Three-Dimensional Dynamic Cohesive Fracture Simulation Using Adaptive Topological Operators

Sofie E. Leon¹, Rodrigo Espinha², Waldemar Celes², Glaucio H. Paulino¹ 1: Dept of Civil Engineering, University of Illinois, 2: TecGraf, Puc-Rio

Research Objectives

- Develop an integrated, multiscale computational framework for dynamic fracture, microbranching, and fragmentation
- Employ the potential-based constitutive model for mixed-mode cohesive zone modeling
- Develop systematic adaptive mesh refinement and coarsening schemes for dynamic cohesive fracture simulation

PPR: Potential-based cohesive model

Constitutive Relationship

- Traction-separation relation is given by the potential, which is formulated such that boundary conditions are enforced
- (initial slope indicators)

Adaptivity with topological data structure

Nodal Perturbation

Reduction in mesh bias

Extension from 2D to 3D dynamic fracture simulation

Mode I Predefined Crack in 2D

• Agreement between full refinement and adaptive refinement & coarsening

Extension to 3D

- Predefined crack on fully refined and adaptively refined meshes is in progress
- SDSC Trestles super computer used for large memory requirements \bullet

- Mesh adaptivity will make problems of multiple crack tips that are not predefined possible
- Parallel simulations on GPUs will also be investigated

References

- G. H. Paulino, W. Celes, R. Espinha, & Z. Zhang, EWC. 24 (1), 59-78, 2008.
- K. Park, G.H. Paulino, and J.R. Roesler. JMPS, 7 (6), 891-908, 2009.
- G.H. Paulino, K. Park, W. Celes, and R. Espinha, IJNME, 84 (11) 1303–1343, 2010.
- K. Park, G.H. Paulino, W. Celes, and R. Espinha, *IJNME*, 92 (1), 1-35, 2012.

Acknowledgements

Sofie E. Leon gratefully acknowledges the National Science Foundation (NSF) Graduate Research Fellowship and Glaucio H. Paulino is thankful to the Donald B. and Elizabeth M. Willett endowment.

Computational Science and Engineering 2013 Annual Meeting