# Functionally Graded Concrete for the Civil Infrastructure – A Multifunctional Material System Approach

### Kyoungsoo Park, Glaucio H. Paulino and Jeffery R. Roesler

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, U.S.A.

### **Motivation**

- Functionally Graded Concrete to achieve multi-objectives
- Layers of specific material properties placed at optimal location and thickness to enhance overall performance
- Achieving high performance rigid pavement system



• Fibers: provide toughening mechanisms in concrete

### **Research Objectives**

- Constitutive modeling for fracture mechanisms of fiber reinforced concrete (FRC) through cohesive zone model
- Study the placement and thickness of concrete materials in order to optimize the fracture resistance and behavior

### **Cohesive Zone Model Approach**



## **Experimental & Computational Setup**

Plain concrete

Fiber reinforced

FRC layer at

FRC layer at

the bottom

concrete

the top

### Test Program



# Material Descurtion

| Elastic<br>modulus | f,'          | G <sub>f</sub> | G <sub>F</sub> | G <sub>FRC</sub> | CTOD <sub>c</sub> | Fiber<br>length |  |  |  |  |  |
|--------------------|--------------|----------------|----------------|------------------|-------------------|-----------------|--|--|--|--|--|
| 26.9<br>(GPa)      | 3.9<br>(MPa) | 38.1<br>(N/m)  | 145<br>(N/m)   | 2562<br>(N/m)    | 0.0157<br>(mm)    | 40<br>(mm)      |  |  |  |  |  |

### Finite Element Modeling



(Generalized Isoparametric Formulation, GIF)





Numerical predictions: w<sub>f</sub> = (fiber length) / 2

### Grant number: 800805 Structural Materials and Mechanics PI: Glaucio H. Paulino Co-PI: Jeffery R. Roesler

LLINOIS INIVERSITY OF ILLINOIS AT URBANA CHA

### **Functionally Graded FRC**



### **Effect of Material Thickness Variation**



### FRC (%) 0 10 30 50 70 90 100 PCC (%) 100 90 70 50 30 10 100 1.00 1.02 1.08 Cost 1.05 1.11 1.14 1.15 FRC layer at the top

| G <sub>2mm</sub> | 1.0                     | 1.4 | 2.2 | 2.8 | 3.2 | 3.7 | 3.5 |  |  |  |
|------------------|-------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| FRC lay          | FRC layer at the bottom |     |     |     |     |     |     |  |  |  |
| G <sub>2mm</sub> | 1.0                     | 1.0 | 1.1 | 1.6 | 2.4 | 3.2 | 3.5 |  |  |  |

### Conclusions

- Proposed softening model captures fracture behavior of PCC, FRC, and layered FRC
- Fracture process zone is divided into aggregate bridging zone and fiber bridging zone
- •This investigation can lead to optimal thickness and position of materials in concrete pavements increasing cracking resistance while minimizing costs

### Acknowledgement

• National Science Foundation (NSF) under Research Grant Number CMMI 0800805

### References

- K. Park, G.H. Paulino, and J.R. Roesler, 2008. Determination of the kink point in the bilinear softening model for concrete, Engineering Fracture Mechanics 75, 3806-3818.
- . I.R. Roesler, G.H. Paulino, K. Park, and C. Gaedicke, 2007. Concrete fracture prediction using bilinear softening, Cement & Concrete Composites 29, 300-312.
- J.R. Roesler, G.H. Paulino, C. Gaedicke, A. Bordelon, and K. Park, 2007. Fracture behavior of functionally graded concrete materials (FGCM) for rigid pavements, Transportation Research Record 2037, 40-49.
- K. Park, G.H. Paulino, and J.R. Roesler, 2009, Cohesive fracture modeling of functionally graded fiber reinforced concrete composite, ACI Materials Journal, submitted.
- . F. Evangelista, J.R. Roesler, and G.H. Paulino, 2009, Numerical simulations of the fracture resistance of functionally graded concrete materials, TRB, in press.