On Optimization of Shape and Topology

Cameron Talischi, Glaucio H. Paulino Department of Civil and Environmental Engineering

I

University of Illinois at Urbana-Champaign Averaging Methods for Multiscale Phenomena Workshop, CMU

Introduction:

- The goal of optimal shape design is to find the most efficient shape of a physical system
- \Box The response is captured by the solution ${\bf u}_\omega$ to a boundary value problem that in turn depends on the given shape ω

Restriction setting:

- $\Box \text{ If } \chi_n, \hat{\chi} \in L^{\infty}(\Omega; [0, 1]) \text{ such that } \chi_n \to \hat{\chi} \text{ in } L^1(\Omega), \text{ then, up to a subsequence,}$ the associated state solutions also converge, i.e., $\mathbf{u}_{\chi_n} \to \mathbf{u}_{\hat{\chi}} \text{ in } H^1(\Omega; \mathbb{R}^d)$
- \square It follows that compactness in $L^1(\Omega)$ topology is a sufficient condition for existence of solutions
- □ A well-known example is the space of shapes with bounded perimeter:

$$\mathcal{A} = \left\{ \boldsymbol{\chi} \in BV(\Omega; \{0, 1\}) : \int_{\Omega} |\nabla \boldsymbol{\chi}| \, \mathrm{d} \mathbf{x} \leq \overline{P} \right\}$$

Optimization problem:

Composite objective:	$\min_{\rho \in \mathcal{A}} F(\rho) := J(\rho) + R(\rho)$
Performance functional:	$J(\rho) = \int_{\Gamma_N} \mathbf{t} \cdot \mathbf{u}_{\rho} \mathrm{d}s + \lambda \int_{\Omega} \rho \mathrm{d}\mathbf{x}$
Regularizer:	$R(\rho) = \frac{\beta}{2} \int_{\Omega} \nabla \rho ^2 \mathrm{d} \mathbf{x} \equiv \frac{1}{2} \langle \rho, \mathcal{R} \rho \rangle, \mathcal{R} = -\beta \Delta$
Admissible densities:	$\mathcal{A} = \left\{ \rho \in \overset{\circ}{\mathcal{H}^{1}}(\Omega) : 0 \le \rho \le 1 \right\}$
State equation:	$\int_{\Omega} \nabla \mathbf{u}_{\rho} : \mathbf{C}_{\rho} : \nabla \mathbf{v} \mathrm{d} \mathbf{x} = \int_{\varGamma_{N}} \mathbf{t} \cdot \mathbf{v} \mathrm{d} s, \ \forall \mathbf{v} \in \mathcal{V}$
	$\mathbf{C}_{ ho}= ho^{ ho}\mathbf{C}^{+}+\left(1- ho^{ ho} ight)\mathbf{C}^{-}$

Forward-backward splitting algorithm:

 $\hfill\square$ We consider an optimization algorithm of the form:

$$\rho_{n+1} = \underset{\rho \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{2\tau_n} \left\| \rho - \left[\rho_n - \tau_n J'(\rho_n) \right] \right\|^2 + R(\rho)$$

The intuition is that the next iterate ρ_{n+1} is close to the gradient descent update on *J*, i.e., $\rho_n - \tau_n J'(\rho_n)$, while minimizing the regularizer $R(\rho)$

 $\hfill\square$ Given constants $\tau_0>0$ and $0<\sigma<1,$ the step size parameter is set to be

$$\tau_n = \sigma^{k_n} \tau_0$$

where k_n is the smallest non-negative integer such that τ_n satisfies

$$F(\rho_n) - F(\rho_{n+1}) \ge \frac{1}{2\tau_n} \|\rho_n - \rho_{n+1}\|^2$$

Improving convergence:

We consider the following generalization:

$$\rho_{n+1} = \underset{\rho \in \mathcal{A}}{\operatorname{argmin}} J(\rho_n) + \langle J'(\rho_n), \rho - \rho_n \rangle + \frac{1}{2\tau_n} \langle \rho - \rho_n, \mathcal{H}_n(\rho - \rho_n) \rangle + R(\rho_n)$$

where \mathcal{H}_n is a bounded linear positive-definite operator

 \square The reciprocal approximation of compliance is its Taylor expansion in the intermediate field ρ^{-1}

$$J_{\text{rec}}(\rho;\rho_n) = J(\rho_n) + \langle J'(\rho_n), \rho - \rho_n \rangle + \frac{1}{2} \left\langle \rho - \rho_n, \frac{2E(\rho_n)}{\rho} (\rho - \rho_n) \right\rangle$$

where $E(\rho) \equiv \rho \rho^{p-1} [\nabla \mathbf{u}_{\rho} : (\mathbf{C}^+ - \mathbf{C}^-) : \nabla \mathbf{u}_{\rho}]$ is the gradient of compliance.

□ We embed the same type of approximation into our quadratic model by setting

$$\mathcal{H}_n = J_{\rm rec}'(\rho_n;\rho_n) = \frac{2E(\rho_n)}{\rho_n} \mathcal{I}$$

Performance of the algorithm:

Algorithm	\mathcal{H}_n	$ au_0$	# Iter.	# BT	F	OC
GP	-	0.25	1000*	0	210.74	1.36e-4
GP	-	0.5	568	79	210.68	8.94e-5
FBS	Identity	1	316	0	210.97	9.94e-5
FBS	Identity	2	215	154	210.91	9.81e-5
FBS	Reciprocal	1	186	0	211.03	9.36e-5
FBS	Reciprocal	2	91	39	211.00	9.75e-5
TM-FBS	Identity	1	330	0	210.95	9.97e-5
TM-FBS	Identity	2	151	78	210.94	5.90e-5
TM-FBS	Reciprocal	1	179	0	211.03	9.45e-5
TM-FBS	Reciprocal	2	85	34	211.00	8.07e-5
MMA	-	—	1000*	-	213.39	1.91e-4