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Conclusions 
• Polygonal elements are numerically stable on Voronoi-type meshes without any 

additional treatments. 

• Polygonal elements are more geometrically favorable in modeling inclusions 

with arbitrary geometry, incorporating periodic boundary conditions and 

bridging different length scales. 

• Polygonal elements appear to be more tolerant to large local deformations than 

classic triangular and quadrilateral elements. 

Cavitation  
• Graded polygonal mesh bridging two length scales: 

• Snapshots of the growth of defects at different levels of strains: 

Filled elastomers 
• Geometrical advantages to model inclusions and periodic boundary conditions: 

• Neo-Hookean matrix reinforced with an isotropic distribution of rigid particles:  

Motivation 

• Soft organic materials, such as electro- and 

magneto-active elastomers and gels; which 

are elastic by nature, hold tremendous 

potential for new high-end technologies, e.g. 

next generation sensors and actuators.  
 

• Soft materials often possess complex 

microstructures, with underlying local 

deformations which are typically larger than 

macroscopic ones. This makes the modeling 

of soft materials challenging. 
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Numerical stability and accuracy 

• Checkerboard-free pressure fields: 

 Centroidal voronoi tessellation  (CVT) meshes 

Linear quadrilateral meshes 

Two-field mixed variational principle 

Polygonal finite element 

• Find (𝐮∗, 𝑝∗) such that: 

                   Π 𝐮∗, 𝑝∗ = inf
𝐮
  sup
𝑝

 Π(𝐮, 𝑝)      

     where: 

     Π 𝐮, 𝑝 =  −𝑊𝐶 𝐗, 𝐅 𝐮 , 𝑝 + 𝑝 𝐽 𝐮 − 1 dΩ0 −  𝐟0 ⋅ 𝐮dΩ0 −  𝐭0 ⋅ 𝐮d𝜕Ω0
𝜕Ω0Ω0Ω0

 

    𝑊𝐶 𝐗, 𝐅, 𝑝 = sup
𝐽
 [𝑝 𝐽 − 1 −𝑊(𝐗, 𝐅, 𝐽)] 

• Displacement field is approximated by Mean Value coordinates: 
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      where 𝑤𝑖 is given by: 
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• Pressure field is interpolated by piece-wise constant functions. 


