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Motivation

• Fragmentation simulations using extrinsic cohesive 
models 
– Evolutive problems in space and time
– Cohesive elements inserted dynamically
– Highly refined mesh at crack tip region
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ParTopS1

• Parallel framework for finite element meshes

– Distributed mesh representation

• Extension of the TopS2 topological data structure

– Parallel algorithm for inserting cohesive elements

• Extension of the serial algorithm by Paulino et al.3
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Distributed mesh representation

• Sample mesh

7th Annual Workshop on Charm++ and its Applications 4



Distributed mesh representation

Communication layer

Proxy element
Proxy node
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Proxy element

Ghost node



Topological entities

• Element

• Node

• Facet 

– Interface between elements

• Edge 

• Vertex

7th Annual Workshop on Charm++ and its Applications 6

• Vertex



Cohesive elements

• True extrinsic elements
– Inserted “on the fly”, where needed and when needed

– No element activation or springs

• Two-facet elements

• Inserted between two adjacent bulk elements

2D 3D
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2D 3D



Serial insertion of cohesive elements

• Insert cohesive element at a facet shared by E1 and E2
1. Create cohesive element at facet

2. Traverse non-cohesive elements adjacent to edges of E2

• If E1 is not visited, duplicate edge and mid-nodes (if any)

3. Traverse non-cohesive elements adjacent to vertices of E2

• If E1 is not visited, duplicated vertex

7th Annual Workshop on Charm++ and its Applications 8

E1 E2
E1 E2



Parallel insertion of cohesive elements

• At each simulation step

– Analysis application identifies fractured facets 

– Insert cohesive elements

1. Insert elements at local and proxy facets

2. Update new proxy entities
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2. Update new proxy entities

3. Update affected ghost entities



Identification of fractured facets
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1. Insert elements at local and proxy facets

• Serial algorithm with additional constraints
– Ghost nodes are not duplicated at this moment

• Dependence on remote information

– All the copies of a new element or node must be owned by the same 
partition
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1. Insert elements at local and proxy facets
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1. Insert elements at local and proxy facets
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1. Insert elements at local and proxy facets
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1. Insert elements at local and proxy facets
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1. Insert elements at local and proxy facets

• Uniform criterion for selecting representative elements
– E.g. the adjacent element with smallest (partition_id, element_id)

• Consistent topological results in both partitions
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1. Insert elements at local and proxy facets
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2. Update new proxy entities

• Create references from the new proxy elements and 
nodes to the corresponding real entities
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2. Update new proxy entities
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2. Update new proxy entities
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3. Update affected ghost entities

• Replace ghost nodes affected by remote cohesive elements
– “Per-element” approach

• Partitions with elements adjacent to duplicated nodes notify others
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3. Update affected ghost entities
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Resulting mesh
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Verification

• Cluster of 12 machines
– Intel(R) Pentium(R) D processor 3.40 GHz (dual core) with 2GB of RAM, Gigabit 

Ethernet 

• Cohesive elements randomly inserted at 1% of internal facets x 50 steps

• Meshes with different discretizations and types of elements (T3, T6, Tet4, 
Tet10) 
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10 x 1%



Results
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Summary

• ParTopS: parallel topological framework 

– Dynamic insertion of cohesive elements

• True extrinsic cohesive elements

– Inserted “on the fly”, where needed and when needed

• Generic branching patterns are supported
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• General 2D or 3D meshes 

• Executed on a limited number of machines

– However, linear scaling is expected



ParTopS

Implementation using Charm++

• Why Charm++?
– Potential for optimization

– Integrated load balancers

– Set of available tools

• Implementation (so far)
– Each mesh partition as a virtual processor (Chare)

– Asynchronous method calls

– SDAG used to manage control flow of the three phases of the algorithm
• Cohesive elements created asynchronously on partitions’ boundaries
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• Cohesive elements created asynchronously on partitions’ boundaries

• Bulk updates of modified data

• Implementation (objectives)
– Explore asynchronous communication in mesh related algorithms

– Explore load balancing in parallel fragmentation applications



Future work

• Execute on a large number of processors

• Other parallel adaptive operators

– E.g. refinement & coarsening

• Mechanical analysis computer code
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Thank you!
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