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Origami provides a method to transform a flat
surface into complex three-dimensional geometries,
which has applications in deployable structures, meta-
materials, robotics and beyond. The Miura-ori and the
eggbox are two fundamental planar origami patterns.
Both patterns have been studied closely, and have
become the basis for many engineering applications
and derivative origami patterns. Here, we study
the hybrid structure formed by combining unit cells
of the Miura-ori and eggbox patterns. We find the
compatibility constraints required to form the hybrid
structure and derive properties of its kinematics such
as self-locking and Poisson’s ratio. We then compare
the aforementioned properties of the Miura-eggbox
hybrid with those of the morph pattern, another
generalization of the Miura-ori and eggbox patterns.
In addition, we study the structure formed by
combining all three unit cells of the Miura-ori, eggbox
and morph. Our results show that such patterns have
tunable self-locking states and Poisson’s ratio beyond
their constituent components. Hybrid patterns formed
by combining different origami patterns are an avenue
to derive more functionality from simple constituents
for engineering applications.

1. Introduction
In recent years, the ancient art of origami has
been used for engineering applications. Origami is a
method to transform a flat surface into complex three-
dimensional geometries and can provide advantages
such as deployability, scalability, reconfigurability,
tunability and manufacturability [1]. Origami-based

2024 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Geometry and notation of (a) standard Miura-ori with intrinsic parameters (a, bm, γm), (b) standard eggbox with
intrinsic parameters (a, be,γe) and (c) Miura-eggbox hybrid patterns. We display a unit cell and arrays formed for each pattern.
The second row displays three configurations of a hybrid array, including the two limits of the configuration space where the
Miura-ori and eggbox cells are flat-folded, respectively.

designs can be found in fields including deployable structures [2], materials science [3] and
robotics [4]. The field is ubiquitous and thus the reader is referred to review papers such as [1,5].

The Miura-ori and eggbox are two fundamental planar origami patterns consisting of
tessellated congruent parallelograms. Both patterns have been used frequently in origami
engineering [6–8]. Applications of each pattern take advantage of their simplicity, adaptability
and unique geometric properties. The Miura-ori pattern has been modified and applied to
create curved sheets [9], sandwich fold cores [7], deployable tubes [10] and three-dimensional
metamaterials [3]. The eggbox pattern has been applied to sandwich fold cores [7], tunable
electromagnetic arrays [11] and acoustic materials [12].

The kinematics of the Miura-ori and eggbox patterns have been studied by assuming that
facets remain rigid while folds act as perfect hinges [13], which we will also assume in this
paper. It can be shown that each pattern has 1 d.f., which makes the possibility of using both
concurrently in the same tessellation attractive. These two patterns have contrasting properties
which differentiate them. For instance, the Miura-ori pattern is developable, meaning that it
can be folded from a single planar sheet, while the eggbox is non-developable. In addition, the
Miura-ori pattern has one flat-folded state besides its initial unfolded configuration, while the
eggbox can be flat-folded into two orthogonal states. The Miura-ori pattern has negative in-plane
Poisson’s ratio, while the eggbox has positive in-plane Poisson’s ratio. Conversely, the Miura-ori
has positive out-of-plane Poisson’s ratio while the eggbox has negative out-of-plane Poisson’s
ratio.

The unit cells of both the Miura-ori and eggbox patterns consist of four congruent
parallelograms meeting together at degree-4 vertices, shown in figure 1a,b. Let γ be the smaller
wedge angle of the parallelogram for each pattern. In the Miura-ori, of the four wedges that meet
at the central vertex, two adjacent wedges have angle γ , while the other two wedges have angle
π − γ . For the eggbox, all four wedges that meet at the central vertex have angle γ .

The morph pattern is a generalization of the Miura-ori and eggbox patterns, with a unit
cell consisting of two pairs of congruent parallelograms meeting at a vertex, rather than four
congruent parallelograms in the case of the Miura-ori and the eggbox [14]. This pattern combines
some of the properties of the Miura-ori and eggbox patterns, including switching between ‘Miura
mode’ and ‘eggbox mode’ and a smooth transition between negative and positive Poisson’s ratio.
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In this paper, we study the hybrid structure formed by stitching unit cells of Miura-ori and
eggbox together. We discuss its compatibility constraints and kinematics. Next, we compare
the Miura-eggbox hybrid with the morph pattern. Then, we consider extended hybrid arrays
combining the Miura-ori, eggbox and morph patterns. Lastly, we explore potential applications
based on hybrid patterns.

2. Geometric description of hybrid patterns
Figure 1 presents the geometry and notation of the standard Miura-ori (figure 1a), standard
eggbox (figure 1b) and hybrid (figure 1c) patterns. The hybrid unit cell is formed by attaching
a Miura-ori unit cell and an eggbox unit cell together at two edges as shown in figure 1c. The unit
cells of the Miura-ori and eggbox are each fully defined by three parameters: two edge lengths a
and b, and the angle between the edges γ .

(a) Compatibility constraints
For geometric compatibility, to connect Miura-ori and eggbox unit cells, we require that

am = ae = a (2.1)

for each unit cell.
In addition, let us define the angle ψ as the angle between the +y-direction and the fold line

shared by the unit cells, as shown in figure 1. The range of ψ for the Miura-ori cell is [0, γm], while
the range for the eggbox cell is [π/2 − γe,π/2]. Therefore the range of ψ for the hybrid structure is
the intersection, [π/2 − γe, γm] (γm and γe are assumed to be acute), which results in an inequality
constraint

π

2
− γe < γm. (2.2)

The Miura-ori and eggbox unit cells are each determined by three parameters ((am, bm, γm) and
(ae, be, γe), respectively). When combined to form the hybrid unit cell, the constraints reduce the
number of free parameters. The hybrid unit cell is fully determined by three lengths (a, bm, be) and
two angles (γm, γe), where the angles must follow inequality (2.2).

(b) Locking
Let Sm and Se be defined as half the length in the x-direction of the Miura-ori and eggbox unit
cells, respectively. Parametrized as a function of ψ , the expressions for Sm and Se are given by

Sm = bm

√
sin2 γm − sin2 ψ

cosψ
(2.3)

and

Se = be

√
sin2 ψ − cos2 γe

sinψ
. (2.4)

As ψ increases from π/2 − γe to γm, Sm decreases from Smax
m to 0 while Se increases from 0 to Smax

e ,
where Smax

m and Smax
e are the maximum compatible lengths of each respective unit cell given by

Smax
m = bm

√
sin2 γm − cos2 γe

sin γe
(2.5)

and

Smax
e = be

√
sin2 γm − cos2 γe

sin γm
. (2.6)

Next, let us define Sh to be half the length of the hybrid unit cell in the x-direction (figure 1):

Sh = Sm + Se. (2.7)
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Figure 2. Plot of Miura-ori, eggbox and hybrid unit cell lengths in the x-direction against angleψ . By definition,ψ∗ is the
angle for which the length of the hybrid unit cell is maximized.

Asψ increases, along the x-direction, the Miura-ori unit cell compresses while the eggbox unit cell
expands. Owing to the discrepancy of the relative rates of compression and expansion, the length
Sh is a non-monotonic function of the angle ψ , as shown in figure 2. This monotonic property
results in a topological locking behaviour in compression. Namely, when subject to compression
in the x-direction, the hybrid unit cell will actuate until the angle ψ reaches either its minimum or
maximum bound and the eggbox or Miura-ori unit cell becomes flat-folded, respectively. Which
unit cell becomes flat-folded is dependent on the initial state of the hybrid unit cell. Let ψ∗ be
the critical angle that results in the maximum value of Sh. If initially ψ <ψ∗, compressing the
structure along the x-direction (decreasing Sh) will decrease ψ until the eggbox cell becomes
flat-folded. If initially ψ >ψ∗, compressing the structure will increase ψ until the Miura-ori cell
becomes flat-folded.

In the y-direction, half the length of the hybrid unit cell Lh is equal to that of Miura-ori and
eggbox unit cells, which decreases monotonically as a function of ψ . The expression of Lh is

Lh = L = a cosψ . (2.8)

(c) Poisson’s ratio derivation
Poisson’s ratio is a measure of how a material expands or contracts in the direction perpendicular
to the loading direction. Following the example of Schenk [13], we choose to use the tangential
Poisson’s ratio [15], where the planar Poisson’s ratio is the negative ratio between instantaneous
strains in orthogonal directions. These are defined as

εh
S = dSh

Sh
and εh

L = dL
L

(2.9)

and

νh
LS ≡ −ε

h
S

εh
L

= Sm

Sh
νm

LS + Se

Sh
νe

LS, (2.10)

where εh
S and εh

L are the instantaneous strains in the x- and y-directions, respectively. νm
LS and

νe
LS are Poisson’s ratio of the Miura-ori and eggbox cells, respectively, for strains applied in the y-

direction. νh
LS, Poisson’s ratio of the hybrid pattern, is a weighted average of those of the Miura-ori

and eggbox cells, with weights proportional to the length of each unit cell in the x-direction (see
appendix A). It can also be shown that the expressions for the Miura-ori and eggbox Poisson’s
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Figure 3. Poisson’s ratio versusψ for Miura-ori and eggbox unit cells with γ angles of 60◦, 70◦ and 80◦, as well as a hybrid
unit cell with γm = γe = 60◦ and bm = be (in black). Hybrid arrays can be formed by combining instances of Miura-ori and
eggbox unit cells,with Poisson’s ratio of the array being aweighted average of Poisson’s ratio of the constituent cells. The shaded
region is unreachable for a hybrid array with minimumMiura-ori and eggbox wedge angles of 60◦.

ratios are (see [13] and appendix A)

νm
LS = − cos2 γm

sin2 γm − sin2 ψ
(2.11)

and

νe
LS = cos2 γe cot2 ψ

sin2 ψ − cos2 γe
. (2.12)

Note that Poisson’s ratios and lengths S in the x-direction of the Miura-ori and eggbox cells are
all functions of the actuation angle ψ .

Poisson’s ratio of the Miura-ori is negative and decreases without bound as ψ increases to γm.
Poisson’s ratio of the eggbox is positive and increases without bound as ψ decreases to π/2 − γe.
Poisson’s ratio function for various wedge angles are plotted in figure 3. As a weighted average
between the two, Poisson’s ratio of the hybrid unit cell decreases from positive infinity to negative
infinity as ψ increases from π/2 − γe to γm, as seen in black in figure 3.

(d) Hybrid arrays
Owing to the compatibility constraints specified, hybrid unit cells can be tessellated in the x- and
y-directions to form a planar array. Each column along the y-direction must consist of the same
type of unit cell. By contrast, in the x-direction, we are not limited to tessellations of alternating
Miura-ori and eggbox rows. Any permutation of Miura-ori and eggbox rows is permissible given
the previously stated compatibility constraints are satisfied. Rigid-foldability is maintained for
the planar array due to the translational symmetry of the arrays composed of the basic unit cells.

Let S′ and L′ be half the length in the x- and y-directions, respectively, of the hybrid array.
Suppose the array has n × n unit cells, with nm strips of Miura-ori unit cells and ne strips of
eggbox unit cells such that nm + ne = n. Then,

S′ = nmSm + neSe and L′ = nL (2.13)

and
νL′S′ ≡ −εS′

εL′
= nmSm

S′ νm
LS + neSe

S′ ν
e
LS. (2.14)

Poisson’s ratio of the hybrid array is the weighted average of the Miura-ori and eggbox Poisson’s
ratios, with weights determined by the relative lengths in the x-direction for the Miura-ori and
eggbox strips.
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In addition, hybrid arrays are not limited to one set of Miura-ori and eggbox unit cells. In
fact, freeform arrays of different geometric configurations of Miura-ori and eggbox unit cells can
be combined in a single array provided a modified statement of the compatibility constraints is
followed. Namely, every unit cell must have the identical a crease length. In addition, ψmin is
determined by the flat-folded state of the eggbox unit cell with the smallest γe wedge angle, while
ψmax is determined by the flat-folded state of the Miura-ori unit cell with the smallest wedge
angle γm.

Let γ i
m and γ j

e be the wedge angle of the ith Miura-ori cell and jth eggbox unit cell, respectively.
We define the sets of wedge angles as follows:

Γm = {γ i
m | 1 ≤ i ≤ nm} and Γe = {γ j

e | 1 ≤ j ≤ ne}. (2.15)

Then ψ ∈ [π/2 − min{Γe}, min{Γm}]. Therefore, we require π/2 − min{Γe}<min{Γm}.
Satisfying these modified constraints allows the freedom to develop functionally graded arrays

in which the parameters of the unit cells are varied spatially for tailored mechanical properties.
Similar functionally graded origami structures have been developed based on the Miura-ori
pattern [16]. When these structures are subject to compression, folding initially occurs at creases,
until a portion of the structure flat-folds. Upon this self-locking, further compression requires
deformation in the panels, resulting in large specific energy absorption relative to non-graded
structures. Functionally graded hybrid arrays can similarly exhibit such self-locking behaviour.
In addition, hybrid arrays can self-lock at two different configurations (either Miura-ori or eggbox
locked, see figure 1c), which is not seen in structures consisting of Miura-ori alone.

To find Poisson’s ratio of freeform arrays, we again consider an n × n array, with Si and νLSi as
the lengths and Poisson’s ratio of the unit cell in the ith strip. Then,

S′ =
n∑

i=1

Si and L′ = nL (2.16)

and

νL′S′ ≡ −εS′

εL′
=

n∑
i=1

Si

S′ νLSi. (2.17)

Poisson’s ratio of the array is again a weighted average, now of Poisson’s ratio of each constituent
strip of unit cells. Therefore, one has the flexibility to specify Poisson’s ratio curve of the array
by both choosing the set of constituent unit cell Poisson’s ratio curves, as well as selecting the
weights by specifying the number of strips of each unit cell. In figure 3, the Miura-ori and eggbox
cells with γ angles 70◦ and 80◦ are compatible with a hybrid array with min{Γe} = min{Γm} = 60◦,
so any Poisson’s ratio function that is a weighted average of the red and blue curves could be
achieved for a hybrid array. Because the range of feasible ψ angles is determined by the minimum
γ angles, any such array will have 30◦ ≤ψ ≤ 60◦ as shown by the non-shaded region in figure 3.

However, note that as a function of ψ , Poisson’s ratio for both the Miura-ori and eggbox
cells has negative slope. In addition, for a given min{Γm} and min{Γe}, all the other compatible
Poisson’s ratio curves will fall within their range. Therefore any weighted average of compatible
Poisson’s ratio curves will always have negative slope and be within the limits of the Poisson’s
ratio function of the Miura-ori cell with minimum γm and the eggbox cell with minimum γe, which
limits the feasible Poisson’s ratio functions of the hybrid array.

3. Morph and hybrid patterns
The morph pattern is a generalization of the Miura-ori and eggbox patterns, with similar Poisson’s
ratio and locking properties as the Miura-eggbox hybrid. In this section, we will first provide an
overview of the morph pattern, then compare and contrast between the morph and the Miura-
eggbox hybrid pattern, and finally explore hybrid arrays incorporating Miura-ori, eggbox and
morph cells.
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Figure 4. Geometric configuration of the morph pattern. The unit cell of the morph pattern can transition from eggbox mode
(top left) to Miura mode (top centre) by switching the mountain/valley assignment of the crease highlighted in red. Poisson’s
ratio versusψ for four morph unit cells withβ = 55◦ and various values ofα is shown on the bottom left. For unit cells with
β = 55◦, the kinematic bifurcation occurs when ψ = 35◦, where Poisson’s ratio transitions between positive infinity and
negative infinity. The shaded region is unreachable for a morph cell with β = 55◦. The morph array (right) shows three rows
in eggbox mode and two rows in Miura mode.

(a) Morph overview
The morph pattern is a generalization of the Miura-ori and eggbox, with a unit cell consisting of
two pairs of congruent parallelograms meeting at a degree-4 vertex [14]. A unit cell of the morph
pattern is shown in figure 4.1 Two adjacent parallelograms have a wedge angle α, while the other
two have a wedge angle β such that α ≥ β. The morph pattern allows the crease between the two
β angle panels to change between mountain and valley assignments to switch between an eggbox
and a Miura mode. This leads to similar properties seen in the hybrid pattern, such as a transition
from positive to negative Poisson’s ratio and mode locking in arrays.

Each morph unit cell has two possible modes for a given value of ψ . One expresses a positive
Poisson’s ratio (eggbox mode) and the other expresses a negative Poisson’s ratio (Miura mode).

The morph pattern can be tessellated, for instance, to create an n × n array of unit cells, as
shown in figure 4. When tessellated, Poisson’s ratio of the morph array, similar to the hybrid
pattern, is the weighted average of Poisson’s ratio of the cells in Miura and eggbox modes.

(b) Comparing morph and hybrid patterns
The Miura-eggbox hybrid patterns consists of multiple Miura-ori and eggbox unit cells, each
consisting of four parallelograms. The morph pattern consists of a single repeated unit cell which
consists of four parallelograms.

The hybrid pattern’s Poisson’s ratio is a weighted average of Poisson’s ratio of its constituent
Miura-ori and eggbox unit cells. Poisson’s ratios of the constituent cells are a function of their γ
angles. The weights are dependent on the lengths of each unit cell and the proportion of the array
each unit cell comprises. In contrast, the morph pattern’s Poisson’s ratio is a weighted average of
the Poisson’s ratio of its unit cell’s Miura and eggbox modes. Poisson’s ratios of the modes are a

1The labelling scheme shown differs from that used in [14], where we have replaced a with b, b with c, c with a, and ψ with
π − 2ψ .
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function of the unit cell angle and length dimensions. The weights are dependent on the lengths
of the cells and fraction of the cells in each mode.

Both the hybrid and morph arrays’ Poisson’s ratio can be controlled through a variety of
parameters. The hybrid array’s Poisson’s ratio can be controlled by adjusting Poisson’s ratio of its
constituent Miura-ori and eggbox unit cells by adjusting the angle parameter of the unit cells. In
addition, the fraction of Miura-ori and eggbox strips and their respective lengths can be adjusted
to make the weighted average Poisson’s ratio skew towards the Miura-ori or eggbox Poisson’s
ratio curves.

Poisson’s ratio of the morph pattern can similarly be controlled by adjusting the lengths
and angle parameters of the unit cell dimensions. However, unlike the hybrid array, after the
geometric configuration is set, the number of strips of the morph array in Miura or eggbox
modes can be changed via a kinematic bifurcation point, adjusting the weights for Poisson’s ratio
calculation and effectively tuning Poisson’s ratio of the array. No such bifurcation exists in the
hybrid array, so Poisson’s ratio function is fixed for a given geometric parametrization.

Morph arrays are capable of exhibiting mode locking under either compression and tension,
where unit cells will be taken away from their kinematic bifurcation point based on the local and
global Poisson’s ratio. Compressive mode locking occurs if Poisson’s ratio is globally negative,
while tensile mode locking occurs if Poisson’s ratio is globally positive. For instance, in figure 5,
the morph array has a globally negative Poisson’s ratio. Upon x compression, the central eggbox
mode unit cell expands despite the global contraction. The cell moves away from the kinematic
bifurcation, preventing a transition to Miura mode. The mode locking is topological, in that the
mountain and valley assignments are locked, but the pattern can still fold to flat-folded states [14].
This is in contrast to motion locking, where contact between panels prevents the pattern from
reaching a flat-folded state [17]. The compressive locking in the hybrid pattern is both topological
and contact based; the direction of actuation (which unit cell will flat fold) is based on the initial
configuration, and the end state is limited by panels contacting when one of the constituent unit
cells has flat folded. In figure 5, when compression is applied to the hybrid array, which unit
cell compresses and flat folds is determined by its initial folded configuration. A summary of the
comparisons between the Miura-eggbox hybrid arrays and morph arrays is outlined in table 1.

(c) Miura-eggbox-morph hybrid arrays
The morph pattern can also be incorporated to arrays of the hybrid pattern, as shown in figure 6.
To join columns of different origami patterns in a compatible way, we require the interface
between columns to be vertical, i.e. lie in a plane normal to the x-axis. This is guaranteed by
the orthorhombic nature of the Miura-ori, eggbox and morph [14] unit cells. Each morph unit
cell is oriented so that the crease that can switch mountain and valley assignment is parallel to
the xz plane. In addition, we require that that crease cannot attach to a Miura-ori strip to prevent
self-intersection when the morph pattern is in Miura mode. Note that the orthogonal orientation
of the morph, achieved by rotating the unit by 90◦ about the z-direction, is not allowed, due to a
lack of symmetry.

Let us define the angle ψ for the morph pattern similarly to how we defined ψ for the hybrid
pattern unit cells, as shown in figure 4. For the morph, ψ ∈ [π/2 − β,π/2]. Therefore, for each
morph unit cell incorporated to the array, β > π/2 − min{Γm}. This compatibility constraint must
be satisfied, as well as requiring the crease lengths parallel to the yz plane to have length a.

Within the stated constraints, the interface between columns of Miura-ori, eggbox, and morph
unit cells behaves identically to that of two columns of Miura-ori unit cells in a conventional
Miura-ori array, that of two columns of eggbox unit cells in a conventional eggbox array, or that of
two columns of morph unit cells in a morph array. Therefore, the kinematics and rigid-foldability
are maintained for each column.

The incorporation of strips of morph unit cells can introduce tunability to Poisson’s ratio of
the array. However, the transition point for the morph pattern occurs when ψ = π/2 − β, which is
only reachable if β <min{Γe}. Then, the minimum bound of ψ for the array will be π/2 − min{B},
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z

y

x

Figure 5. Comparison of locking in morph arrays and Miura-eggbox arrays. On the top, the morph array has a positive global
Poisson’s ratio, implying compression in the y-direction given compression in the x-direction. The central unit cell in eggbox
mode is taken away from its kinematic bifurcation and grows in the x-direction despite the array globally shrinking in the x-
direction. The cell is locked because it cannot smoothly transition to Miura mode. On the bottom, the Miura-eggbox array may
have a positive (bottom) or negative (top) global Poisson’s ratio depending on the folded configuration (value ofψ ). Upon x
compression, the central eggbox unit cell will shrink ifψ <ψ∗ (bottom) and grow ifψ >ψ∗ (top). Unlike for the morph,
the Miura-eggbox hybrid has no kinematic bifurcation, but upon x compression ψ will always move away from the critical
angleψ∗.

where B is the set of β angles. In addition, for any morph unit cell with β >min{B}, the transition
ψ will not be reachable. Therefore, only morph unit cells with the minimum β angle will be able
to exhibit mode switching. Figure 4 shows Poisson’s ratio curves for morph patterns with β = 55◦
while varying α.

Let φ be the angle formed by the creases with length b and c. If morph unit cells follow the
constraints for tunability, for a given value ofψ , the morph unit cells can have two different values
of φ depending on if they are in Miura mode or eggbox mode. Asψ increases from π/2 − β to π/2,
in Miura mode, the Poisson’s ratio increases from −∞ and approaches 0, while in eggbox mode,
Poisson’s ratio decreases from +∞ and approaches 0. In figure 4, note that if β is kept constant
for different morph unit cells in a single array, each morph unit cell can maintain tunability.

Poisson’s ratio of an array with strips of Miura, eggbox and morph unit cells is once again
the weighted average of Poisson’s ratio of its constituent unit cells, with weights determined by
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Figure 6. Poisson’s ratio of a hybrid array is a weighted average of Poisson’s ratios of its constituent cells. Miura-ori unit cells
with γm = 60◦ (top left), eggbox unit cells with γe = 60◦ (top left) and morph unit cells with α = 65◦ and β = 55◦ (top
right) can combine to form hybrid arrays (bottom left) with Poisson’s ratios that span Poisson’s ratio bounds of its constituent
cells (bottom right). Each curve in yellow is Poisson’s ratio function for a given combination ofMiura-ori, eggbox andmorph cells
using different weights. In black, one combination is highlighted which exhibits a Poisson’s ratio that transitions from negative
to positive back to negative values, overlaid with results from numerical simulations using MERLIN software (circular markers).
The highlighted Poisson’s ratio can be achieved using a combination of 1Miura-ori unit cell, 2 eggbox cells, 3morph cells inMiura
mode and 1 morph cell in eggbox mode assuming unit cells with bm = be = cmor, where cmor is the length of the crease on the
morph cell denoted by c in figure 4. Note that the weighting depends only on the total proportion of the x length occupied
by each constituent unit cell, so an equivalent Poisson’s ratio can be achieved by scaling the bm, be and cmor parameters and
inversely scaling the number of each respective unit cell in the array.

Table 1. Comparison between Miura-eggbox hybrid arrays and morph arrays.

Miura-eggbox hybrid array morph array

composition multiple different Miura-ori and eggbox unit
cells

single identical morph unit cell

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson’s ratio weighted average of that of the constituent
Miura-ori and eggbox unit cells

weighted average of that of the Miura and
eggbox modes of the morph unit cell

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tunability Poisson’s ratio function fixed after geometry
defined

Poisson’s ratio function tunable via mode
transitions through a kinematic bifurcation
point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

locking locking under x compression locking under either x tension or x compression
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

their relative lengths in the x-direction. Therefore, with the morph cells in Miura mode, Poisson’s
ratio of the array can be a weighted average of Poisson’s ratio functions with negative and positive
slopes with respect toψ . This allows arrays with Poisson’s ratio that are non-monotonic, as shown
in figure 6. This is in contrast to the Miura-eggbox hybrid arrays, which can only have negative
slope. In addition, this allows mode locking in both compression and tension.

Furthermore, Poisson’s ratio can transition from negative, to positive, and back to negative
again. This is in contrast to the morph alone, which can have non-monotonic Poisson’s ratio, but
can only change in sign once.
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Figure 7. Specification of boundary conditions and loading of MERLIN numerical simulation of array in figure 8a (CAD and
physical models) with Poisson’s ratio shown in figure 6.

The theoretical Poisson’s ratio function of an array displaying the non-monotonic behaviour
shown in figure 6 was numerically simulated using MERLIN, a nonlinear ‘bar-and-hinge’ model
developed for analysing quasi-static origami structures [18]. Model parameters for Young’s
modulus (109), bar area (10−4) and bending (105) and folding (10−1) stiffness were chosen to
asymptotically approach rigid panels.

The boundary conditions were specified to pin the bottom left corner to the origin, constrain
every other bottom vertex along the x-axis, and constrain every other top vertex to the xy-plane,
as shown in figure 7. The load was applied in the +y-direction at each top vertex. The boundary
conditions were chosen to resemble an experimental set-up using the Saint–Venant Fixture
described in [19] to experimentally verify Poisson’s ratio of origami metamaterials. Poisson’s ratio
was calculated by tracking the position and displacement of the top right vertex highlighted in
blue in figure 7. The angle ψ was calculated using the edge connected to the origin. The results
of the numerical simulations are overlaid in figure 6 using circular markers and show excellent
agreement with the theoretical curve.

4. Potential applications
Hybrid patterns can combine geometrical properties such as Poisson’s ratio and tunability
of their constituent patterns, as well as display new behaviours. This can be an avenue for
applications from materials scale metamaterials to architectural scale deployable structures which
take advantage of tunable Poisson’s ratio, locking configurations and complex shape changing.
We discuss three such potential applications.

(a) Planar arrays
The hybrid pattern can be used to create planar arrays with specified physical properties and
kinematics. For instance, one could create facades with specified motions, or develop arrays
that exhibit Poisson’s ratio ranging from positive to negative infinity. One could also design a
metamaterial with near zero Poisson’s ratio for a large range of lengths.

With the addition of the morph pattern to the array, the envelope of possible Poisson’s ratios
is bounded by the minimum of the Miura-ori and morph in Miura mode unit cells from the
bottom, and the eggbox and morph in eggbox unit cells from the top, as shown in figure 6. One
could design arrays with Poisson’s ratios that transition from the negative to positive and back
to negative, as shown in figure 8a. In addition, the morph pattern allows additional tunability via
the kinematic bifurcation point, allowing certain rows of the morph to switch between Miura and
eggbox mode after the geometric configuration is set.
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(a) (b) (c)

Figure 8. CAD and physical models of potential applications. (a) Hybrid array with the non-monotonic Poisson’s ratio curve
shown in figure 6. The array has five rows and nine columns, which from left to right are (i) Miura, (ii) morph (Miura mode),
(iii) eggbox, (iv) Miura, (v) morph (Miura mode), (vi) morph (eggbox mode), (vii) morph (Miura mode), (viii) eggbox and
(ix) morph (Miura mode). Note the consistency of this model and the MERLIN computer model of figure 7. (b) Tube made from
reflecting a hybrid unit cell about the xy plane. Note that the kinematics of the hybrid tube is identical to a tube where the
eggbox section is replaced with a corresponding rotated Miura tube section, which is created by replacing the eggbox unit cell
below the xy plane (black wireframe) with four congruent parallelograms which convert the section to a rotated Miura tube
section. (c) Metamaterial formed from rotated Miura tubes.

The arrays can also be designed as metamaterials with specified end configurations. For
instance, one can design a hybrid array with end configurations that differ in length by a factor
of two. Under compression, such an array would have very low stiffness until one of the two
specified end configurations is reached, at which point the stiffness would increase sharply. There
are infinitely many arrays that can achieve this behaviour, for instance an array of alternating
columns of Miura-ori and eggbox cells with γm = γe = 60◦ and bm = 2be.

(b) Tubes
Taking inspiration from Miura tubes formed by mirroring a single row of the Miura-ori pattern
[10], we form a hybrid tube by reflecting a row of Miura-ori and eggbox unit cells, which will
maintain the locking behaviour seen in the planar patterns. Rigid-foldability is maintained, as
the kinematics of the reflected cells matches those of the original pattern. The sections of the
tube corresponding to eggbox cells will have holes; however, from observing the geometry of the
hybrid tube in figure 8b, it is clear that the kinematics matches those of a tube with eggbox tube
sections replaced with Miura-ori tube sections rotated 90◦ about the long axis. To complete this
transformation, the original eggbox panels above the xy plane remain unaltered, while the eggbox
panels below the xy plane are translated to complete the Miura-ori tube section. This provides a
method to create a tube with the same kinematic properties without requiring holes in the tube.

We will show the rigid-foldability of these rotated Miura tubes. Each Miura-ori tube section is
rigid-foldable with 1 d.f. [10]. All that remains to be shown is that adjacent Miura-ori tube sections
that are rotated 90◦ relative to each other remain geometrically compatible and rigid-foldable
when combined. The interface between adjacent tube sections consists of a rhombus with side
length a. Both Miura-ori tube sections are able to rigidly fold to match any such rhombus. This
allows adjacent sections to be attached compatibly and act as a rigid-foldable assembly.

Unlike conventional Miura tubes, the hybrid or rotated Miura tubes are capable of supporting
a compressive load, due to the increased stiffness from motion locking. This increased stiffness
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Figure 9. Conceptual metamaterial construction process by tessellating rotated Miura tubes. This process illustrates how
figure 8c was obtained.

comes with the cost of losing flat-foldability. Also, in contrast to similar Miura-ori inspired tube
and metamaterial structures that experience increased stiffness due to motion locking when a
single set of facets come into contact [20,21], the hybrid tubes can exhibit motion locking from
two separate sets of contacting faces which can be selected based on the initial configuration when
compression is applied. Thus, the hybrid tubes allow a degree of tunability after the geometric
configuration is set.

As shown in figure 2, the length of the hybrid pattern at the limits of its actuation range are
determined by the length of the Miura-ori and eggbox unit cells. Therefore, one can design a tube
that has a large expansion ratio between its deployed and stowed length. Alternatively, one could
design for a specific ratio between its deployed and stowed length, for instance to make a tube
that will exactly double in size, similar to the planar case.

Note that the technique used to remove holes from the tube corresponding to eggbox cells
cannot be fully replicated for morph cells, because as the morph tube section transitions from
eggbox mode to Miura mode via the kinematic bifurcation point, the panels self-intersect,
preventing the Miura mode from being reached. As a result, we have not shown the morph
pattern included in tubes or the subsequent section on metamaterials.

(c) Three-dimensional metamaterials
Extending the pattern to three dimensions, the rotated Miura tube discussed previously can
be tessellated to form a three-dimensional metamaterial with configurable Poisson’s ratio and
locking behaviour, as shown in figure 8c. To construct the metamaterial, rotated Miura tubes are
tessellated in two dimensions via repetitive translation along two principal axes. Both principal
axes are orthogonal to the long axis of the tube. Each of the principal axes are parallel to one pair
of sides of the interfacial rhombus discussed previously. This process is illustrated in figure 9. The
metamaterial maintains rigid-foldability due to the two-dimensional translational symmetry of
its construction. This structure could be applied as an architected material with a large degree
of tunability. Properties such as mechanical anisotropy, high strength-to-density ratios and shape
recoverability could be achieved through the design of panel and crease stiffnesses. Additionally,
such three-dimensional metamaterials will exhibit high specific energy absorption similar to the
functionally graded origami structures demonstrated in [16]. This is because the hybrid pattern
inherently exhibits self-locking, even without functional grading. Further control of the force
displacement curve can be achieved by functionally grading the hybrid pattern, resulting in
additional increases of stiffness as more instances of self-locking are introduced.

The ability to design different locked states enables architected materials that can sharply
increase in stiffness at two specified deformed states. In addition, reversible auxeticity can
be achieved where Poisson’s ratio switches sign during deformation. Such origami inspired
metamaterials are geometrically scalable and have been demonstrated at micron length scales [3].

To demonstrate the concept of a three-dimensional metamaterial with different locking states,
we numerically simulate the structure shown in figure 8c in compression using MERLIN. The
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Figure 10. Specification of boundary conditions and loading for MERLIN numerical simulation of the three-dimensional
metamaterial infigure8c and loadversus displacementplot for two initial configurations (in theneighbourhoodof theψ∗ point
of figure 2). The zoomed in plot on the bottom right highlights a softening behaviour along one branch of the load displacement
curve.

material parameters match those used previously for the hybrid array. The boundary conditions
were specified such that the bottom left vertex was pinned at the origin, the vertices on the left
face were constrained to the yz-plane, and the vertices on the bottom left edge were constrained to
the y-axis, as shown in figure 10. Two simulations were conducted in the neighbourhood of theψ∗
point of figure 2. One in which initially ψ >ψ∗, causing the second and fourth layer of cells to flat
fold, and another in which initially ψ <ψ∗, causing the first and third layer of cells to flat fold.
In the numerical model, the constitutive model of folding hinges is nonlinear and approaches
infinite stiffness when the dihedral angle approaches zero to prevent panel intersection. The force
versus displacement demonstrates conceptually how stiffness increases dramatically when the
locked configurations are reached, and how two different end states can be reached depending
on the initial configuration.

5. Concluding remarks
In this paper, we introduced and analysed the geometric mechanics of an origami pattern
combining Miura-ori, eggbox and morph unit cells. We first derive the compatibility requirements
to form the hybrid structure, then analyse the geometric properties that result from the kinematic
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coupling of the constituent patterns. The resultant arrays can demonstrate mode locking,
Poisson’s ratios that range from negative infinity to positive infinity, and non-monotonic Poisson’s
ratios.

The hybrid pattern can be used in a variety of potential applications, including arrays, tubes,
and three-dimensional metamaterials. In addition, the pattern can be used to develop functionally
graded metamaterials with self-locking properties and high specific energy absorption.

Future work could verify the in-plane Poisson’s ratio experimentally in a similar manner to
[19] and compare with theoretical and numerical results. Poisson’s ratio in bending could also be
analytically determined as has been done with the Miura-ori [22], eggbox [23], morph [14] and
other tessellated patterns [24,25].

Hybrid patterns provide the ability to not only combine properties such as Poisson’s ratio and
tunability of their components, but also derive mechanical properties beyond their constituent
patterns such as self-locking and non-monotonic Poisson’s ratio. We anticipate that this added
functionality and design freedom will allow hybrid patterns to be used in various engineering
applications requiring programmable and reconfigurable structures.
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Appendix A. Derivation of hybrid Poisson’s ratio

(a) Miura-ori and eggbox
Using the notation of figure 1 and the angle θ from [6], we obtain the following relationships for
the Miura-ori cell:

θ = sin−1
(

sinψ
sin γm

)
(A 1)

and

cos θ =
√

sin2 γm − sin2 ψ

sin γm
. (A 2)

Schenk derived Poisson’s ratio in terms of θ [6], which we will rewrite in terms of ψ :

νm
LS = − 1

cos2 θ tan2 γm

= − sin2 γm

(sin2 γm − sin2 ψ) tan2 γm

= − cos2 γm

sin2 γm − sin2 ψ
. (A 3)

Similarly, for eggbox (figure 1), we obtain:

α = π

2
− ψ (A 4)
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and

νe
LS = cos2 γe tan2 α

cos2 α − cos2 γe

= cos2 γe cot2 ψ

sin2 ψ − cos2 γe
. (A 5)

(b) Hybrid unit cell
Using the notation established by figure 1, we obtain the following relationships for Miura-eggbox
hybrid cells:

νh
LS ≡ −ε

h
S

εh
L

= − L
Sh

dSh

dL

= − L
Sh

dSm + dSe

dL

= −
(

L
Sh

dSm

dL
+ L

Sh

dSe

dL

)

= −
(

Sm

Sh

L
Sm

dSm

dL
+ Se

Sh

L
Se

dSe

dL

)

= Sm

Sh
νm

LS + Se

Sh
νe

LS. (A 6)

(c) Hybrid arrays
Repeating the calculation for planar Poisson’s ratio for hybrid arrays consisting of multiple
Miura-ori and eggbox rows:

S′ = nmSm + neSe, (A 7)

L′ = nL (A 8)

and νL′S′ ≡ −εS′

εL′

= −L′

S′
dS′

dL′

= −
(

L′

S′
nmdSm

dL′ + L′

S′
nedSe

dL′

)

= −
(

nmSm

S′
L′

Sm

dSm

dL′ + neSe

S′
L′

Se

dSe

dL′

)

= nmSm

S′ νm
LS + neSe

S′ ν
e
LS. (A 9)
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