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MOTIVATION:

0 Recently there has been great interest in implicit function and level set meth-
ods for topology optimization

0 Since the definition and motion of the interface is restricted to have certain
regularity, these methods only make sense for “restriction” formulations

0 In general it is not clear what continuum problem is being solved and its
ill-posedness has certain implications for the numerical algorithm

PROBLEM STATEMENT:

0 The two phase optimal design problem is given by:

in%](x, u) whereu € Vsolves B(u,v;yx)=/{(v),
YE

Here Q0 C R is open and smooth, V = {u € H' (Q;R?) : v,

B(u,v;y) = /Qe(u)  [XCL 4+ (1—x)C_|:e(v)dx, {(u)= /F t - vds

and the objective function /(y,u) is continuous on strongly topology of
L7(Q) x H' (;RY)

0 The classical space of admissible designs is:

He = {x e L2(@:{0.1): [ nix < v+}

Each y € H¢ is the characteristic function
for the set occupied by the solid phase C

0 Note that each y = H () for some implicit function ¢ € F = L* (), |—a, a])

ILL-POSEDNESS:

0 This problem is in general ill-posed since it admits no solutions in the clas-
sical space of admissible designs

0 Consider the counterexample:

1
V, = i,u(ﬂ), I'p=0, t=(egq®n)- -tgeg, I(x,u)=~(u)

Let ¢, (x) = sin(nxy). Then yx,, = H(y,) is a minimizing sequence that does
not converge to an element of H

0 The optimal design for problem is a rank-1

laminate with laminations in e; direction
and constant volume fraction of the phases
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RESTRICTION OF F:

0 To exclude such oscillations, Ho must be replaced by a smaller space with
the necessary compactness property

o If x,, x € L>(€2;]0,1]) and y,, converges to x in LP(€2), then up to a subse-
quence, u,, — 1 strongly in H'(Q)

0 It follows that compactness in strong topology of LP(€) is a sufficient condi-
tion for existence of solutions

0 One such choice is for the implicit functions ¢ € F C Wt%P to satisfy:

H1:  lollpreonq <M
H2: |p(x)|+ |Veo(x)|>c¢ a.e.inf)

for some positive constants ¢, M and c

0 It can be shown that the space Hr = {x € Heo : x = H(p),p € F} is com-
pact in LP({2)

SIGNIFICANCE OF THE CONSTRAINTS:

0 H1 excludes the possible rapid oscillations of minimizing sequences:
- Note that in the counterexample, ||@n|[y 110y — 00

0 H2 ensures that the domain boundary {( = 0}, where the Heaviside is dis-
continuous, has zero measure:

- Without it, ¢,(x) = (1/n)sin(nz;) gives a minimizing sequence that
satisfies H1 but does not converge

0 In essence, these conditions together introduce a minimum length scale into
the problem

IMPLICATIONS FOR NUMERICAL SIMULATIONS:

0 Without H2, the usual approximation of the Heaviside would transform
the problem into the variable thickness problem regardless of width of the
smeared Heaviside:

- Thus fattening of the level set function and results with large regions of
the grey are expected unless reinitialization are performed frequently
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0 This observation sheds light on the appropriate choice of velocity extension
in level set methods and opportunities for mathematical programming tech-
niques

0 H1 can be imposed via convolution of the design field with a smooth filter
function, as is common in the density methods




