Prediction of Concrete Fracture Mechanics Behavior and Size Effect using Cohesive Zone Modeling

Kyoungsoo Park, Glaucio H. Paulino, Jeffery R. Roesler

Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

Center of Excellence for Airport Technology, UIUC

Federal Aviation Administration

Concrete Structures

- Scaling
- Size Effect
- Fracture Mechanics

Fracture Mechanics Size Effect

- Energy concept
- Equivalent elastic crack model
- Two size-independent fracture

parameters: G_f and c_f

Bazant ZP, Kazemi MT. 1990, Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete, *International Journal of Fracture*, 44, 111-131.

Two-Parameter Fracture Model (TPFM)

- Equivalent elastic crack model
- ► Two size-independent fracture parameters : K_I and CTOD_c

Jenq, Y. and Shah, S.P. 1985, Two parameter fracture model for concrete, *Journal of Engineering Mechanics*, 111, 1227-1241.

Mechanisms of Concrete Fracture

Outline

- Motivation
- Cohesive Zone Model for Concrete
- Finite Element Analysis Implementation
- Numerical Prediction of Three-point Bending Tests
- Size Effect
- Summary

Concept of Cohesive Zone Model

6

Stage I

Elastic behavior

Stage II

- Crack initiation
- Tensile strength

Stage III

- Non-linear cohesive law
- Bi-linear softening curve for concrete

Stage IV

Traction-free macro-crack

Determination of the Cohesive Law

$$w_1 = \frac{2G_f}{f_t'}$$

$$w_f = \frac{2}{\psi f'_t} \Big[G_F - (1 - \psi) G_f \Big]$$

Cohesive strength : f_t'

- Splitting test
- Initial fracture energy : G_f
 - Size effect method (SEM)
 - Two-parameter fracture model (TPFM)

Total fracture energy: G_F

Hillerborg's work-of-fracture method

The stress ratio of the kink point : ψ

- Peterson : 1/3
- Wittmann : 0.25
- Bazant : 0.15~0.33

FEA Implementation

Principle of Virtual Work

Virtual Internal Work = External Virtual Work

$$\int_{\Omega} \delta \boldsymbol{\varepsilon}^{T} \boldsymbol{\sigma} \ d\Omega + \int_{\Gamma_{c}} \delta \mathbf{w}^{T} \mathbf{T} \ d\Gamma_{c} = \int_{\Gamma} \delta \mathbf{u}^{T} \mathbf{F} \ d\Gamma$$

FEA Formulation

ABAQUS User Element (UEL)

Numerical Verification

Double Cantilever Beam (DCB) Test

Three-Point Bending Test

- Obtain fracture parameters
- Compare load-CMOD curves
- Size effect

[mm]

Depth (D)	Span (S)	Length (L)	Notch (a_0)	Thickness (t)
63	250	350	21	80
150	600	700	50	80
250	1000	1100	83	80

Experimental Results

Fresh and Hardened Properties of the Concrete

Fresh Concrete		Hardened Concrete		
Density	2403 kg/m ³	Compressive strength	58.3 MPa	
Slump	100 mm	Split strength	4.15 MPa	
Air content	2.8 %	Modulus of elasticity	32.0 GPa	

Fracture Parameters

	Hillerborg	TPFM		SEM	
	G _F (N/m)	K _I (MPa m ^{1/2})	CTOD _c (mm)	G _f (N/m)	c _f (mm)
B250-80a	193	1.261	0.0167		
B250-80b	139	1.203	0.0181		
B250-80c	169	1.497	0.0319		
B150-80a	N/A	N/A	N/A		
B150-80b	170	1.086	0.0255	52.1	24.36
B150-80c	159	0.983	0.0115		
B63-80a	N/A	N/A	N/A		
B63-80b	106	1.012	0.0159		
B63-80c	N/A	0.834	0.0115		
CB63-80a	123	1.130	0.0142		
CB63-80b	124	1.002	0.0075		
CB63-80c	123	1.293	0.0184		

Specimen Geometry and FE Mesh

Numerical Validation – Small Beam

- D = 63 (mm)
- f_t' = 4.15 (MPa)
- $G_f = 56.6 \& 52.1 (N/m)$
- G_F = 119 (N/m)
- $\Psi = 0.25$

Numerical Validation – Intermediate Beam

- D = 150 (mm)
- f_t' = 4.15 (MPa)
- $G_f = 56.6 \& 52.1 (N/m)$
- G_F = 164 (N/m)
- $\Psi = 0.25$

Numerical Validation – Large Beam

- D = 250 (mm)
- f_t' = 4.15 (MPa)
- $G_f = 56.6 \& 52.1 (N/m)$
- G_F = 167 (N/m)
- $\Psi = 0.25$

Model Sensitivity

Size Effect

Summary

Predict Load-CMOD Curve

- Bi-linear softening cohesive zone model
- Without calibration of the fracture parameters.

Investigate Size Effect

- Cohesive Zone Model with bi-linear softening
- Experiment results from Three-point bending tests
- Size effect expression: $\sigma_N = \frac{Bf'_t}{\sqrt{1 + D/D_0}}$
- Good agreement between the results from the three methods.

