
s + fcont

α (1)  

where mα is the mass of particle α, d̈α is the acceleration vector of particle 
α, and fint

α is the particle internal force vector generated by the defor-
mation of bars connected to the particle. The derivation of fint

α is detailed 
in Appendix A. The parameter fspr

α represents the particle force vector 
generated by the deformation of the rotational springs located along all 
the creases connected to α. The parameter fdmp

α represents the damping 
force vector of particle α, and this vector is expressed as follows: fdmp

α =

− μMαḋα. In FPM analysis based on an explicit formulation, artificial 
damping must be used to curb structural vibration [38,61,62]. The 
damping factor is denoted by μ, and the determination of μ is similar to 
the dynamic relaxation method [63,64]. The parameter fcont

α denotes the 
vector of the contact force applied to particle α when penetration occurs 
between α and other particles or panels. 

Explicit time integration with a central difference scheme is adopted 
to solve Eq. (1) [51,52]. Because all the particle forces, namely, fint

α , fspr
α , 

fdmp
α , and fcont

α , can be explicitly expressed, the displacement dn+1 at step 
(n + 1) can be determined using the following equation: 

dn+1 =

(
2

2 + μΔt

)
Δt2

mα

(
fint

α + fspr
α + fdmp

α + fcont
α

)
+

(
4

2 + μΔt

)

dn

−

(
2 − μΔt
2 + μΔt

)

dn− 1 (2)  

where dn and dn− 1 are the displacements vectors in steps n and n – 1, 
respectively, and Δt is the time increment between steps n and n + 1. 

3.2. Particle force generated by a rotational spring 

This section describes how to convert the energy released by an 
origami crease into a particle force that unfolds an origami pattern. 
Consider an example of a simple fold with two adjacent triangular panels 
(ijk and lkj) and one crease (kj), as shown in Fig. 3(a). A rotational spring 
is placed along the bar between ijk and lkj to represent a folding crease. 
The spring rotation can be determined from the variation in the dihedral 

Fig. 2. “Bar-and-particle” model of the triangular Resch pattern. Blue particles are placed on the vertices of the origami panels, and bars are placed along straight 
dashed lines. Rotational springs are placed along the bars between two adjacent panels. Each particle has three translational DOFs and is in the dynamic equilibrium 
state under internal force, external force, damping force and contact force. 

Fig. 3. Unfolding and contact models of a simple fold. (a) Unfolding process of the simple fold by the energy released stored in the origami crease. The dihedral angle 
reaches the neutral angle at the final state. (b) shows the contact model of the penetration between particles i and l at the initial state. A virtual particle l′ ′ is defined to 
build a point-to-point collision. 
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angle θ between the two panels. 
Because we are examining the unfolding process of origami patterns, 

the initial configuration for the simple fold is considered to be the fully 
folded configuration fixed by some constraints. The energy stored in the 
simple fold is maximum in the initial state. After the constraints are 
removed, driven by the energy stored in the crease kj, the simple fold 
begins to unfold until the dihedral angle between the two panels reaches 
the neutral angle θN of the crease. When the simple fold is at the neutral 
angle, the fold is in a stationary state, and the crease can release no 
additional energy. Thus, the stored energy Uint

spr of the rotational spring is 
directly related to the dihedral angle θ. The total stored energy in a 
rotational spring element is a function of the dihedral angle and is 
expressed as follows: 

Uint
spr = H(θ) (3) 

The resistance moment M can be defined as follows: 

M =
∂H(θ)

∂θ
(4) 

The particle internal force vector associated with a rotational spring 
element is determined as follows: 

f =
[

fi fl fj fk
]T

=
∂H
∂θ

∂θ
∂x

= M
∂θ
∂x

(5)  

where fi, fl, fj, and fk are the forces generated by the rotational spring for 
particles i, l, j, and k, respectively. Details related to the calculations of θ 
and f are presented in Appendix B. 

For particle i, fi is the only particle force generated by the rotational 
spring. The total internal spring force of particle i is equal to the sum of 
all the forces generated by all the springs related to it. 

3.3. Particle force generated by a vertex contact 

The initial configuration of the origami pattern considered in this 
study is the fully folded state; thus, the coordinates of many vertices are 
coincident. Although a vertex is initially displaced marginally to initiate 
unfolding, vertices mutually penetrate because of their dynamic 
response during the first few steps of unfolding. To ensure local non- 
intersection of the considered origami pattern, a contact model is used 
in the FPM to determine the vertex penetration and modify the particle 
motion. 

As displayed in Fig. 3(c), the triangular panels ijk and lkj share the 
same crease kj. If particle l moves from l to l′ and penetrates panel ijk, 
then the sign indicator η of the dihedral angle θ changes [see Eq. (B.1) in 
Appendix B]. After the penetration is determined, the contact force is 
calculated and applied in the opposite direction to modify the particle 
motion in the next time step. First, we define a virtual particle l′ ′ at the 
intersection of line ll′ and panel ijk and allow it to represent panel ijk 
such that a point-to-surface collision changes to a point-to-point colli-
sion. The properties (mass, force, velocity, and displacement) of virtual 
particle l′ ′ are determined through the linear interpolation of the prop-
erties of particles i, j, and k. 

Before and after a collision, particles l and l′ ′ satisfy the following 
basic equations of motion: 

Mld̈l = f l + fcon
l (6a)  

Ml′′ d̈l′′ = f l′′ + fcon
l′′ (6b)  

where Ml and Ml′ ′ are the masses of particles l and l′ ′, respectively; d̈l and 
d̈l′′ are the acceleration vectors of particles l and l′ ′, respectively; f l and f l′′

represent the summations of particle force vectors for particles l and l′ ′, 
respectively, and include the particle forces generated through bar 

Fig. 4. Energy conservation study for a one-loop triangular Resch pattern during the unfolding process. (a) μ = 0.2, kf = 0.02 N/rad, and θN = 60◦; (b) μ = 0.8, kf =

0.02 N/rad, and θN = 60◦; (c) μ = 0.8, kf = 0.02 N/rad, θN = 90◦; and (d) μ = 0.8, kf = 0.08 N/rad, and θN = 120◦ The meanings of different line styles are indicated in 
(d). (c) also shows the unfolding process of a unit of the triangular Resch pattern. 
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deformation, spring deformation, and damping; and fcon
l and fcon

l′′ are the 
contact force vectors of particles l and l′ ′, respectively. Because particles l 
and l′ ′ come into contact with each other, fcon

l = − fcon
l′′ . 

On the basis of Eq. (2), a simple central difference is adopted to 
obtain the particle motion in Eq. (6). The parameters d̈l and d̈l′′ can be 
expressed as follows: 

d̈l =

(
dl

n+1 − dl
n

)
−
(
dl

n − dl
n− 1

)

(Δt)2 (7a)  

d̈l′′ =

(
dl′′

n+1 − dl′′
n

)
−
(
dl′′

n − dl′′
n− 1

)

(Δt)2 (7b) 

When particle contact occurs in steps n and n + 1, the penetration 
vector gn can be determined from the displacements of particles l′ and l′ ′
as follows: 

gn +
(
dl

n+1 − dl
n

)
−
(
dl′′

n+1 − dl′′
n

)
= 0 (8) 

When Eqs. (6)–(9) are combined, the contact forces for particle l and 
l′ in step n + 1 are expressed as follows: 

fcon
l = − fcon

l′′ =
MlMl′′

Ml + M2

[
f l′′

Ml′′
−

f l

Ml
+

gn −
(
dl

n − dl
n− 1

)
+
(
dl′′

n − dl′′
n− 1

)

(Δt)2

]

(9) 

Subsequently, − fcon
l is applied to particles l and l′. For particle l, fcon

l is 
the only particle force generated between particle l and l′. If contact 
occurs between particle l and other vertices, then additional contact 
forces must be applied to particle l. 

3.4. Energy conservation in the FPM 

In the FPM, explicit time integration is used to solve particle motion 

equations. When the Newmark time integration algorithm is used, en-
ergy conservation should occur during the dynamic unfolding of origami 
patterns [65–67]; thus, the energy released from the rotational springs 
(Wrel) should be equal to the summation of the other energy terms in the 
system, including the strain energy of the bar element (Wstrain), the ki-
netic energy of the particle (Wkinetic), the damping work (Wdamp), and 
the energy remaining in the spring after unfolding (Wrem). The energy 
stored, released, and remaining in the rotational springs of the entire 
origami pattern are labelled as Wspr, Wrel, and Wrem, respectively. The 
following equation is satisfied during the unfolding process: 

Wrel = Wstrain + Wkinetic + Wdamp (10) 

Details related to the calculation of each energy term are presented in 
Appendix D. 

4. Parameter analysis for origami pattern unfolding 

The unfolding simulation algorithm used in the FPM is verified 
through an energy conservation study. Subsequently, the effects of the 
neutral angle (θN), the stiffness of the creases (kf), and the damping 
factor (μ) on the unfolding process are analyzed. 

We consider a model made from plastic laminate paper (for example, 
Durilla Premium Ice paper, 96lb cover, CTI Paper USA). To determine 
the material properties of this model, a material tension test is con-
ducted (Appendix D.1). On the basis of the results of this test, the values 
of Young’s modulus (E), thickness (h), and density (ρ) of the Ice paper 
are set as 1.30 GPa, 0.9 mm, and 320 g/m2, respectively, in the simu-
lation. To simplify the analysis, the neutral angles of the creases with 
initial dihedral angles of 90◦ and 120◦ are set as constant. Thus, these 
two types of creases are in equilibrium in the fully folded state. To test 
the effects of θN, kf, and μ on the unfolding process for the crease with an 
initial dihedral angle of 0◦, we set θN as 60◦, 90◦, and 120◦; kf as 0.005, 

Fig. 5. Variations in the dihedral angle α1 of the one loop Resch pattern with the neutral angle θN, the stiffness of the crease kf, and the damping factor μ: (a) location 
of the dihedral angle α1 in the considered origami pattern and the variation in α1 with μ when kf = 0.02 N/rad and θN = 90◦, (b) variation in α1 with kf when μ = 0.8 
and θN = 90◦ and (c) variation in α1 with θN when μ = 0.8 and kf = 0.02 N/rad. 
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0.02, and 0.08 N/rad; and μ as 0.2, 0.8, and 1.6. The side length of the 
equilateral triangle in the considered origami pattern is 30 mm, and the 
time step is set as 0.001 s. 

Fig. 4 illustrates energy conservation in the one-loop triangular 
Resch pattern under different parameters. In each case, the released 
spring energy is equal to the summation of the kinetic energy, strain 
energy, and damping work, which verifies the accuracy of the algorithm 
used in the FPM. The strain energy in each case is equal to a very small 

value (approximately 10− 5 N ⋅ m), which indicates that the origami 
pattern is subject to limited deformation. Thus, the analyzed origami 
pattern is relatively rigid. As the damping factor μ increases, the dy-
namic response decreases; however, the final remaining energy stored in 
the pattern is unchanged. As the stiffness kf and neutral angle θN of the 
crease increase, the energy stored in the pattern increases; however, the 
ratio between the released spring energy and the remaining spring en-
ergy in the pattern remains largely unchanged. 

Fig. 6. (color online) Unfolding properties of the three-loop triangular Resch pattern. (a) Unfolding process of a triangular Resch pattern made from Ice paper (θN =

104.05◦, kf = 0.1 N/rad, and μ = 1.6). (b) The dihedral angles we measured during the numerical unfolding process. (c) Symmetry of the three-loop triangular Resch 
pattern during the unfolding process. (d) Variations in the dihedral angles of the first and second loops of the three-loop triangular Resch pattern during the unfolding 
process. The corresponding experimental data is marked with a cross. (e) Variations in the dihedral angles of the third loop. (f) Physical model made from Ice paper 
and folded by hand. (g) Mean curvature map of the physical model. 
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Fig. 5 displays the variations in the dihedral angle α1 at the center of 
the one-loop triangular Resch pattern with the neutral angle θN, the 
stiffness of the crease kf, and the damping factor μ during the unfolding 
process. Although the neutral angle may have a certain intrinsic rela-
tionship with the crease stiffness, they are considered to be independent 
to simplify the analysis. As shown in Fig. 5, the damping factor and 
crease stiffness affect the velocity of the unfolding process but do not 
affect the final shape. In contrast, the neutral angle affects both the 
dynamic response and final configuration of the origami pattern. This 
result explains why the remaining energy does not differ for various 
damping factors. This also indicates that θN is the most crucial parameter 
for controlling the final shape of the triangular Resch pattern. 

5. Unfolding and curvature programming 

In this section, the motion properties of a three-loop triangular Resch 
pattern are first investigated by numerical simulation and experiment. 
Then, the final configurations of the triangular Resch patterns with four, 
six, and eight loops after free unfolding are obtained by FPM. At last, 
various curvatures are achieved by predefining the neutral angle and 

stiffness of the creases for the whole pattern. 

5.1. Motion properties of the triangular Resch pattern with three loops 

The unfolding process of a three-loop triangular Resch pattern is 
performed to reveal the motion properties and symmetry of this pattern. 
In the conducted simulation, this pattern is assumed to be made from Ice 
paper. The material properties of the simulated pattern are as follows: 
Young’s modulus (E) = 1.30 GPa, thickness (h) = 0.9 mm, and density 
(ρ) = 320 g/m2. Because the neutral angle and stiffness of the crease 
depend on the crease style and pattern material, a folding stiffness test 
and neutral angle test are conducted on the crease style in a physical 
model fabricated with the aforementioned pattern (Appendices C.2 and 
C.3). The folding stiffness kf is 0.102 N/rad; the neutral angle is 104.05◦; 
the damping factor is set as μ = 1.6; and the time step Δt is set as 0.001 s. 
Fig. 6(a) illustrates the unfolding process of the three-loop triangular 
Resch pattern. 

The variations in the dihedral angles displayed in Fig. 6(b) during the 
unfolding process in the FPM analysis are plotted in Figs. 6(d) and 9(e). 
The variations in the dihedral angles of other parts of the simulated 

Fig. 7. Final shapes of triangular Resch patterns with a neutral angle (θN) of 60◦ unfolded by the energy stored in the creases: (a) four, (b) six, and (c) eight loops.  

Fig. 8. Final shapes of triangular Resch patterns with a neutral angle (θN) of 120◦ unfolded by the energy stored in the creases: (a) four, (b) six, and (c) eight loops. (c) 
also shows the final cylindrical surface of the eight-loop triangular Resch pattern after unfolding, S1 and S2 represent two communitive screw motions which share a 
common axis OD. 
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origami structure are also examined, and the following distinctive 
characteristics are discovered for the three-loop triangular Resch 
pattern:  

(1) Each loop has a unique configuration. Although the crease 
pattern is periodic, the natural configuration is not periodic and is 
different for every tuck in different loops. The dihedral angles 
gradually decrease from the first loop to the third loop, which 
leads to a natural domed shape for the final unfolded configura-
tion. The dihedral angles outside the Vegreville Easter egg are 
equal, which explains why Resch and Christiansen (1970) could 
not fit the Vegreville Easter egg with the triangular Resch pattern.  

(2) The three-loop triangular Resch pattern exhibits two groups of 
symmetry axes. OA, OC, and OE constitute the group 1 symmetry 

axes, and OB, OD, and OF constitute the group 2 symmetry axes. 
Because of these symmetry axes, the tucks with the same color in 
Fig. 6(c) have the same motion trajectory. Moreover, in each 
tuck, creases with the same line style have the same dihedral 
angles during the unfolding process. 

We also fabricate a physical model of the three-loop triangular Resch 
pattern by using Ice paper (Fig. 6(f)); we use a laser system (PLS 6.75, 
Universal Laser Systems) to cut the paper. Subsequently, we use a 
handheld 3D scanner (Artec Spider Scanner, Artec 3D, Luxembourg) to 
capture the final shape achieved 30 min after the complete natural 
unfolding of the physical model. The adopted 3D scanner provides 3D 
images with resolution up to 0.1 mm. We measure the final values of the 
dihedral angles of the physical model and plotted the results in Fig. 6(d) 

Fig. 9. Selected locations for controlling the crease properties of the three-loop triangular Resch pattern. (a) Tucks along one symmetry axis in the 2D unfolded 
pattern and fully folded pattern. The red color shows the middle tuck. The bold black line shows the location of the selected crease. (b) Six tucks along three 
symmetry axes in the 2D unfolded pattern and fully folded pattern. 

Fig. 10. (color online) Final shape of the triangular Resch pattern with different neutral angles after free unfolding: patterns obtained for (a) and (b) four, (c) and (d) 
six, and (e) and (f) eight loops. For the tucks marked in red, the neutral angle θN is 120◦, and for the other tucks, the neutral angle θN is 60◦ The location of the neutral 
angle of 120◦ is indicated on the up-left corner of each subfigure. 
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and (e). 
The measured and simulated dihedral angles are approximately 

equal. The small difference between the measured and simulated results 

might have originated from the deformation of the physical model. To 
visualize the deformation of this model, we compute the mean curvature 
of the scanned final shape. As displayed in Fig. 6(g), the mean curvature 

Fig. 11. (color online) Final shapes of the triangular Resch patterns with different constraints after free unfolding: patterns obtained (a) and (b) four, (c) and (d) six, 
and (e) and (f) eight loops. The tucks marked in red indicate the positions of the constraints. The neutral angle θN of other creases is 120◦ The location of the 
constrains is indicated on the up-right corner of each subfigure. 

Fig. 12. Protypes of the final shapes of four-loop triangular Resch pattern models with different constraints after free unfolding: (a) model corresponding to the 
numerical results depicted in Fig. 11(a), and (b) model corresponding to the numerical results depicted in Fig. 11(b). 

Fig. 13. Configurations obtained by twisting the four-loop triangular Resch pattern with constraints along one symmetry axis. The bold red line shows the position of 
the constrains. Because the three middle configurations are unstable, tapes and clips are used to stabilize these configurations for capturing their photos. 
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in all creases is much larger than that in the panels, which indicates the 
obvious deformation of the creases in the physical model. We also 
observe a high mean curvature in some panels of the physical model, 
which indicated that the paper panels are deformed in the folding pro-
cess. Thus, the difference in the rigidity of the numerical model (rigid) 
and physical model (non-rigid) leads to the difference between the nu-
merical and experimental results. 

5.2. Natural curvature of the triangular Resch pattern after unfolding 

Subsequently, we investigated triangular Resch patterns with four, 
six, and eight loops. As displayed in Figs. 7 and 8, when the neutral angle 
θN is 60◦, the final shapes of these three patterns are similar. However, 
when θN is 120◦, the final shapes of these patterns are considerably 
different. When θN is 120◦, the final shape of the four-loop triangular 

Resch pattern is a dome-like shape. As the number of loops increases 
further, the pattern begins curling inward. When the triangular Resch 
pattern has four or six loops, the final shape exhibits only positive cur-
vature. However, when this pattern contains eight loops, the final shape 
shows positive and negative curvature. Thus, the shape of the triangular 
Resch pattern after unfolding cannot be scaled by adding loops. 

Tachi [33] reported that if periodic rigid folding occurred, then the 
folded form generally approximated a cylindrical surface. In Fig. 8(c), 
which depicts the final cylindrical surface of the eight-loop triangular 
Resch pattern after unfolding, S1 and S2 represent two communitive 
rigid transformations, that is, two screw motions. These screw motions 
share a common axis, OD, and thus result in the formation of an 
approximately cylindrical surface whose axis is located on the common 
axis. Because the triangular Resch pattern contains three symmetry axes, 
as the pattern becomes larger, its final shape tends to comprise three 
symmetric cylinders. Thus, the numerical simulation results agree with 
the mathematical proof. 

5.3. Curvature programming 

Because different neutral angles result in different final unfolded 
shapes of the triangular Resch pattern, we posit that the final unfolded 
shape will be programmed by controlling the neutral angles of the 
creases at different locations. Two methods are proposed for program-
ming the curvature of the unfolded shape of the triangular Resch 
pattern: (1) making the neutral angles of selected creases larger than 
those of others, which results in the pattern having a larger local 
opening, and (2) adding constraints to selected creases at the beginning 
of the unfolding process, which prevents the local unfolding of the 
pattern at certain points. 

As displayed in Fig. 1(c), the fully folded Resch pattern contains 
three initial angles: 60◦, 90◦, and 120◦ To achieve prominent curvature 
changes, three creases with an initial angle of 0◦ in the same tuck are 
regarded as a group, and crease properties are modified only by group, 
as depicted in Fig. 9. Although different crease groups can increase or 
limit the unfolding of a pattern, the intrinsic geometry of the triangular 
Resch pattern limits the choice of crease group. Boundary units play a 
crucial role in constraining the triangular Resch pattern [31,68]; how-
ever, they do not considerably affect the curvature in the middle of the 
pattern. The addition of arbitrary constraints inside the triangular Resch 
pattern may lock the pattern in a single configuration. Therefore, the 
property change of the crease must follow the motion coordination of 
the triangular Resch pattern. Magliozzi et al. [57] discovered a general 
rule that if a unit is surrounded by three constrained units, then this unit 
is constrained. If this rule is employed, then no redundant constraints are 
added to the triangular Resch pattern. 

Fig. A.1. Illustration of the fictitious motion.  

Fig. D.1. Tension test on paper material using the Instron machine.  

Table D.1 
Material properties for Ice paper.  

E (MPa) kf (N.mm)/mm/rad θN (degree) 

1317.05 0.0843 116.86◦

1323.50 0.1253 103.44◦

1298.31 0.0995 100.57◦

1277.20 0.1103 105.57◦

1296.98 0.0950 93.80◦

Average 
1302.61 0.1020 104.05◦
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On the basis of the aforementioned information, locations are 
selected using two methods for programming the curvature of the 
triangular Resch pattern. The first method involves selecting all the 
tucks only along one symmetry axis, which breaks the three-axis sym-
metry of the triangular Resch pattern, as shown in Fig. 9(a). The second 
method involves selecting six tucks in the middle part of the triangular 
Resch pattern, which control the middle part of the pattern according to 
Magliozzi et al. [57] rule, as shown in Fig. 9(b). 

Fig. 10 shows the final shapes of the triangular Resch patterns with 
four, six, and eight loops after free unfolding when controlling the 
neutral angles of the selected creases. The neutral angle of the creases in 
the selected tucks is set as 120◦, and all the other neutral angles are set as 
60◦ The creases with a larger neutral angle release more energy than do 
the other creases and locally increase the curvature of the triangular 
Resch pattern. The selected tucks with a large opening are connected to 
other tucks, and under the influence of the selected tucks, the other tucks 
are unfolded more than before. Consider the triangular Resch pattern 
with eight loops as an example. The final shape of this pattern depicted 
in Fig. 10(e) contains a “whale tail” and only one symmetry axis, 
whereas the final shape of this pattern depicted in Fig. 10(f) contains 
three symmetric cylinders in the middle. The final shapes in Fig. 10 are 
notably different from those in Figs. 7 and 8, which indicates the 
programmability of the curvature of the triangular Resch pattern. 

Fig. 11 illustrates the final shapes of the triangular Resch pattern 
with four, six, and eight loops after unfolding when the unfolding of the 
creases was constrained in the selected tucks. In this case, the neutral 
angle of the unconstrained creases is 120◦ Because a higher neutral 
angle results in the release of more energy in the unfolding process, 
adding the constraints to creases limits the opening of relevant panels. 
As displayed in Fig. 11, the addition of constraints along one symmetry 
axis leads to the triangular Resch pattern with the final shape of a 
simplified “butterfly”, which contains a circle in the middle with one 
wing at each side [Fig. 11(a),(c), and (e)]. The addition of constraints 
along three symmetry axes results in the triangular Resch pattern with a 
final shape that contains three saddle joints in the middle [Fig. 11(b),(d), 
and (f)]. 

Fig. 12 displays two prototypes of four-loop triangular Resch models 
with different constraints. These models are made from Ice paper, which 
is cut using the adopted laser system and manually folded. Clips are used 

to limit the unfolding of the two panels on both sides of the selected 
crease. It is noted that the adopted numerical model is rigid, whereas the 
adopted physical models are not rigid; therefore, we only qualitatively 
compare the experimental and numerical results. The shapes of the 
physical models displayed in Fig. 12 are highly similar to the corre-
sponding numerical results depicted in Fig. 11(a) and (b). 

A different stable configuration of the prototype displayed in Fig. 12 
(a) can be obtained by twisting it (Fig. 13). We measure all the dihedral 
angles between the open panels in each tuck of this prototype in the two 
stable configurations. The summation of the dihedral angles for Stable 
configuration 1 and Stable configuration 2 depicted in Fig. 13 are 66.76 
and 62.71 rad, respectively. The summation of the dihedral angles for 
Stable configuration 1 is higher than that for Stable configuration 2, 
which indicates that the remaining energy of configuration 1 is lower 
than that of configuration 2. The numerical simulation indicated that the 
unfolding process results in the direct formation of a stable configura-
tion with lower energy. 

6. Conclusion 

This study uses the FPM to simulate the unfolding of the triangular 
Resch pattern. Instead of using external forces or displacements, the 
unfolding of the aforementioned pattern is triggered only by the energy 
stored in its creases. Comparing with our precious work on the analysis 
of origami structures, the new contents include introducing a contact 
model in the FPM to ensure local non-intersection during the unfolding 
process of the triangular Resch pattern, investigating the key parameters 
on the unfolding process of this pattern, revealing the natural unfolding 
properties of this pattern, and programming this pattern to naturally 
achieve surfaces with various curvatures. A comparison between the 
experimental and numerical results confirmes the accuracy of the pro-
posed numerical method. 

The simulation results for the unfolding of the triangular Resch 
pattern indicate that the natural configuration of this pattern is complex 
and depended on many factors. The motions of each loop in this pattern 
are completely different. As the triangular Resch pattern becomes larger, 
its natural shape after unfolding changes from a dome-like shape to a 
shape in which three cylinders intersected at the center. Thus, the final 
shape of the triangular Resch pattern after unfolding cannot be scaled 

Fig. D.2. Folding stiffness test. (a) and (b) characterization of the folding stiffness of the perforated crease; (c) and (d) the custom-built mechanical testing bed.  
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through the addition of concentric loops. This finding explains why Ron 
Resch failed to fold this pattern to fit the shape of an Easter egg in 1970. 
Notably, rather than the crease stiffness or damping factor, the neutral 
angle is the most crucial parameter affecting the final shape of the 
triangular Resch pattern after unfolding. Although the neutral angle 
may has a certain intrinsic relationship with the crease stiffness, we 
consider them to be independent in the present study. 

By changing the neutral angle and adding constraints, the original 
symmetry of the triangular Resch patterns is broken. We could program 
the final curvature after unfolding such that the final shape is comprised 
of positive and negative curvatures. Because diverse locations can be 
employed in the triangular Resch pattern when performing modifica-
tions, the programming of the curvature results in various final pattern 
shapes. The results of this study indicate that different curvatures can be 
achieved through the continuous unfolding of the triangular Resch 
pattern. The experimental results obtained for fabricated prototypes 
indicate that the remaining energy of the final configuration obtained in 
the numerical analysis is lower than that of other stable configurations. 
However, it is difficult to make a precise rigid physical model with 
different neutral angle, which will be considered in the future. This 
paper only focuses on the natural shape achieved after unfolding and the 
possibility of programming the curvature of the triangular Resch 
pattern. The inverse problem of fitting a shape with a modified trian-
gular Resch pattern will be investigated in a future study. 
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Appendix A. Particle internal force generated by bar deformation 

Particles are connected by bar elements. Once a particle moves, the displacement of the particle leads to rigid body motion and deformation of the 
bars connected to the particle. Although we focus on rigid origami in this work, the bar-and-particle model can simulate both rigid and non-rigid 
origami. Using the fictitious motion procedure [51], the rigid body motion and pure deformation of the bar can be separated from the particle 
displacement, which results in the successful handling of geometric nonlinearity in the FPM. 

To calculate the internal force of particles E and F generated by bar EF, Fig. A.1 illustrates the fictitious motions procedure of bar EF from time ta to 
time tb. Time ta is taken as the reference configuration. To remove the rigid body motion of bar EF, first, we assume that bar E′F′ at time tb has a 
fictitious translation (− ΔxE) and a fictitious reversed rotation (− Δφ). The parameters ΔxE and Δφ are the relative displacements and rotations of 
particle E within the time step Δt, respectively. Then, bar E′F′ is displaced to position E′′F′′, as shown in Fig. A.1(a). The internal force of MN is 
calculated at this configuration. The incremental deformation displacement of EF,Δud

F, can be determined by [69]: 

Δud
F = ΔuF + Δur

F = ΔuF −
(
RT − I

)
dx′ (A.1)  

where Δud
F is the relative displacement between particles E and F, and Δur

F is the relative rigid body displacement caused by the fictitious rotation. I is a 
3 × 3 unit matrix; R is the rotation matrix of Δφ; and dx′is the position vector of particle F in the local deformation coordinate at time tb. dx′

=

[ℓE′ F′ 0 0 ]
T, where lE′F′ is the length of bar EF at time tb. For the bar element, the deformation is only related to the variations in the bar length. 

Instead of Eq. (A.3), we determine the incremental deformation of the bar element by using the following equation: 

Δud
F = (ℓE′ F′ − ℓEF)eEF (A.2)  

where ℓEF is the length of element EF at ta, and eEF is the directional vector of element EF at time ta. 
Because element E′′F′′ is parallel to element EF (Fig. A.1(b)), the axial force of element fF′ ′ can be given as follows: 

fF′′= − fE′′ =

[

σaAa +
EaAa

lEF
(ℓE′ F′ − ℓEF)

]

eEF (A.3)  

where Ea is Young’s modulus, σa is the axial stress at ta, and Aa is the cross-sectional area. 
Finally, let the element E′′F′′ be subject to a translation ΔxE and rotation Δφ to regain its original position. The real axial force of element fF′ is 

obtained using the following equation: 

fF′ = − fE′ =

[

σaAa +
EaAa

lEF
(ℓE′ F′ − ℓEF)

]

eE′ F′ (A.4)  

where eE′F′ is the directional vector of EF at tb, and fF′ is the element internal force applied to particle F. This is only the particle force generated from 
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the deformation of bar EF. The total internal force of particle F should be determined from the contribution of all bars connected to it. 
Appendix B. Calculation of the dihedral angle and its gradient 

The dihedral angle θ in Eq. (9) can be determined by the following equations [42]: 

θ = ηarccos
( m⋅n
‖ m ‖ ‖ n ‖

)
(B.1 a)  

η =

{
sgn(m⋅rkℓ) m⋅rkℓ ∕= 0

1, m⋅rkℓ = 0 (B.1 b)  

where η is the sign indicator of the dihedral angle θ; m and n are the normal vectors perpendicular to panels ikj and kℓj; m = rij × rkℓ, and n = rkj × rkℓ; 
and rpqdenotes a vector connecting any two particles (p and q refer to the labels of any pair of nodes, ℓ or k). 

Based on the distance vector and simplifying transformations [70], the gradients of dihedral angle θ without singularities in the numerical analysis 
can be expressed as [42]: 

∂θ
∂x(r)

i

=
‖ rkj ‖

‖ m ‖2 m (B.2 a)  

∂θ
∂x(r)

l

=
‖ rkj ‖

‖ n ‖2 n (B.2 b)  

∂θ
∂x(r)

j

=

(
rij⋅rkj

‖ rkj ‖2 − 1
)

∂θ
∂x(r)

i

−
rkl⋅rkj

‖ rkj ‖2

∂θ
∂x(r)

l

(B.2 c)  

∂θ
∂x(r)

k

=

(
rkl⋅rkj

‖ rkj ‖2 − 1
)

∂θ
∂x(r)

l

−
rij⋅rkj

‖ rkj ‖2
∂θ

∂x(r)
i

(B.2 d)  

Appendix C. Energy calculation 

The energy stored, released, and remaining in the rotational springs of the whole origami pattern are labelled as Wspr, Wrel and Wrem, respectively. 

Wspr =
∑i=nc

i=1
kiℓiθ2

Ni (C.1)  

Wrel =
∑i=nc

i=1
kiℓi

(
θ2

Ni − (θNi − θi)
2) (C.2)  

Wrem =
∑i=nc

i=1
kiℓi(θNi − θi)

2 (C.3)  

where nc is the number of creases and ki, ℓi, θNi and θi are the stiffness, length, neutral angle, and present dihedral angle of crease i, respectively. 
The strain energy Wstrainis attributed to the deformation of the bars connected to the particles, 

Wstrain =
1
2
∑j=nb

j=1

∫

σjεjdVj (C.4)  

where nb is the number of bars and σj, εj and Vj are the stress, strain and volume of bar j, respectively. 
The kinetic energy Wkineticis attributed to the particle velocity, 

Wkinetic =
1
2
∑q=np

q=1
mqvq

2 (C.5)  

where np is the number of particles and mq and vqare the mass and velocity of particle q, respectively. 
The damping work Wdamp is attributed to the artificial damping force on each particle, 

Wdamp =
∑q=np

q=1
μmqvq (C.6)  
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Appendix D. Experiment 

D.1. Stiffness under tension 

A laser machine (PLS 6.75, Universal laser systems) is used to fabricate the samples from the Ice paper. To obtain Young’s modulus E of the Ice 
paper, an Instron model 5566 equipped with a 30 kN load cell is used to perform tensile tests on five samples (see Fig. D.1) of each material. Each 
sample made of Ice paper has dimensions of 20 mm × 100 mm with a thickness of 0.9 mm. The value of Young’s modulus of each paper is taken as the 
average of five samples. The experimental data are collected in Table D.1. 

D.2. Folding stiffness 

For each kind of paper, the folding stiffness kf of a crease is determined as the average of five samples computed from a folding stiffness test. Each 
sample is composed of two square panels of dimensions 25 mm × 25 mm, jointed by a perforated crease line (see Fig. D.2 (a) and (b)). The samples are 
surrounded by folded flanges that simulated the presence of the neighbouring panels in an origami system. A custom-built mechanical testing bed is 
used to measure crease stiffness [43], as shown in Fig. D.2(c) and (d). First, we attach a spacer to the movable plate. This spacer holds the sample while 
leaving clearance for the free end of the sample to displace freely in space to some extent. Second, we mount a 3D-printed force arm to the fixed plate 
with its center offset 29 mm from the spacer edge. This arm transmits the reaction force from the sample to the load cell. 

The moment (M) at the crease lines and the rotational angle (ψ) are calculated as follows: 

M = F0dx (D.1 a)  

ψ = tan− 1
(

u0

dx

)

− tan− 1
(

u0 − Δu
dx

)

(D.2 b)  

where dx is the distance between the crease line and the force arm (i.e., dx = 19 mm), F0 is the measured force from the load cell, and u0 is the initial 
distance between the force arm and the spacer in the y-direction. For the measurements of folding stiffness, we observe different initial neutral angles 
after a complete fold. In such cases, u0 is measured for each sample based on where the force arm touched the sample. The results of the folding 
stiffness are listed in Table. D.1. 

D.3. Neutral angle test 

As shown in Fig. 6(b), the neutral angle θN for a simple crease is the dihedral angle between its two panels when the simple fold is in a natural 
equilibrium state. The neutral angle θN of a fold is a complex function of the folding history, applied load and properties of the materials [71]. Five 
samples are prepared from Ice paper. The sample dimensions are the same as in the folding stiffness test, as shown in Fig. D.2(a). When manufacturing 
a model, we try to follow the same folding procedure each time. Then, fully folded models are allowed to unfold naturally based on the energy stored in 
the creases. After 30 min, when the models are in equilibrium, the angles of the folds are calculated using the law of cosines. 

The time-dependant behavior of the creases is not considered here. We take the average of the results from the five samples. As shown in Table D.1, 
the neutral angle for Ice paper is 104.05◦

Appendix E. Nomenclature  

mα mass of particle α 
d̈α acceleration vector of particle α 
fint

α particle internal force vector generated by the deformation of bars 
fspr

α particle force vector generated by the deformation of rotational springs 
fdmp

α damping force vector of particle α 
fcont

α contact force vector applied to particle α 
gn penetration vector 
Uint

spr stored energy of the rotational spring 
θ dihedral angle 
E Young’s modulus 
H thickness of the paper 
Р density of the paper 
kf Folding stiffness 
θN Neutral angle 
μ damping factor 
Δt time step 
Wspr energy stored in the rotational springs 
Wrel released by the rotational springs 
Wrem remaining in the rotational springs 
Wstrain strain energy 
Wkinetic kinetic energy 
Wdamp damping work  
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