
7th Annual Workshop on Charm++ and its Applications

ParTopS:ParTopS:
Compact Topological Framework for Parallel Compact Topological Framework for Parallel 
Fragmentation SimulationsFragmentation Simulations

Rodrigo Espinha1

Waldemar Celes1

Noemi Rodriguez1

Glaucio H. Paulino2

1. Computer Science Dept., Pontifical Catholic University of Rio de Janeiro, Brazil

2. Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign



Motivation

• Fragmentation simulations using extrinsic cohesive 
models 
– Evolutive problems in space and time
– Cohesive elements inserted dynamically
– Highly refined mesh at crack tip region

7th Annual Workshop on Charm++ and its Applications 2



ParTopS1

• Parallel framework for finite element meshes

– Distributed mesh representation

• Extension of the TopS2 topological data structure

– Parallel algorithm for inserting cohesive elements

• Extension of the serial algorithm by Paulino et al.3

7th Annual Workshop on Charm++ and its Applications 3

1. Espinha R, Celes W, Rodriguez N, Paulino GH (2009) ParTopS: Compact Topological Framework for Parallel Fragmentation 
Simulations. Submitted to Engineering with Computers

2. Celes W, Paulino GH, Espinha R (2005) A compact adjacency-based topological data structure for finite element mesh 
representation. Int J Numer Methods Eng 64(11):1529–1565

3. Paulino GH, Celes W, Espinha R, Zhang Z (2008) A general topology-based framework for adaptive insertion of cohesive 
elements in finite element meshes. Engineering with Computers 24(1):59-78



Distributed mesh representation

• Sample mesh

7th Annual Workshop on Charm++ and its Applications 4



Distributed mesh representation

Communication layer

Proxy element
Proxy node

7th Annual Workshop on Charm++ and its Applications 5

Proxy element

Ghost node



Topological entities

• Element

• Node

• Facet 

– Interface between elements

• Edge 

• Vertex

7th Annual Workshop on Charm++ and its Applications 6

• Vertex



Cohesive elements

• True extrinsic elements
– Inserted “on the fly”, where needed and when needed

– No element activation or springs

• Two-facet elements

• Inserted between two adjacent bulk elements

2D 3D

7th Annual Workshop on Charm++ and its Applications 7

2D 3D



Serial insertion of cohesive elements

• Insert cohesive element at a facet shared by E1 and E2
1. Create cohesive element at facet

2. Traverse non-cohesive elements adjacent to edges of E2

• If E1 is not visited, duplicate edge and mid-nodes (if any)

3. Traverse non-cohesive elements adjacent to vertices of E2

• If E1 is not visited, duplicated vertex

7th Annual Workshop on Charm++ and its Applications 8

E1 E2
E1 E2



Parallel insertion of cohesive elements

• At each simulation step

– Analysis application identifies fractured facets 

– Insert cohesive elements

1. Insert elements at local and proxy facets

2. Update new proxy entities

7th Annual Workshop on Charm++ and its Applications 9

2. Update new proxy entities

3. Update affected ghost entities



Identification of fractured facets

7th Annual Workshop on Charm++ and its Applications 10



1. Insert elements at local and proxy facets

• Serial algorithm with additional constraints
– Ghost nodes are not duplicated at this moment

• Dependence on remote information

– All the copies of a new element or node must be owned by the same 
partition

7th Annual Workshop on Charm++ and its Applications 11



1. Insert elements at local and proxy facets

7th Annual Workshop on Charm++ and its Applications 12



1. Insert elements at local and proxy facets

7th Annual Workshop on Charm++ and its Applications 13



1. Insert elements at local and proxy facets

7th Annual Workshop on Charm++ and its Applications 14



1. Insert elements at local and proxy facets

7th Annual Workshop on Charm++ and its Applications 15



1. Insert elements at local and proxy facets

• Uniform criterion for selecting representative elements
– E.g. the adjacent element with smallest (partition_id, element_id)

• Consistent topological results in both partitions

7th Annual Workshop on Charm++ and its Applications 16



1. Insert elements at local and proxy facets

7th Annual Workshop on Charm++ and its Applications 17



2. Update new proxy entities

• Create references from the new proxy elements and 
nodes to the corresponding real entities

7th Annual Workshop on Charm++ and its Applications 18



2. Update new proxy entities

7th Annual Workshop on Charm++ and its Applications 19



2. Update new proxy entities

7th Annual Workshop on Charm++ and its Applications 20



3. Update affected ghost entities

• Replace ghost nodes affected by remote cohesive elements
– “Per-element” approach

• Partitions with elements adjacent to duplicated nodes notify others

7th Annual Workshop on Charm++ and its Applications 21



3. Update affected ghost entities

7th Annual Workshop on Charm++ and its Applications 22



Resulting mesh

7th Annual Workshop on Charm++ and its Applications 23



Verification

• Cluster of 12 machines
– Intel(R) Pentium(R) D processor 3.40 GHz (dual core) with 2GB of RAM, Gigabit 

Ethernet 

• Cohesive elements randomly inserted at 1% of internal facets x 50 steps

• Meshes with different discretizations and types of elements (T3, T6, Tet4, 
Tet10) 

7th Annual Workshop on Charm++ and its Applications 24

10 x 1%



Results

7th Annual Workshop on Charm++ and its Applications 25



Summary

• ParTopS: parallel topological framework 

– Dynamic insertion of cohesive elements

• True extrinsic cohesive elements

– Inserted “on the fly”, where needed and when needed

• Generic branching patterns are supported

7th Annual Workshop on Charm++ and its Applications 26

• General 2D or 3D meshes 

• Executed on a limited number of machines

– However, linear scaling is expected



ParTopS

Implementation using Charm++

• Why Charm++?
– Potential for optimization

– Integrated load balancers

– Set of available tools

• Implementation (so far)
– Each mesh partition as a virtual processor (Chare)

– Asynchronous method calls

– SDAG used to manage control flow of the three phases of the algorithm
• Cohesive elements created asynchronously on partitions’ boundaries

7th Annual Workshop on Charm++ and its Applications 27

• Cohesive elements created asynchronously on partitions’ boundaries

• Bulk updates of modified data

• Implementation (objectives)
– Explore asynchronous communication in mesh related algorithms

– Explore load balancing in parallel fragmentation applications



Future work

• Execute on a large number of processors

• Other parallel adaptive operators

– E.g. refinement & coarsening

• Mechanical analysis computer code

7th Annual Workshop on Charm++ and its Applications 28



Thank you!

7th Annual Workshop on Charm++ and its Applications 29


