# **Connecting Engineering and Architecture Through Structural Topology Optimization**

Lauren L. Stromberg<sup>1</sup>, Alessandro Beghini<sup>2</sup>, William F. Baker<sup>2</sup>, Neil Katz<sup>2</sup>, Glaucio H. Paulino<sup>1</sup>





## **Research Objectives**

- To apply topology optimization to the field of structural engineering through high-rise building design
- Utilize manufacturing and layout constraints to make results more meaningful
- Address the importance of achieving a balance between engineering and architecture for efficient, sustainable design

## **Introduction: Engineering and Architecture**

 Historical examples of structures by architects with strong and innovative engineering concepts







Antonio Gaudi<sup>1</sup> [1-3] Multiple websites

Buckminster Fuller<sup>2</sup>

Felix Candela<sup>3</sup>

- Gaudi used physical models to calculate sophisticated structures (Sagradia Familia Cathedral, Barcelona, Spain - still under construction)
- Fuller's philosophical ideas about holistic design, synergetics, and geometry led to innovative structures (Montreal Biosphere, Montreal, Canada, 1967)
- Candela created thin-shell concrete structures, which are efficient and beautiful (Los manantiales, Xochimilco, Mexico, 1958)
- Goal: overcome dichotomy between architectural aesthetics and engineering efficiency using topology optimization

#### **Basic Topology Optimization Framework**

Minimum compliance criteria

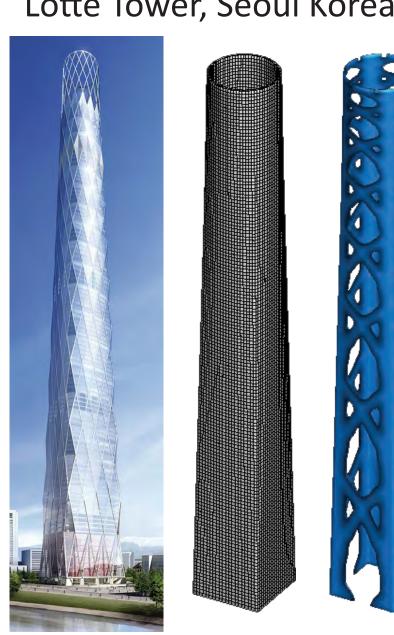
$$\min_{\rho,\mathbf{u}} c(\rho,\mathbf{u})$$

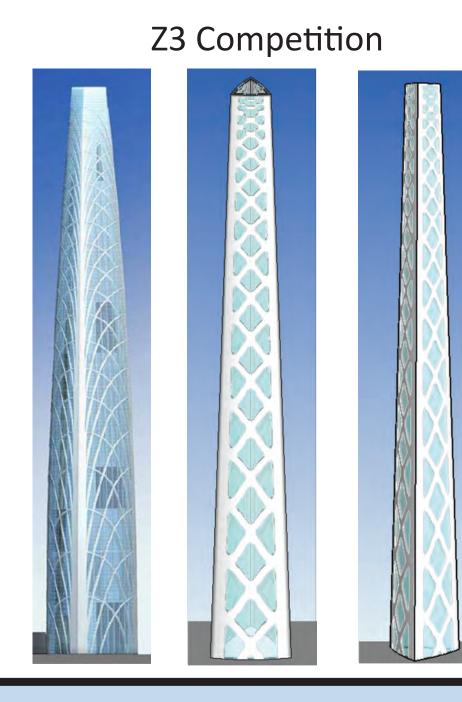
 $\mathbf{K}(\rho)\mathbf{u} = \mathbf{f}$  $\rho(\mathbf{x}) \in [0, 1] \, \forall \, \mathbf{x} \in \Omega$ 

- Other criteria
  - Deflection (P-Δ)
  - Buckling load

- Natural frequency

## **Zendai Competition (China)**




Rendering of final design and picture of physical model using topology optimization results (courtesy of SOM)

## **Application of Pattern Gradation to Buildings**

Lotte Tower, Seoul Korea





## **Motivation for Layout/Manufacturing Constraints**

- Minimum/maximum member sizes according to AISC available shapes
- Minimum/maximum hole size to run a pipe through a beam
- Pattern repetition to eliminate custom cut glass shapes, reuse formwork, increase speed and quality control
- Pattern gradation to transition column sizes from large at base to small at top, bracing angle around 65° at base (overturning moment) to 45° at top (shear)

### **Conclusions**

Topology optimization can be a valuable tool to bridge the gap between engineering and architecture in the construction design industry. Moreover, resulting designs will be more efficient and sustainable, by optimizing the material consumption.

## Acknowledgements

- National Science Foundation Graduate Research Fellowship (GRFP)
- Skidmore, Owings, & Merrill, LLP

#### References

- L.L. Stromberg, A. Beghini, W. F. Baker, and G. H. Paulino. "Topology optimization for braced frames: Combining continuum and discrete elements." Engineering Structures (under review).
- L.L. Stromberg, A. Beghini, W. F. Baker, and G. H. Paulino. "Application of layout and topology optimization using pattern gradation for the conceptual design of buildings." Structural and Multidisciplinary Optimization. Vol 43, No. 2, pp. 165-180, 2011.