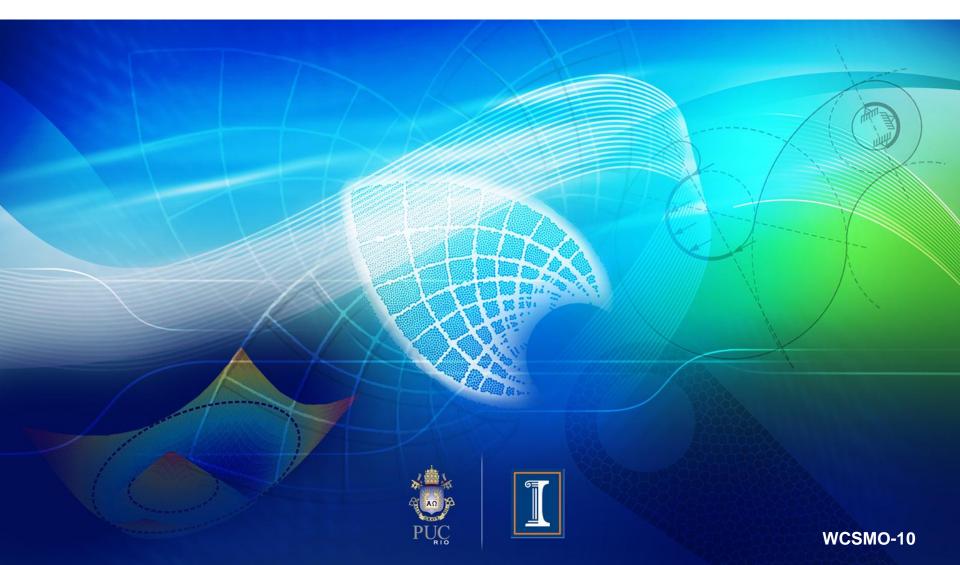
A GENERAL TOPOLOGY OPTIMIZATION FRAMEWORK FOR POLYGONAL FINITE ELEMENT MESHES IN ARBITRARY DOMAINS

Ivan Menezes (PUC-Rio)

Anderson Pereira (PUC-Rio) - Cameron Talischi (UIUC) - Glaucio Paulino (UIUC)



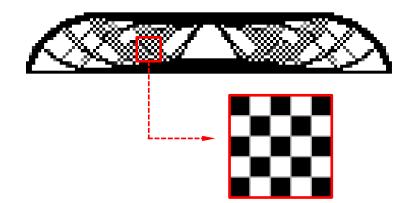
MOTIVATION

MOTIVATION

• Traditionally, the topology optimization problem has been solved on uniform grids consisting of Lagrangian-type finite elements (e.g. **triangles and linear quads**)

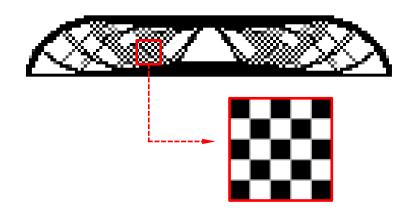
• Traditionally, the topology optimization problem has been solved on uniform grids consisting of Lagrangian-type finite elements (e.g. **triangles and linear quads**)

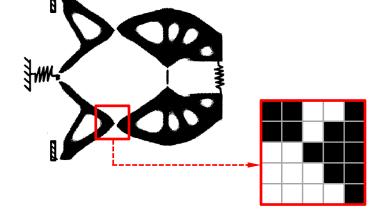
• Traditionally, the topology optimization problem has been solved on uniform grids consisting of Lagrangian-type finite elements (e.g. **triangles and linear quads**)



Checkerboard Patterns

• Traditionally, the topology optimization problem has been solved on uniform grids consisting of Lagrangian-type finite elements (e.g. **triangles and linear quads**)





Checkerboard Patterns

One-node Connections

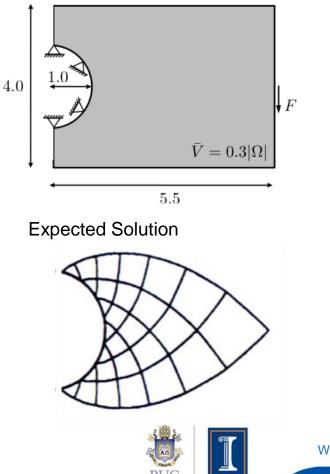
MOTIVATION

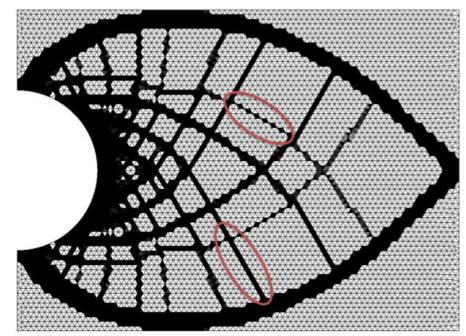
• Moreover, the use of simplex elements can cause **bias** in the orientation of members, leading to **mesh-dependent sub-optimal designs**

MOTIVATION

• Moreover, the use of simplex elements can cause **bias** in the orientation of members, leading to **mesh-dependent sub-optimal designs**

Example: Michell problem





Solution obtained with 8584 T6 Elements

Main Contribution of this Research

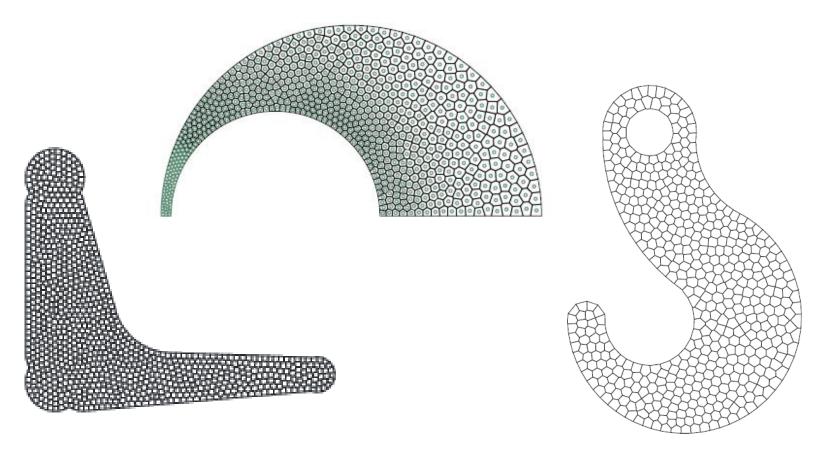
Main Contribution of this Research

L Investigate the behavior of Polygonal Elements in the context of Topology Optimization Theory

Provide great flexibility in discretizing complex domains

- ✓ Naturally exclude checkerboard layouts and one-node connections
- ✓ Not biased by the standard FEM simplex geometry (triangles and quads)
- ✓ Present "better" finite element solution of elasticity problems
- ✓ Stable elements w.r.t. Babuska-Brezzi condition

Provide great flexibility in discretizing complex domains



- ✓ Provide great flexibility in discretizing complex domains
- ✓ Naturally exclude checkerboard layouts and one-node connections
- ✓ Not biased by the standard FEM simplex geometry (triangles and quads)
- ✓ Present "better" finite element solution of elasticity problems
- ✓ Stable elements w.r.t. Babuska-Brezzi condition

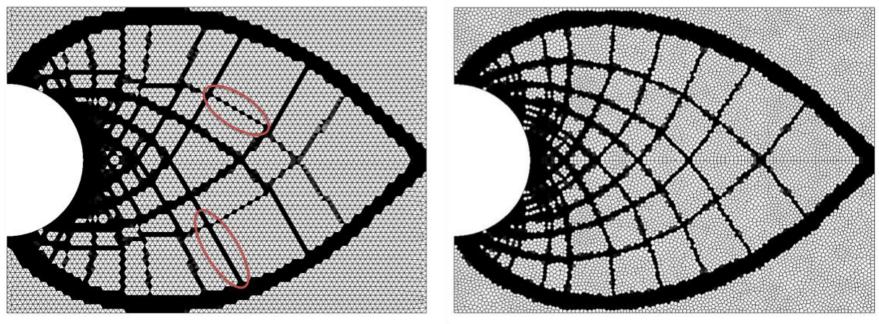
Naturally exclude checkerboard layouts and one-node connections

Q4 Elements

Polygonal Elements

- ✓ Provide great flexibility in discretizing complex domains
- ✓ Naturally exclude checkerboard layouts and one-node connections
- ✓ Not biased by the standard FEM simplex geometry (triangles and quads)
- Present "better" finite element solution of elasticity problems
- ✓ Stable elements w.r.t. Babuska-Brezzi condition

Not biased by the standard FEM simplex geometry (based on triangles and quads)



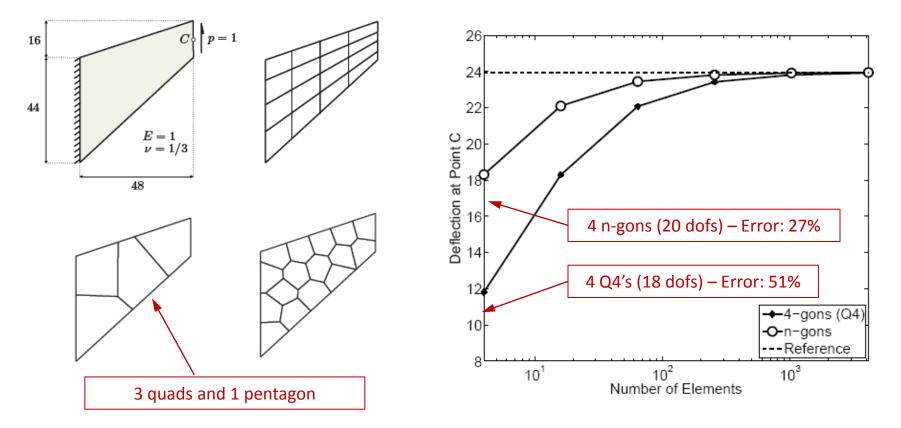
T6 Elements

Polygonal Elements

Talischi, C., Paulino, G.H., Pereira, A. and Menezes, I.F.M., "Polygonal Finite Elements for Topology Optimization: A Unifying Paradigm", IJNME, 82(6):671-698, 2010.

- ✓ Provide great flexibility in discretizing complex domains
- ✓ Naturally exclude checkerboard layouts and one-node connections
- ✓ Not biased by the standard FEM simplex geometry (triangles and quads)
- ✓ Present "better" finite element solution of elasticity problems
- ✓ Stable elements w.r.t. Babuska-Brezzi condition

Present "better" finite element solution of elasticity problems

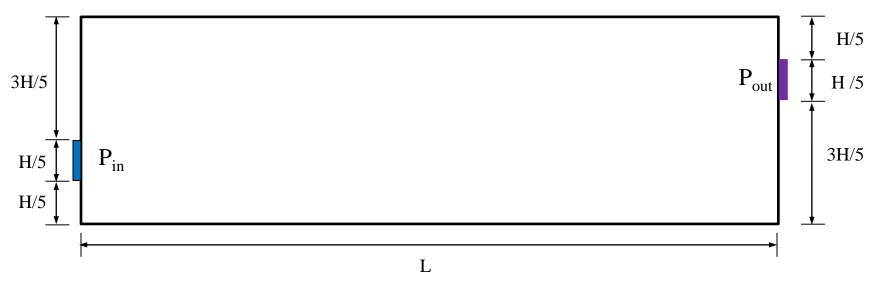


Cook, Malkus and Plesha, "Concepts and Applications of FE Analysis" (4th Edn), Wiley, New York, 2002.

- ✓ Provide great flexibility in discretizing complex domains
- ✓ Naturally exclude checkerboard layouts and one-node connections
- ✓ Not biased by the standard FEM simplex geometry (triangles and quads)
- ✓ Present "better" finite element solution of elasticity problems
- ✓ Stable elements w.r.t. Babuska-Brezzi condition

Stable elements w.r.t. Babuska-Brezzi condition

In-Out Flow Problem^{*}: Geometry Description

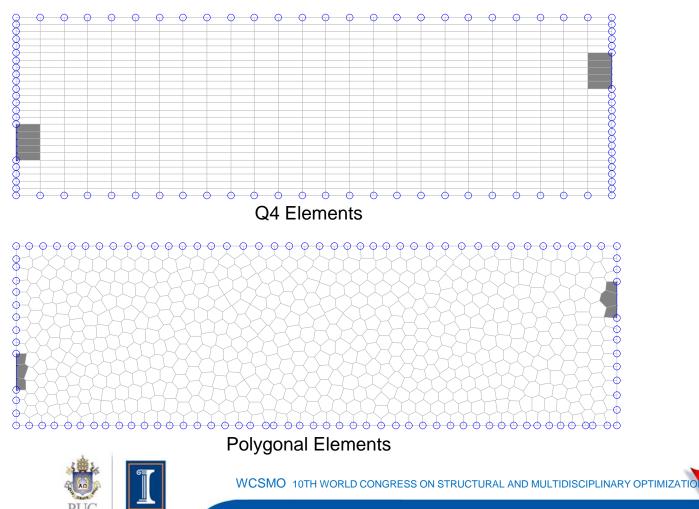


Interpolation Scheme: Linear variation for the Velocity Field and Constant Pressure

* Mixed Variational Formulation (pressure-velocity) of the Stokes Flow Problem

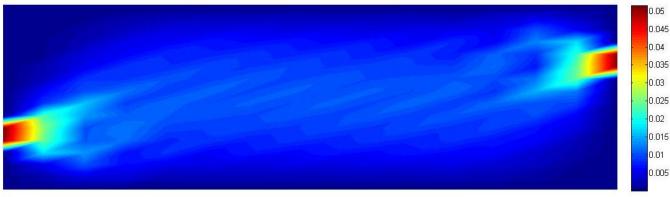
Stable elements w.r.t. Babuska-Brezzi condition

Finite Element Meshes

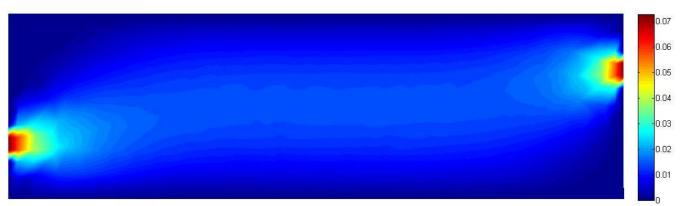


Stable elements w.r.t. Babuska-Brezzi condition

Velocity Fields

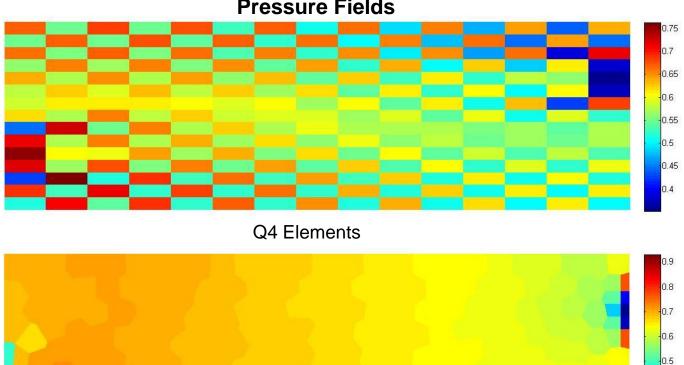


Q4 Elements



Polygonal Elements

Stable elements w.r.t. Babuska-Brezzi condition



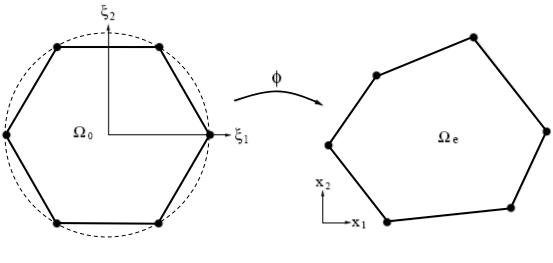
Pressure Fields

WCSMO 10TH WORLD CONGRESS ON STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATIO

0.4 0.3 0.2

ELEMENT FORMULATION

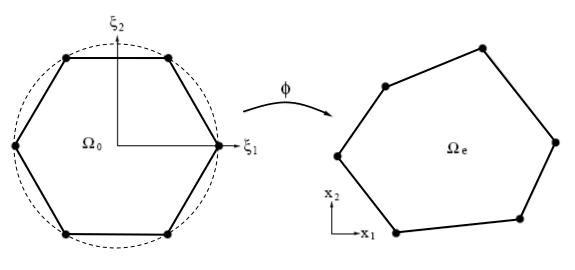
Constructed using Laplace Shape Functions



Isoparametric Mapping

Sukumar, N. and Malsch, E.A., "*Recent Advances in the Construction of Polygonal Finite Element Interpolants*", Archives of Computational Methods in Engineering, **13**(1), 129-163, **2006.**

Constructed using Laplace Shape Functions

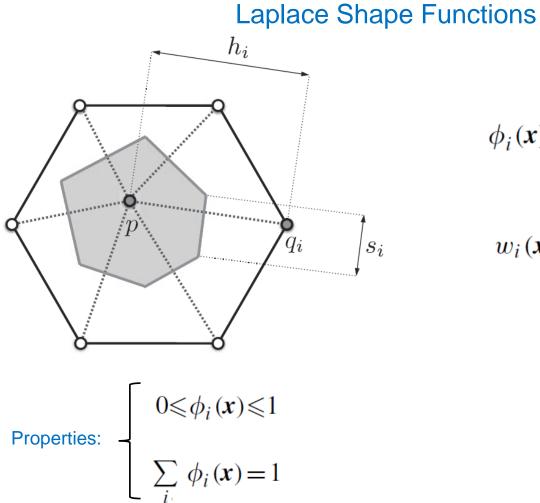


Isoparametric Mapping

"can be viewed as an extension of the common triangles and linear quads to all convex n-gons"

Sukumar, N. and Malsch, E.A., "*Recent Advances in the Construction of Polygonal Finite Element Interpolants*", Archives of Computational Methods in Engineering, **13**(1), 129-163, **2006.**

ELEMENT FORMULATION

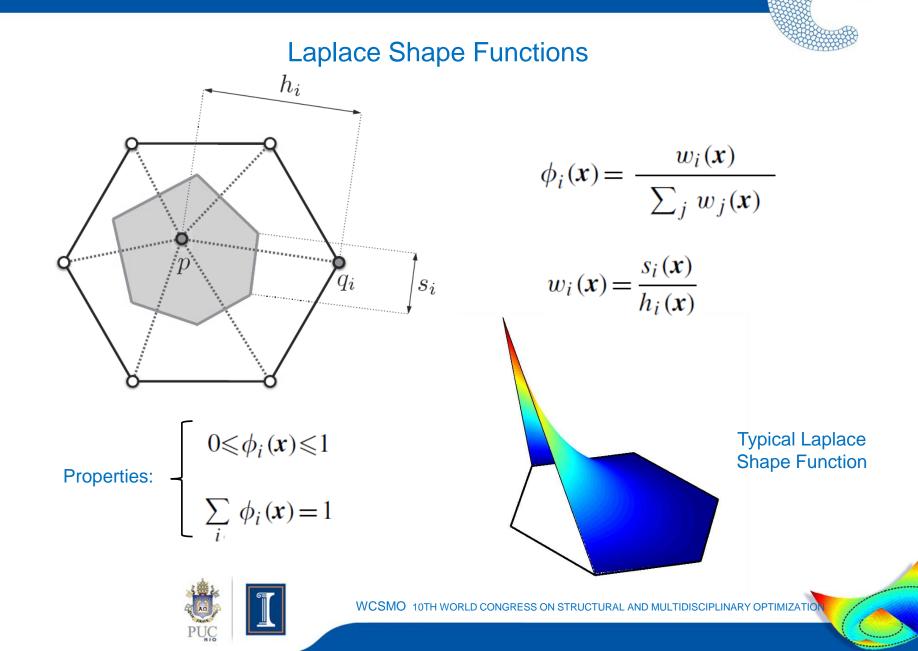


$$\phi_i(\boldsymbol{x}) = \frac{w_i(\boldsymbol{x})}{\sum_j w_j(\boldsymbol{x})}$$

$$w_i(\mathbf{x}) = \frac{s_i(\mathbf{x})}{h_i(\mathbf{x})}$$

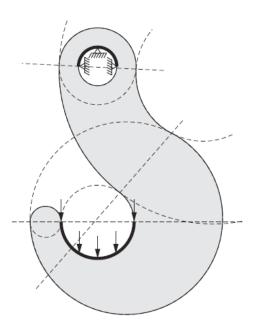
Properties:

ELEMENT FORMULATION



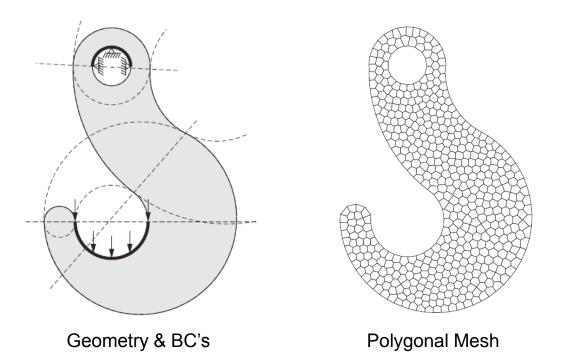
PolyTop[†] – General Topology Optimization Framework using Unstructured Polygonal Finite Element Meshes

PolyTop[†] – General Topology Optimization Framework using Unstructured Polygonal Finite Element Meshes

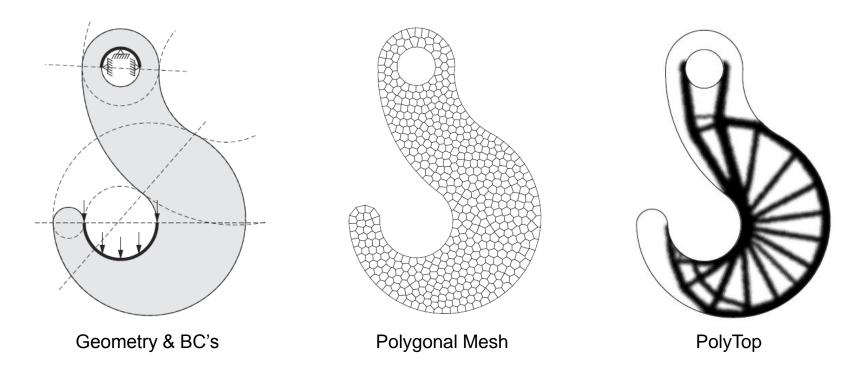


Geometry & BC's

PolyTop[†] – General Topology Optimization Framework using Unstructured Polygonal Finite Element Meshes



PolyTop[†] – General Topology Optimization Framework using Unstructured Polygonal Finite Element Meshes



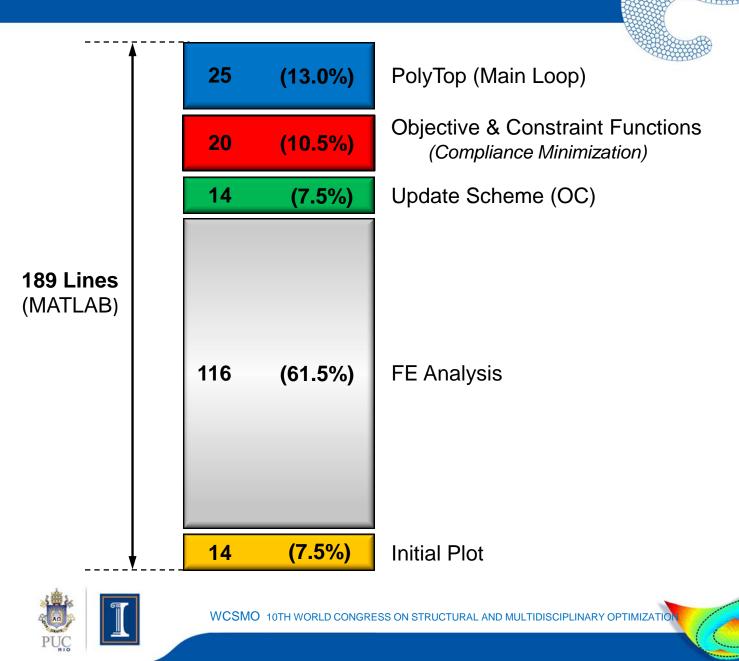
PolyTop FEATURES

- Developed in MATLAB
- Possesses **189** lines, of which 116 lines pertain to the Finite Element Analysis (including 81 lines for the element stiffness calculations for polygonal elements)

- Developed in MATLAB
- Possesses **189** lines, of which 116 lines pertain to the Finite Element Analysis (including 81 lines for the element stiffness calculations for polygonal elements)
- Modular Framework
 - analysis routine and the optimization algorithm are separated from the specific choice of topology optimization formulation
 - the finite element and sensitivity analysis routines contain no information related to the formulation and thus can be extended, developed and modified independently

CODE STRUCTURE

CODE STRUCTURE



CODE STRUCTURE

Input Data Structures

The input to the main kernel PolyTop consists of two MATLAB structure arrays containing the analysis and optimization fields:

fem	opt
fem.NNode	opt.zMin
fem.NElem	opt.zMax
fem.Node	opt.zIni
fem.Element	opt.MatIntFnc
fem.Supp	opt.P
fem.Load	opt.MaxIter
fem.ShapeFnc	opt.Tol

- Material interpolation functions (e.g. SIMP, RAMP)
- Different optimizers (e.g. OC, MMA, SLP)
- Analysis routine (e.g. FEM or other method)
- Objective Function (e.g. Compliance, Compliant Mechanism)


```
function [E,dEdy,V,dVdy] = MatIntFnc(y,type,param)
 eps = 1e-4; %Ersatz stiffness
 switch(type)
   case('SIMP')
     penal = param;
     E = eps+(1-eps)*y.^{penal};
     V = V;
     dEdy = (1-eps)*penal*y.^(penal-1);
     dVdy = ones(size(y,1),1);
   case('RAMP')
     q = param;
     E = eps+(1-eps)*y./(1+q*(1-y));
     V = V;
     dEdy = ((1-eps)*(q+1))./(q-q*y+1).^{2};
     dVdv = ones(size(y));
 end
```


- Material interpolation functions (e.g. SIMP, RAMP)
- Different optimizers (e.g. OC, MMA, SLP)
- Analysis routine (e.g. FEM or other method)
- Objective Function (e.g. Compliance, Compliant Mechanism)


```
%------ OPTIMALITY CRITERIA UPDATE
function [zNew, Change] = UpdateScheme(dfdz,g,dgdz,z0,opt)
zMin=opt.zMin; zMax=opt.zMax;
move=opt.OCMove*(zMax-zMin); eta=opt.OCEta;
l1=0; l2=le6;
while l2-l1 > le-4
lmid = 0.5*(l1+l2);
B = -(dfdz./dgdz)/lmid;
zCnd = zMin+(z0-zMin).*B.^eta;
zNew = max(max(min(min(zCnd,z0+move),zMax),z0-move),zMin);
if (g+dgdz'*(zNew-z0)>0), l1=lmid;
else l2=lmid; end
end
Change = max(abs(zNew-z0))/(zMax-zMin);
```


- Material interpolation functions (e.g. SIMP, RAMP)
- Different optimizers (e.g. OC, MMA, SLP)
- Analysis routine (e.g. FEM or other method)
- Objective Function (e.g. Compliance, Compliant Mechanism)

- Material interpolation functions (e.g. SIMP, RAMP)
- Different **optimizers** (e.g. OC, MMA, SLP)
- Analysis routine (e.g. FEM or other method)
- Objective Function (e.g. Compliance, Compliant Mechanism)

Change the Objective Function

$$\begin{array}{ll} \text{Compliance:} \\ \text{(self-adjoint problem)} \end{array} & f = \mathbf{F}^T \mathbf{U} \quad ; \quad \frac{\partial f}{\partial \mathbf{E}} = -\mathbf{U}^T \frac{\partial \mathbf{K}}{\partial \mathbf{E}} \mathbf{U} = -\sum \mathbf{U}_i \, (\mathbf{k}_l)_{ij} \, \mathbf{U}_j \\ \\ \text{Compliant:} \\ \text{(non self-adjoint problem)} \end{array} & f = \mathbf{L}^T \mathbf{U} \quad ; \quad \frac{\partial f}{\partial \mathbf{E}} = -\boldsymbol{\lambda}^T \frac{\partial \mathbf{K}}{\partial \mathbf{E}} \mathbf{U} \\ \\ \mathbf{K} \boldsymbol{\lambda} = \mathbf{L} \end{array} \right] \quad -\sum \boldsymbol{\lambda}_i \, (\mathbf{k}_l)_{ij} \, \mathbf{U}_j, \end{array}$$

WCSMO 10TH WORLD CONGRESS ON STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

OTZ

Change the Objective Function

0.0

Compliance:
(self-adjoint problem)
$$f = \mathbf{F}^T \mathbf{U}$$
; $\frac{\partial f}{\partial \mathbf{E}} = -\mathbf{U}^T \frac{\partial \mathbf{K}}{\partial \mathbf{E}} \mathbf{U} = -\sum \mathbf{U}_i (\mathbf{k}_l)_{ij} \mathbf{U}_j$
Compliant:
(non self-adjoint problem) $f = \mathbf{L}^T \mathbf{U}$; $\frac{\partial f}{\partial \mathbf{E}} = -\lambda^T \frac{\partial \mathbf{K}}{\partial \mathbf{E}} \mathbf{U}$
 $\mathbf{K} \lambda = \mathbf{L}$

PolyTop can be easily extended to handle compliant mechanism design by changing 10 existing lines and adding 7 new ones!

Change the Objective Function

<pre>< f = dot(fem.F,U); < temp = cumsum(-U(fem.i).*fem.k.*U(fem.j)); < dfdE = [temp(1);temp(2:end)-temp(1:end-1)]; < while l2-l1 > 1e-4 < B = -(dfdz./dgdz)/Imid; < fem.F = zeros(2*fem.NNode,1); %external load vector < fem.F(2*fem.Load(1:NLoad,1)-1) = fem.Load(1:NLoad,2); < fem.F(2*fem.Load(1:NLoad,1)) = fem.Load(1:NLoad,3);</pre>	<pre>> f = fem.DOut(3)*U(fem.DofDOut,1); > temp = cumsum(fem.DOut(3)*U(fem.i,1).*fem.k.*U(fem.j,2)); > dfdE = -[temp(1);temp(2:end)-temp(1:end-1)]; > while (l2-l1)/(l2+l1) > 1e-4 && l2>1e-40 > B = max(1e-10,-(dfdz./dgdz)/lmid); > fem.F = zeros(2*fem.NNode,2); > fem.F(2*fem.Load(1:NLoad,1)-1,1) = fem.Load(1:NLoad,2); > fem.F(2*fem.Load(1:NLoad,1),1) = fem.Load(1:NLoad,2); > fem.DofDOut = 2*fem.DOut(1)-2+fem.DOut(2); > fem.F(fem.DofDOut,2) = -1; > NSpring = size(fem.Spring,1); > s = zeros(2*fem.NNode,2); %spring vector > s(2*fem.Spring(1:NSpring,1)-1) = fem.Spring(1:NSpring,2); > s(2*fem.Spring(1:NSpring,1)) = fem.Spring(1:NSpring,3); > fem.s = spdiags(s(:),0,2*fem.NNode,2*fem.NNode);</pre>
< K = sparse(fem.i,fem.j,E(fem.e).*fem.k);	<pre>> K = sparse(fem.i,fem.j,E(fem.e).*fem.k) + fem.s;</pre>
< U = zeros(2*fem.NNode,1);	> U = zeros(2*fem.NNode,2);

Compliance

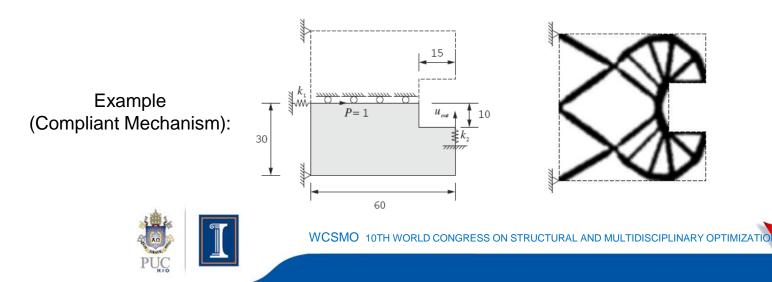
Compliant Mechanism

Change the Objective Function

<pre>< f = dot(fem.F,U); < temp = cumsum(-U(fem.i).*fem.k.*U(fem.j)); < dfdE = [temp(1);temp(2:end)-temp(1:end-1)]; < while l2-l1 > 1e-4 < B = -(dfdz./dgdz)/lmid; < fem.F = zeros(2*fem.NNode,1); %external load vector < fem.F(2*fem.Load(1:NLoad,1)-1) = fem.Load(1:NLoad,2); < fem.F(2*fem.Load(1:NLoad,1)) = fem.Load(1:NLoad,3);</pre>	<pre>> f = fem.DOut(3)*U(fem.DofDOut,1); > temp = cumsum(fem.DOut(3)*U(fem.i,1).*fem.k.*U(fem.j,2)); > dfdE = -[temp(1);temp(2:end)-temp(1:end-1)]; > while (l2-l1)/(l2+l1) > 1e-4 && l2>1e-40 > B = max(1e-10,-(dfdz./dgdz)/lmid); > fem.F = zeros(2*fem.NNode,2); > fem.F(2*fem.Load(1:NLoad,1)-1,1) = fem.Load(1:NLoad,2); > fem.F(2*fem.Load(1:NLoad,1),1) = fem.Load(1:NLoad,2); > fem.DofDOut = 2*fem.DOut(1)-2+fem.DOut(2); > fem.F(fem.DofDOut,2) = -1; > NSpring = size(fem.Spring,1); > s = zeros(2*fem.NNode,2); %spring vector > s(2*fem.Spring(1:NSpring,1)-1) = fem.Spring(1:NSpring,2); > s(2*fem.Spring(1:NSpring,1)) = fem.Spring(1:NSpring,3); > fem.s = spdiags(s(:),0,2*fem.NNode,2*fem.NNode);</pre>
< K = sparse(fem.i,fem.j,E(fem.e).*fem.k);	<pre>> K = sparse(fem.i,fem.j,E(fem.e).*fem.k) + fem.s;</pre>
< U = zeros(2*fem.NNode,1);	> U = zeros(2*fem.NNode,2);

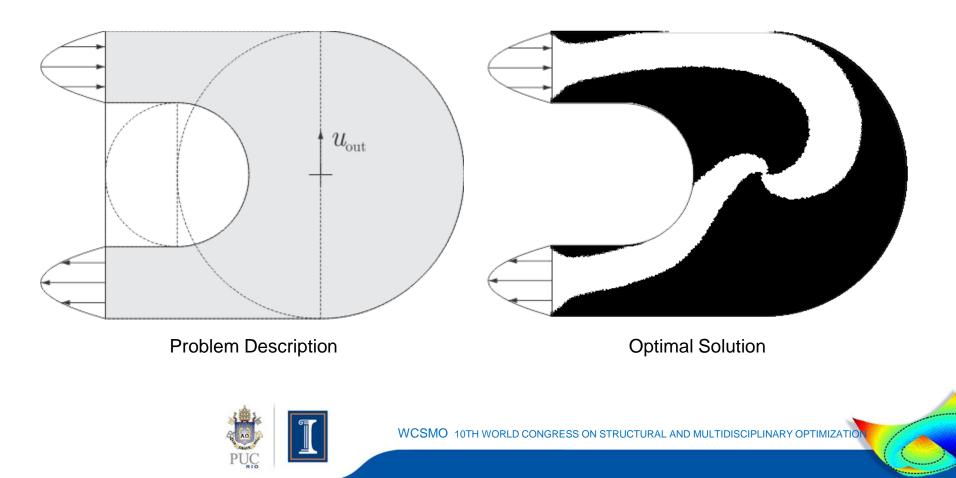
Compliance

Compliant Mechanism



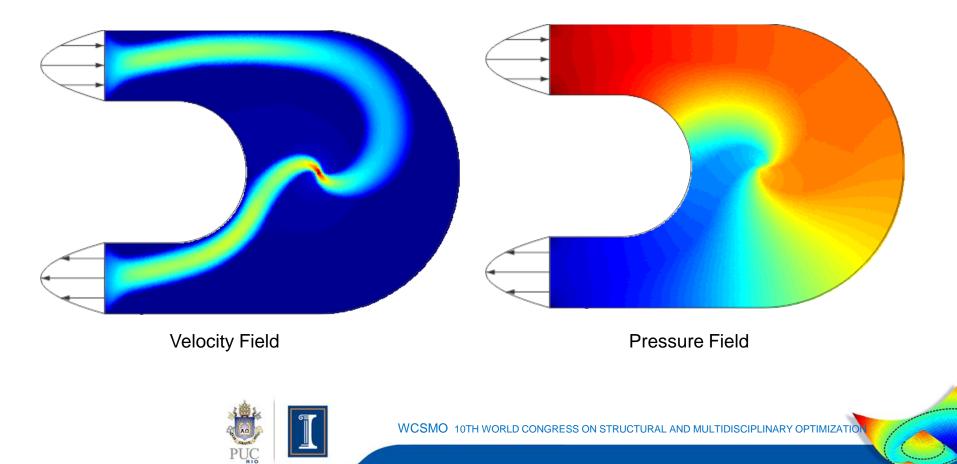
Example: Fluid Mechanics (Stokes Flow)

Maximize the y-velocity at a given location:



Example: Fluid Mechanics (Stokes Flow)

Maximize the y-velocity at a given location:



CODE EFFICIENCY

CODE EFFICIENCY

Comparison with the 88-line code*

Mesh Size	90x30	150x50	300x100	600x200
PolyTop	11.9	31.5	135.5	764.1
88-line	10.9	33.0	252.2	3092.9

(time in sec for 200 optimization iterations)

* Andreassen E., Clausen A., Schevenels M., Lazarov B., Sigmund O., "*Efficient topology optimization in MATLAB using 88 lines of code*", **JSMO**, 43(1):1–16, **2011.** doi:10.1007/s00158-010-0594-7

CODE EFFICIENCY

Comparison with the 88-line code*

Mesh Size	90x30	150x50	300x100	600x200
PolyTop	11.9	31.5	135.5	764.1
88-line [†]	9.7	24.3	119.7	708.8

(time in sec for 200 optimization iterations)

[†]Design Volume
(OC Update Function)
$$V(\mathbf{z}) = \sum_{\ell=1}^{N} (\mathbf{P}\mathbf{z})_{\ell} = \mathbf{1}^{T} (\mathbf{P}\mathbf{z}) = (\mathbf{1}^{T}\mathbf{P})\mathbf{z} = (\mathbf{P}^{T}\mathbf{1})^{T}\mathbf{z}$$

* Andreassen E., Clausen A., Schevenels M., Lazarov B., Sigmund O., "*Efficient topology optimization in MATLAB using 88 lines of code*", **JSMO**, 43(1):1–16, **2011.** doi:10.1007/s00158-010-0594-7

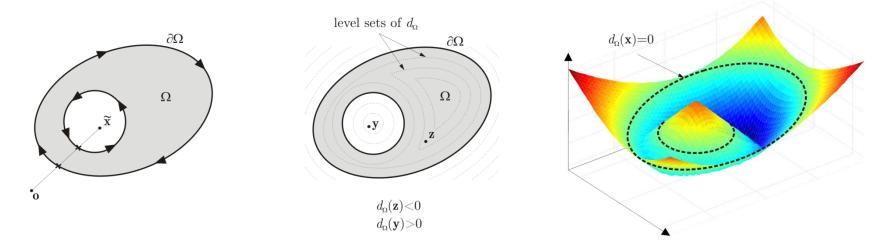
MESH GENERATION – BASIC IDEAS

• Implicit Representation (signed distance functions)

MESH GENERATION – BASIC IDEAS

Implicit Representation

• The implicit representation of the domain is one of the main ingredients of our meshing algorithm:



• The signed distance function contains all the essential information about the meshing domain needed in our mesh algorithm:

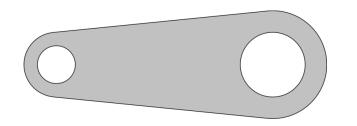
$$d_{\Omega}(\mathbf{x}) = s_{\Omega}(\mathbf{x}) \min_{\mathbf{y} \in \partial \Omega} \|\mathbf{x} - \mathbf{y}\| \qquad \qquad s_{\Omega}(\mathbf{x}) := \begin{cases} -1, & \mathbf{x} \in \Omega \\ +1, & \mathbf{x} \in \mathbb{R}^2 \backslash \Omega \end{cases}$$

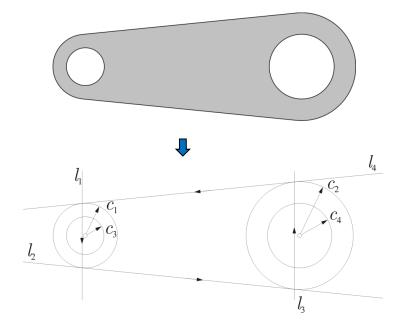
PROPOSED FRAMEWORK

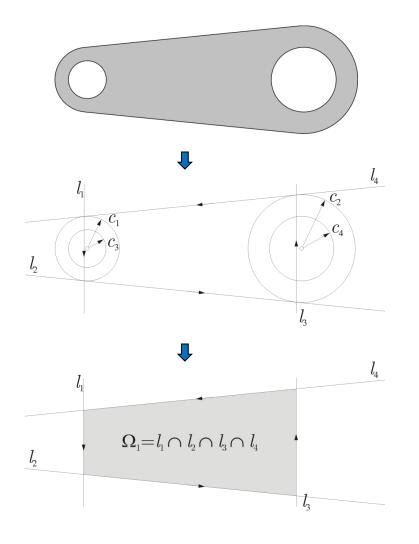
PolyMesher[†] – General-purpose Mesh Generator for Polygonal Elements

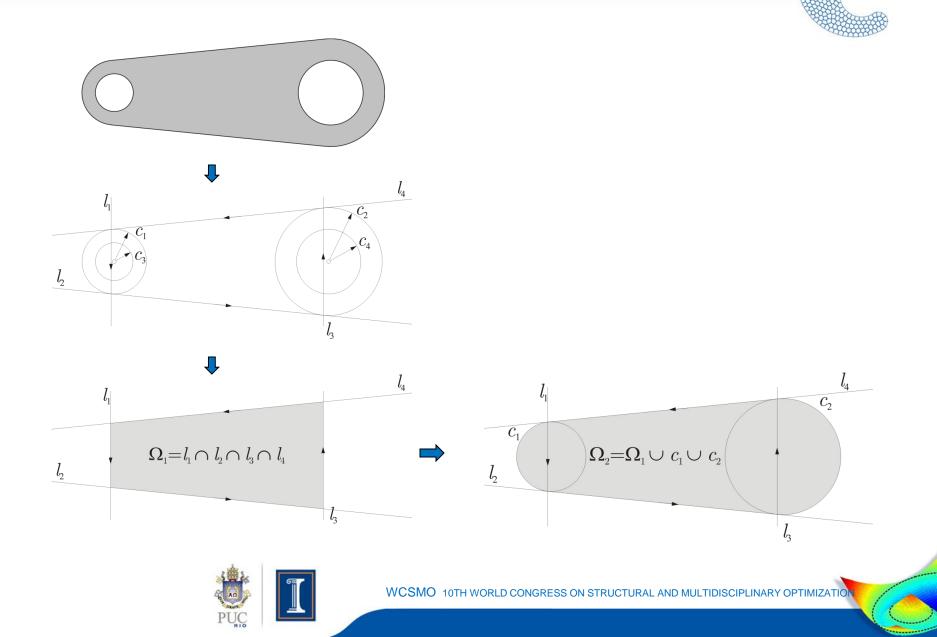
- Developed in MATLAB
- Possesses **133** lines, of which 69 lines pertain to the mesh post processing

⁺ Talischi, C., Paulino, G.H., Pereira, A., and Menezes, I.F.M., *"PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab"*, **JSMO**, 45:309–328, **2012.** doi:10.1007/s00158-011-0706-z

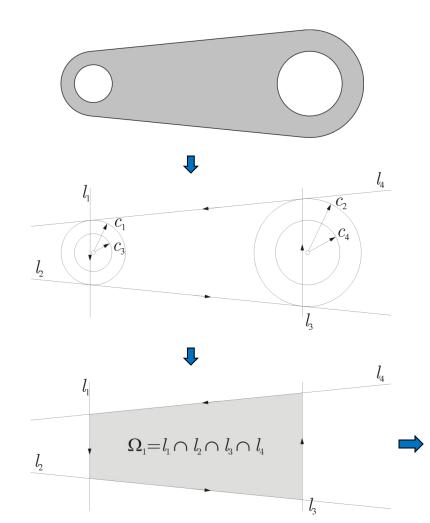


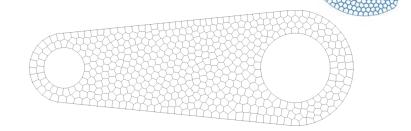


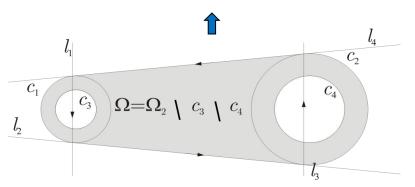


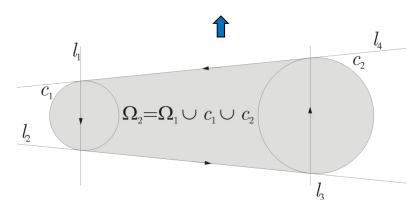












CONCLUDING REMARKS

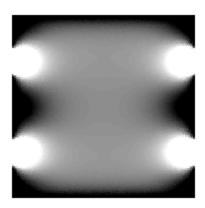
- The development of PolyMesher was motivated by the desire to present a complete, self-contained, efficient and useful code in MATLAB, including domain description and discretization algorithms;
- Due to the modularity and flexibility of the PolyTop code, analysis routine and optimization algorithm can be separated from the specific choice of topology optimization formulation;
- We would like to point out that PolyTop offers room for further exploration of finite elements and topology optimization formulations both for research and for practical engineering applications;
- We hope that the community can make use of PolyMesher & PolyTop in ways that we cannot anticipate.

QUESTIONS ?

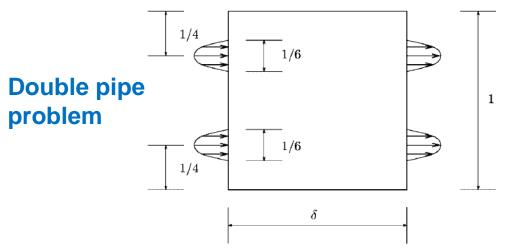
SUPPLEMENTARY MATERIAL

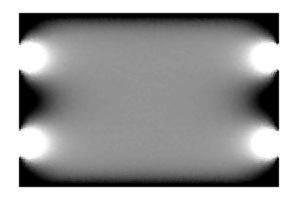
ONGOING RESEARCH

• Topology optimization of fluids in Stokes flow



Optimal double pipes for *d*=1





Optimal double pipes for *d*=1.5

Comparison with the 88-line code*

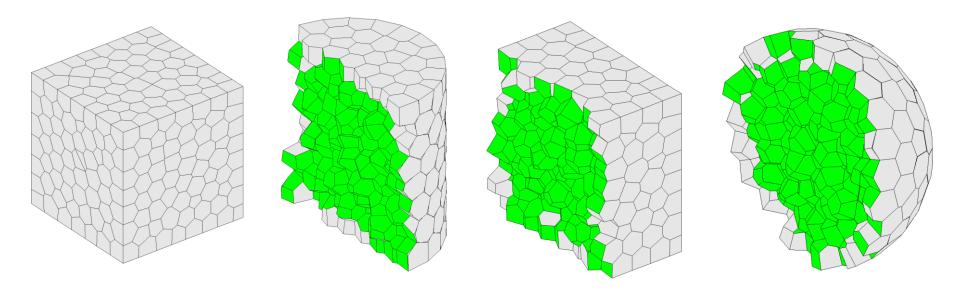
Mesh Size	90x30	150x50	300x100	600x200
PolyTop	11.9	31.5	135.5	764.1
88-line	10.9	33.0	252.2	3092.9
88-line [†]	9.7	24.3	119.7	708.8

(times in seconds for 200 optimization iterations)

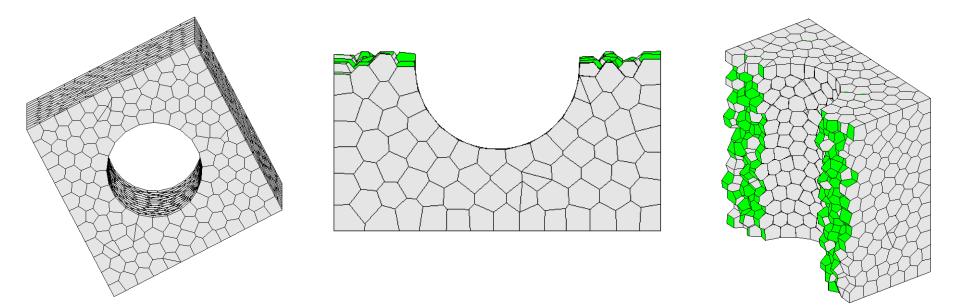
[†]Linearized Volume Constrained:
$$V(\mathbf{z}) = \sum_{\ell=1}^{N} (\mathbf{P}\mathbf{z})_{\ell} = \mathbf{1}^{T} (\mathbf{P}\mathbf{z}) = (\mathbf{1}^{T}\mathbf{P})\mathbf{z} = (\mathbf{P}^{T}\mathbf{1})^{T}\mathbf{z}$$

Andreassen E., Clausen A., Schevenels M., Lazarov B., Sigmund O., "*Efficient topology optimization in MATLAB using 88 lines of code*", **JSMO**, 43(1):1–16, **2011.** doi:10.1007/s00158-010-0594-7

500 Elements – 200 Lloyd's Iterations

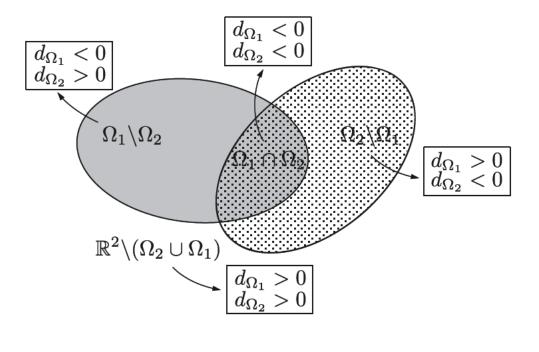


2000 Elements – 200 Lloyd's Iterations



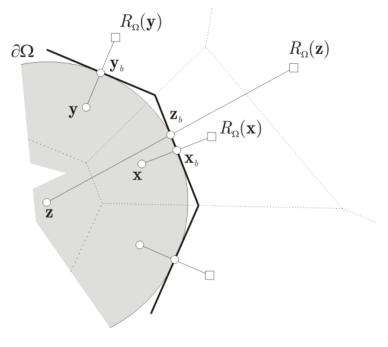
Implicit Representation

• Moreover, set operations such as **union**, **intersection**, and **difference** can be used to combine different geometries:



MESH GENERATION – ALGORITHM

A polygonal discretization can be obtained from the Voronoi diagram of a given set of seeds and their reflections:



 $R_{\Omega}(\mathbf{x}) = \mathbf{x} - 2d_{\Omega}(\mathbf{x})\nabla d_{\Omega}(\mathbf{x})$

• We first reflect each point in **P** about the *closest* boundary point of Ω and denote the resulting set of points by $R_{\Omega}(\mathbf{P})$.

• We then construct the Voronoi diagram of the plane by including the original point set as well as its reflection.

• Finally we incorporate Lloyd's iterations to obtain a point set **P** that produces a CVT.

$$R_{\Omega}(\mathbf{P}) := \{ R_{\Omega}(\mathbf{y}) : \mathbf{y} \in \mathbf{P} \}$$

CODE STRUCTURE

PolyTop (Main Loop)

```
function [z,V,fem] = PolyTop(fem,opt)
Iter=0; Tol=opt.Tol*(opt.zMax-opt.zMin); Change=2*Tol; z=opt.zlni; P=opt.P;
[E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);
[FigHandle,FigData] = InitialPlot(fem,V);
while (Iter<opt.MaxIter) && (Change>Tol)
 Iter = Iter + 1;
 %Compute cost functionals and analysis sensitivities
 [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V);
 [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,opt.VolFrac);
 %Compute design sensitivities
 dfdz = P'^{(dEdy.^{dfdE} + dVdy.^{dfdV)});
 dgdz = P'^{(dEdy.*dgdE + dVdy.*dgdV)};
 %Update design variable and analysis parameters
 [z,Change] = UpdateScheme(dfdz,g,dgdz,z,opt);
 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);
 %Output results
 fprintf('It: %i \t Objective: %1.3f\tChange: %1.3f\n',Iter,f,Change);
 set(FigHandle, 'FaceColor', 'flat', 'CData', 1-V(FigData)); drawnow
end
```


CODE STRUCTURE

PolyMesher (Main Loop)

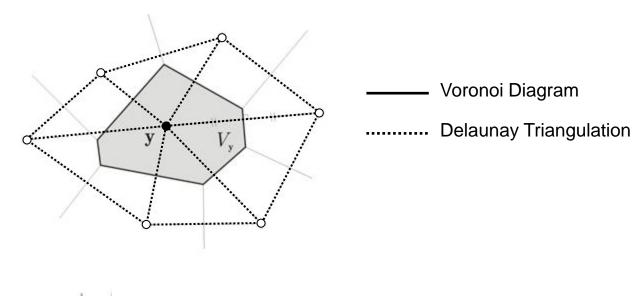
```
function [Node, Element, Supp, Load, P] = PolyMesher (Domain, NElem,
MaxIter,P)
if ~exist('P','var'), P=PolyMshr_RndPtSet (NElem,Domain); end
NElem = size(P,1);
Tol=5e-3; It=0; Err=1; c=1.5;
BdBox = Domain('BdBox');
Area = (BdBox(2)-BdBox(1))^*(BdBox(4)-BdBox(3));
Pc = P; figure;
while(It<=MaxIter && Err>Tol)
Alpha = c^{sqrt}(Area/NElem);
 P = Pc; %Lloyd's update
 R P = PolyMshr Rflct(P,NElem,Domain,Alpha); %Generate the reflections
 [Node,Element] = voronoin([P;R_P]); %Construct Voronoi diagram
 [Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);
Area = sum(abs(A));
 Err = sqrt(sum((A.^2).*sum((Pc-P).*(Pc-P),2)))*NElem/Area^{1.5};
fprintf('lt: %3d Error: %1.3e\n',lt,Err); lt=lt+1;
if NElem<=2000, PolyMshr_PlotMsh(Node,Element,NElem); end;
end
[Node,Element] = PolyMshr ExtrNds(NElem,Node,Element); %Extract node list
[Node,Element] = PolyMshr ClipsEdgs(Node,Element,0.1); %Remove small
edaes
```

[Node,Element] = **PolyMshr_RsqsNds**(Node,Element); %Reoder Nodes

The concept of Voronoi Tesselation (or diagram)

Given a set of "*n*" distinct points of seeds **P**, a Voronoi cell V_y consists of points in the plane closer to y than any other point in **P**, i.e.:

$$V_{\mathbf{y}} = \left\{ \mathbf{x} \in \mathbb{R}^2 : \left\| \mathbf{x} - \mathbf{y} \right\| < \left\| \mathbf{x} - \mathbf{z} \right\|, \forall \mathbf{z} \in \mathbf{P} \setminus \left\{ \mathbf{y} \right\} \right\}$$



- The concept of Voronoi Tesselation plays a central role in our meshing algorithm
- Centroidal Voronoi Tesselations (CVTs) enjoy a higher level of regularity which are suitable for use in Finite Element Analysis
- Implicit representation

Centroidal Voronoi Tesselations (CVTs)

A Voronoi tesselatior $\mathcal{T}(\mathbf{P};\Delta)$

is centroidal if, for every
$$y \in P$$
: i.e.:

$$\mathbf{y} = \mathbf{y}_c$$
 where

$$\mathbf{y}_c := \frac{\int_{V_{\mathbf{y}} \cap \Delta} \mathbf{x} \mu(\mathbf{x}) d\mathbf{x}}{\int_{V_{\mathbf{y}} \cap \Delta} \mu(\mathbf{x}) d\mathbf{x}}$$

C

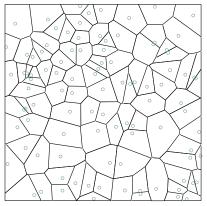
Centroidal Voronoi Tesselations (CVTs)

A Voronoi tesselatior $\mathcal{T}(\mathbf{P}; \Delta)$ is centroidal if, for every $y \in \mathbf{P}$: i.e.:

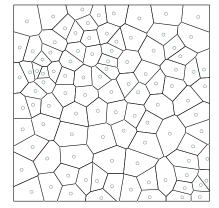
$$\mathbf{y} = \mathbf{y}_c$$
 where

$$\mathbf{y}_c := \frac{\int_{V_{\mathbf{y}} \cap \Delta} \mathbf{x} \mu(\mathbf{x}) d\mathbf{x}}{\int_{V_{\mathbf{y}} \cap \Delta} \mu(\mathbf{x}) d\mathbf{x}}$$

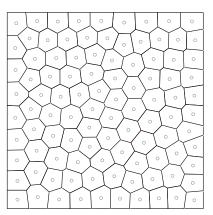
Lloyd's Iterations:



Initial random points

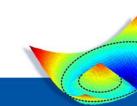


First iteration



After 80 iterations

- The concept of Voronoi Tesselation plays a central role in our meshing algorithm
- Centroidal Voronoi Tesselations (CVTs) enjoy a higher level of regularity which are suitable for use in Finite Element Analysis
- Implicit representation



ACKNOWLEDGEMENT

Tecgraf – Computer Graphics Technology Group at PUC-Rio

Department of Mechanical Engineering / PUC-Rio

Department of Energy Computational Science Graduate Fellowship Program of the Office of Science and National Nuclear Security Administration in the Department of Energy.

