Tailoring Structural Dynamic Behavior through Topology Optimization with Multiresolution Polygons Evgueni T. Filipov, Junho Chun, Glaucio H. Paulino, and Junho Song University of Illinois at Urbana-Champaign

Motivation

• Topology optimization can be used to tailor cost effective structures or microstructures with specialized dynamic characteristics

Potential applications

- Buildings designed to minimize seismic or wind vibrations, e.g. tune mass damper of Taipei 101 (Figure on right)
- Aircraft wings created to avoid

S.

- resonance from turbulence
- Frequency passband and stopband filters for use in audio equipment

Minimize dynamic compliance:

t.
$$[\mathbf{K} + i\omega\mathbf{C} - \omega^2\mathbf{M}]\mathbf{U} = \mathbf{I}$$

 $V(\rho) = \int_{\Omega} \rho dV \le V_s$

Polygonal multiresolution framework Coarse Fine design variable mesh displacement mesh Fine density Superposed variable mesh meshes **`O**\ Nonconforming **Polygonal elements can:** sub-discretization • Model irregular domains • Avoid instabilities in optimization • Provide mesh independent solutions

Comparison of forced vibration results

1. Conventional coarse mesh

2. Multiresolution mesh

3. Conventional fine mesh

Computational time for the three meshes

Cantilever with a

Arch with band-gap

Conclusions

• Topology optimization can be used for advanced structural eigenfrequency or forced vibration problems

0.15

- Polygonal elements allow for optimization of complex domains and improved solutions
- Multiresolution approach provides a higher resolution of the topology for a lower computational cost

Website: www.ghpaulino.com Email: filipov1@illinois.edu

Acknowledgements

• National Science Foundation

