
Forward-backward splitting algorithm:

� We consider an optimization algorithm of the form:

ρn+1 = argmin
ρ∈A

1

2τn

∥∥∥ρ− [ρn − τnJ ′(ρn)]∥∥∥2+R(ρ)
The intuition is that the next iterate ρn+1 is close to the gradient descent

update on J, i.e., ρn − τnJ
′(ρn), while minimizing the regularizer R(ρ)

� Given constants τ0 > 0 and 0 < σ < 1, the step size parameter is set to be

τn = σ
knτ0

where kn is the smallest non-negative integer such that τn satisfies

F (ρn)− F (ρn+1) ≥
1

2τn
‖ρn − ρn+1‖

2

Restriction setting:

� If χn, χ̂ ∈ L
∞(Ω; [0, 1]) such that χn → χ̂ in L1(Ω), then, up to a subsequence,

the associated state solutions also converge, i.e., uχn → uχ̂ in H1(Ω;Rd)

� It follows that compactness in L1(Ω) topology is a sufficient condition for

existence of solutions

� A well-known example is the space of shapes with bounded perimeter:

A =
{
χ ∈ BV (Ω; {0, 1}) :

´
Ω |∇χ| dx ≤ P

}

Composite objective: min
ρ∈A
F (ρ) := J(ρ) + R(ρ)

Performance functional: J(ρ) =

ˆ
ΓN

t · uρds + λ

ˆ
Ω

ρdx

Regularizer: R(ρ) =
β

2

ˆ
Ω

|∇ρ|2 dx ≡
1

2
〈ρ,Rρ〉 , R = −βΔ

Admissible densities: A =
{
ρ ∈ H1 (Ω) : 0 ≤ ρ ≤ 1

}
State equation:

ˆ
Ω

∇uρ : Cρ : ∇vdx =

ˆ
ΓN

t · vds, ∀v ∈ V

Cρ = ρ
p
C
+ + (1− ρp)C−

� The goal of optimal shape design is to find the most efficient shape of a

physical system

� The response is captured by the solution uω to a boundary value problem that

in turn depends on the given shape ω

inf
ω⊆Ω
J(ω,uω) where B(uω, v;ω) = 
(v), ∀v ∈ V

B(u, v;ω) =

ˆ
Ω

∇u :
[
χωC

+ + (1− χω)C
−
]
: ∇vdx, 
(v) =

ˆ
ΓN

t · vds

Continuous parametrization:

Improving convergence:

� We consider the following generalization:

ρn+1 = argmin
ρ∈A

J(ρn) + 〈J
′(ρn), ρ− ρn〉+

1

2τn
〈ρ− ρn,Hn (ρ− ρn)〉+R(ρ)

where Hn is a bounded linear positive-definite operator

� The reciprocal approximation of compliance is its Taylor expansion in the in-

termediate field ρ−1

Jrec(ρ; ρn) = J(ρn) + 〈J
′(ρn), ρ− ρn〉+

1

2

〈
ρ− ρn,

2E(ρn)

ρ
(ρ− ρn)

〉

where E(ρ) ≡ pρp−1 [∇uρ : (C
+ − C−) : ∇uρ] is the gradient of compliance.

� We embed the same type of approximation into our quadratic model by setting

Hn = J
′′
rec
(ρn; ρn) =

2E(ρn)

ρn
I

Optimization problem:
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Performance of the algorithm:

Algorithm Hn τ0 # Iter. # BT F OC

GP – 0.25 1000* 0 210.74 1.36e-4

GP – 0.5 568 79 210.68 8.94e-5

FBS Identity 1 316 0 210.97 9.94e-5

FBS Identity 2 215 154 210.91 9.81e-5

FBS Reciprocal 1 186 0 211.03 9.36e-5

FBS Reciprocal 2 91 39 211.00 9.75e-5

TM-FBS Identity 1 330 0 210.95 9.97e-5

TM-FBS Identity 2 151 78 210.94 5.90e-5

TM-FBS Reciprocal 1 179 0 211.03 9.45e-5

TM-FBS Reciprocal 2 85 34 211.00 8.07e-5

MMA – – 1000* – 213.39 1.91e-4
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