On Optimization of Shape and Topology

Cameron Talischi, Glaucio H. Paulino
Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

Introduction:

\square The goal of optimal shape design is to find the most efficient shape of a physical system
\square The response is captured by the solution \mathbf{u}_{ω} to a boundary value problem that in turn depends on the given shape ω

$$
\inf _{\omega \subseteq \Omega} J\left(\omega, \mathbf{u}_{\omega}\right) \quad \text { where } \quad \mathcal{B}\left(\mathbf{u}_{\omega}, \mathbf{v} ; \omega\right)=\ell(\mathbf{v}), \forall \mathbf{v} \in \mathcal{V}
$$

$\mathcal{B}(\mathbf{u}, \mathbf{v} ; \omega)=\int_{\Omega} \nabla \mathbf{u}:\left[\chi_{\omega} \mathbf{C}^{+}+\left(1-\chi_{\omega}\right) \mathbf{C}^{-}\right]: \nabla \mathbf{v} \mathrm{d} \mathbf{x}, \quad \ell(\mathbf{v})=\int_{\Gamma_{N}} \mathbf{t} \cdot \mathbf{v} \mathrm{~d} s$

Restriction setting:

- If $\chi_{n}, \hat{\chi} \in L^{\infty}(\Omega ;[0,1])$ such that $\chi_{n} \rightarrow \hat{\chi}$ in $L^{1}(\Omega)$, then, up to a subsequence, the associated state solutions also converge, i.e., $\mathbf{u}_{\chi_{n}} \rightarrow \mathbf{u}_{\hat{\chi}}$ in $H^{1}\left(\Omega ; \mathbb{R}^{d}\right)$
- It follows that compactness in $L^{1}(\Omega)$ topology is a sufficient condition for existence of solutions
- A well-known example is the space of shapes with bounded perimeter:

$$
\mathcal{A}=\left\{\chi \in B V(\Omega ;\{0,1\}): \int_{\Omega}|\nabla \chi| \mathrm{d} \mathbf{x} \leq \bar{P}\right\}
$$

Continuous parametrization:

Optimization problem:

Composite objective:

$$
\begin{aligned}
& \min _{\rho \in \mathcal{A}} F(\rho):=J(\rho)+R(\rho) \\
& J(\rho)=\int_{\Gamma_{N}} \mathbf{t} \cdot \mathbf{u}_{\rho} \mathrm{d} s+\lambda \int_{\Omega} \rho \mathrm{d} \mathbf{x} \\
& R(\rho)=\frac{\beta}{2} \int_{\Omega}|\nabla \rho|^{2} \mathrm{~d} \mathbf{x} \equiv \frac{1}{2}\langle\rho, \mathcal{R} \rho\rangle, \quad \mathcal{R}=-\beta \Delta \\
& \mathcal{A}=\left\{\rho \in H^{1}(\Omega): 0 \leq \rho \leq 1\right\} \\
& \int_{\Omega} \nabla \mathbf{u}_{\rho}: \mathbf{C}_{\rho}: \nabla \mathbf{v} \mathrm{d} \mathbf{x}=\int_{\Gamma_{N}} \mathbf{t} \cdot \mathbf{v} \mathrm{~d} s, \forall \mathbf{v} \in \mathcal{V} \\
& \mathbf{C}_{\rho}=\rho^{\rho} \mathbf{C}^{+}+\left(1-\rho^{p}\right) \mathbf{C}^{-}
\end{aligned}
$$

Performance functional:

Regularizer:
Admissible densities:
State equation:

Forward-backward splitting algorithm:

\square We consider an optimization algorithm of the form:

$$
\rho_{n+1}=\underset{\rho \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{2 \tau_{n}}\left\|\rho-\left[\rho_{n}-\tau_{n} J^{\prime}\left(\rho_{n}\right)\right]\right\|^{2}+R(\rho)
$$

The intuition is that the next iterate ρ_{n+1} is close to the gradient descent update on J, i.e., $\rho_{n}-\tau_{n} J^{\prime}\left(\rho_{n}\right)$, while minimizing the regularizer $R(\rho)$
\square Given constants $\tau_{0}>0$ and $0<\sigma<1$, the step size parameter is set to be

$$
\tau_{n}=\sigma^{k_{n}} \tau_{0}
$$

where k_{n} is the smallest non-negative integer such that τ_{n} satisfies

$$
F\left(\rho_{n}\right)-F\left(\rho_{n+1}\right) \geq \frac{1}{2 \tau_{n}}\left\|\rho_{n}-\rho_{n+1}\right\|^{2}
$$

Improving convergence:

\square We consider the following generalization:

$$
\rho_{n+1}=\underset{\rho \in \mathcal{A}}{\operatorname{argmin}} J\left(\rho_{n}\right)+\left\langle J^{\prime}\left(\rho_{n}\right), \rho-\rho_{n}\right\rangle+\frac{1}{2 \tau_{n}}\left\langle\rho-\rho_{n}, \mathcal{H}_{n}\left(\rho-\rho_{n}\right)\right\rangle+R(\rho)
$$

where \mathcal{H}_{n} is a bounded linear positive-definite operator
\square The reciprocal approximation of compliance is its Taylor expansion in the intermediate field ρ^{-1}

$$
J_{\mathrm{rec}}\left(\rho ; \rho_{n}\right)=J\left(\rho_{n}\right)+\left\langle J^{\prime}\left(\rho_{n}\right), \rho-\rho_{n}\right\rangle+\frac{1}{2}\left\langle\rho-\rho_{n}, \frac{2 E\left(\rho_{n}\right)}{\rho}\left(\rho-\rho_{n}\right)\right\rangle
$$

where $E(\rho) \equiv p \rho^{p-1}\left[\nabla \mathbf{u}_{\rho}:\left(\mathbf{C}^{+}-\mathbf{C}^{-}\right): \nabla \mathbf{u}_{\rho}\right]$ is the gradient of compliance.
\square We embed the same type of approximation into our quadratic model by setting

$$
\mathcal{H}_{n}=J_{\mathrm{rec}}^{\prime \prime}\left(\rho_{n} ; \rho_{n}\right)=\frac{2 E\left(\rho_{n}\right)}{\rho_{n}} \mathcal{I}
$$

Performance of the algorithm:

Algorithm	\mathcal{H}_{n}	τ_{0}	\# Iter.	\# BT	F	OC
GP	-	0.25	1000^{*}	0	210.74	$1.36 \mathrm{e}-4$
GP	-	0.5	568	79	210.68	$8.94 \mathrm{e}-5$
FBS	Identity	1	316	0	210.97	$9.94 \mathrm{e}-5$
FBS	Identity	2	215	154	210.91	$9.81 \mathrm{e}-5$
FBS	Reciprocal	1	186	0	211.03	$9.36 \mathrm{e}-5$
FBS	Reciprocal	2	91	39	211.00	$9.75 \mathrm{e}-5$
TM-FBS	Identity	1	330	0	210.95	$9.97 \mathrm{e}-5$
TM-FBS	Identity	2	151	78	210.94	$5.90 \mathrm{e}-5$
TM-FBS	Reciprocal	1	179	0	211.03	$9.45 \mathrm{e}-5$
TM-FBS	Reciprocal	2	85	34	211.00	$8.07 \mathrm{e}-5$
MMA	-	-	1000^{*}	-	213.39	$1.91 \mathrm{e}-4$

