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Cohesive elements aim to capture the highly
nonlinear behavior in the zone ahead of a crack tip

Nonlinear zone, voids
and micro-cracks \

When the size of the
nonlinear zone ahead of
a crack tip Is not
negligible, for example
In ductile or quasi-brittle
materials, the LEFM
may not be appropriate



In the inter-element approach, cohesive elements
are inserted at the facets of bulk elements

Cohesive element Separation in cohesive
with zero initial element (9, d¢)

Cohesive elements
consist of two facets that
can separate from each
other by means of a ¢
traction separation 3
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In the inter-element approach, cohesive elements
are inserted at the facets of bulk elements

Cohesive element

_ with zero initial
Cohesive elements thickness
consist of two facets that
can separate from each
other by means of a

traction separation
relation

Bulk elements
Separation in cohesive

FEM analysis - displacements -

cohesive constitutive relation -
tractions




The PPR is an attractive model for cohesive
failure simulation

LAy Ar) Ty(An, Ar)

The traction-separation relation
Is valid only in the area of
influence

Critical boundary conditions are obeyed even when properties are different
iIn each mode

40
30

20

User had control over key material parameters

Fracture energies: ¢n, ¢¢ Cohesive strengths: o, 7
Shape of softening: «, 8 Initial slope: A, A\
Park, K., & Paulino, G. H. AMR, 64(6), 060802, 2013. 9

Xu, X. P., and Needleman, A. Model. Simul. Mater. Sci. Eng., 1(2), pp. 111-13, 1993.



We employ the extrinsic approach in which a
stress criteria is used to insert cohesive elements

Consider a domain with an initial
notch (dashed line)

Stresses are computed from
displacements and extrapolated to
the nodes
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We employ the extrinsic approach in which a
stress criteria is used to insert cohesive elements

Consider a domain with an initial
notch (dashed line)

Stresses are computed from
displacements and extrapolated to
the nodes

Nodes with stress greater than
90% of the cohesive strength of
the material are flagged for further
Investigation

11



We employ the extrinsic approach in which a
stress criteria is used to insert cohesive elements

Compute the principle stress along
the facets adjacent to the flagged
nodes

If the stress is greater than the
cohesive strength, insert a
cohesive element

12



The dynamic simulation is carried out by means

of an explicit time integration scheme

l Begin time step

Next
time step

1. Update
displacements

2. Step = check
cohesive step?

3. Compute stress at
nodes

4. Check facets
for insertion of
cohesive
elements

no

v

6. Compute internal
force vector

11. Apply boundary
conditions

¢ yes

5. Insert cohesive
elements

Additional steps for
adaptivity

8. Update velocity j&—— C‘;ﬁg:tseiﬁgreswe
9' UpdaFe ——>{ 10. Update energy
acceleration
J —————
1
1
1
1
16. Print output LTI :
1
1
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Crack patterns on structured grids may be biased
by the mesh

4k structured mesh is
commonly used in
fracture simulation

Crack patterns on T t T T T T T T T f ? ? f ?

the structured 4k
mesh are limited by
the element facets

¢¢¢¢¢¢¢i¢ii¢ii

Zhang, Z., Paulino, G., & Celes, W. IINME, 72(8), 893-923, 2007. 16



Mesh adaptivity operators are introduced

improve fracture patterns

Original 4k mesh Nodal perturbation

Original 4k mesh Edge swap

Paulino, G. H., Park, K., Celes, W., & Espinha, R. IINME, 84(11), 1303-1343. 2010.

Park, K., Paulino, G. H., Celes, W., & Espinha, R. IJINME, 92(1), 1-35, 2012.

Mesh refinement

1
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Even with adaptive operators, structured meshes

exhibit bias for crack propagation
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FEM distance measured with Error in crack length is dependent on
Dijkstra’s algorithm angle of propagation

Rimoli, J. J. & Rojas, J. J., “Meshing strategies for the alleviation of mesh-induced effects in cohesive element models,” submitted.
Preprint: http://arxiv.org/abs/1302.1161
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Instead of structured meshes, we use CVT
polygonal discretizations

Start with a random Run Lloyd’s algorithm
point set and iteratively until a
construct the Voronoi Centroidal Voronoi
diagram Tessellation is

achieved




We can construct graded meshes using a hon-
constant density function in Lloyd’s algorithm

Element area

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.
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CVT meshes provide an alternative to structured
meshes that reduces mesh bias

90° 90°
1500 A \ 30°

o el

4k With swap, NP = 0.0|
4k No swap, NP =0.3
4k With swap, NP = 0.3
240° ? 300°
270°

O

>

Crack length studies show the CVT meshes are isotropic
However, error is significantly higher than the 4k mesh

Leon, S. E., Spring, D. W., & Paulino, G. H. Submitted to IINME.¢



Dynamic fracture simulations with polygonal
elements led to unrealistic results

Expected result contains
complete fragments

Internal
Pressure

Paulino, G. H., Park, K., Celes, W., & Espinha, R. IINME, 84(11), 1303-1343. 2010.
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Dynamic fracture simulations with polygonal
elements led to unrealistic results

g . } / Expected result contains
s i complete fragments

Internal
Pressure
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Even as the mesh is refined, the crack patterns
do not converge to the expected result

Mesh refinement

24



Poor results are explained by the lack of
available crack directions in a CVT mesh

4k Mesh

/
8 possible directions /

Typically 3 possible directions
4 possible directions

25
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We introduce element splitting to provide more
directions for the crack to propagate

28



To avoid poorly shaped elements, we limit the
available nodes for element splitting

Choose the
node that
minimizes
difference in
areas

29



Element splitting decreases the error in crack
length

.................................... . y
| y
. y
y
y,
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---Euclidean distance = 1.0 l y
— No splitting distance = 1.2309 i y
— Splitting distance = 1.0386
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Element splitting decreases the error in crack
length

90°

1500 A \ 300

o el

4k With swap, NP = 0.0|
4k No swap, NP =0.3
4k With swap, NP =0.3 . : .
240° i 300° 240° 300°
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Element splitting preserves isotropy and reduced error significantly
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Simple refinement strategies can be implemented
on polygonal element meshes

32
Spring, D. W., Leon, S. E., & Paulino, G. H., To be submitted to IINME



In fracture simulation, crack tips are tracked and
elements within a given radius are refined

33



In the quad refinement scheme, “hanging nodes”
are handled naturally

Before refinement: 6- After refinement:
sided polygon 8-sided polygon

o3




The error in crack length decreases when the
mesh is refined

Error in crack length ’/\
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We want to take advantage of the splitting scheme, in which the error in crack
length was between 3-5%
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Element splitting plus quad refinement increases
the number of potential crack directions
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When element splitting is combined with quad
refinement, the crack length error is very low
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All of the refinement schemes preserve isotropy
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Quad refined

CVTs w/
splitting

Quad refined
CVTs

Tri re Jined
CVTs
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Additional steps are performed to add new

nodes and elements to the model

l Begin time step

Next
time step

1. Update
displacements

2. Step = check
cohesive step?

3. Compute stress at
nodes

4. Check facets
for insertion of
cohesive
elements

no

v

8. Update velocity

7. Compute cohesive
force vector

!

6. Compute internal
force vector

¢ yes

5. Insert cohesive
<

elements

12. Cohesive
element inserted?

yes

9. Update 11. Apply boundary
acceleration 10. Update energy conditions
\ 2

16. Print output

15. Transfer nodal
quantities

14. Update element
matrices and nodal
mass

v

13. Refine about
crack tips

38



We employ a topological data structure, TopS,
that makes on-the-fly mesh adaptation efficient

Implicit and explicit
entities enabled mesh facetiedge facetiedge
modification operators to \e’ve”ex \

occur in linear time

facet/edge

Time (s)

0 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

# CZ Elements (millions)

Celes, W., Paulino, G. H., & Espinha, R. IINME, 64(11) 15291556, 2005. 39
Celes, W., Paulino, G.H., & Espinha, R. Journal of Computing and Information Science in Engineering, 5(4) , 2005.



Dynamic fracture with element splitting results
In desired crack patterns

Mesh refinement

40



Compact Compression Specimen investigated
with polygonal elements and splitting

30mm

Crack—/
path

\

(),

—> 20mm

v(t)

\

41

Rittel D, Maigre H. Mechanics of Materials, 23(3), 229-239, 1996.



Polygonal elements with splitting provide
excellent results for CCS test

42



Polygonal elements with splitting provide
excellent results for CCS test

Papoulia, K. D., Vavasis, S. A., & Ganguly, P. IJINME, 67(1), 1-16, 2006.
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Desirable results are obtained with mesh
refinement while reducing computational cost

100 mm
3
v f Initial notch
g 25mm
jO O O O 0O 0
Mesh refinement is performed as needed in time (Case
3)
Case Wall time
(min)
(1) ~33,000 CVT polygons (60,314 Nodes) 141.7
(2) 6,000 CVT polygons refined = ~33,000 elements (33,629 89.8
Nodes)
(3),6000 CVT polygons with adaptive refinement (1
B A

Bremen, Germany, vol. 1, 185-195, 1987.



Quadrilateral refinement plus splitting is superior

than individual schemes

i t t 1 t 1"
. 2mm
Full test specimen S e—
= *\ Initial notch
16 mm
! ! ! v v v

Polygonal elements
only

Reflnement + element
splitting

Sharon, E., & Fineberg, J. Physical Review B. 54(10), 7128—-7139, 1996.
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Some concluding remarks

* Inter-element cohesive zone modeling provides a means to capture
the complex nonlinear behavior at a crack tip

 Polygonal finite elements are well suited for fracture simulation as
they do not impart bias on the crack patterns

« With the help of atopological data structure and an explicit time
Integration scheme, mesh adaptation can be performed on-the-fly-to
allow for improved results with reduced computational effort

46



Some concluding remarks

* Inter-element cohesive zone modeling provides a means to capture
the complex nonlinear behavior at a crack tip

 Polygonal finite elements are well suited for fracture simulation as
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Back up slides
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Many models exist in the literature, and PPR
parameters can be tuned to recover them

T(A &)

T (A A

n n '

- B =9 300 -

5,=0.1
®, = ¢ =3523
J/m? |
g = 324 MPa
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Xu and Needleman
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= 300 |
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60!‘] = O4|Jm

200,
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6ct - 04|Jm g ‘{}i

q)n = q)t = 352.3 J/mZ
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T=755.4 MPa
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b."“t* %\

200,

600
400

200,

Park, K., Paulino, G. H., & Roesler, J. R. (2009). Journal of the Mechanics and Physics of Solids, 57(6), 891-908. 49

Xu, X.-P., & Needleman, A. (1994). Journal of the Mechanics and Physics of Solids, 42(9).



The traction-separation relation is given by the
PPR potential-based cohesive zone model

T (AA)

200

150

100

r, A,
T, (A, Ay) = —BE—; (1 - @

Park, K., Paulino, G. H., & Roesler, J. R. IMPS, 57(6), 891-908, 2009.

)5 v ¢n>]

Extrinsic elements
are inserted based
on an external
criteria when and
where they are
need, thus there is

no initial slope
50



The traction-separation relation is given by the
PPR potential-based cohesive zone model

W A,LA)
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Park, K., Paulino, G. H., & Roesler, J. R. IMPS, 57(6), 891-908, 2009.
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Intrinsic
elements are
present at the
beginning of the
simulation, thus
an initial slope
exists
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CZ elements may be inserted a priori (intrinsic)

or when/where they are needed (extrinsic)

Intrinsic approach is

appropriate for scenarios

where the crack

propagation direction is

known, e.g. material

Interfaces, but are not well

suited for scenarios when

the crack direction is Intrinsic

B

B

.n»
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Hausdorff distances are also lower for polygonal

meshes compared to 4k i

@ 500
%400-
Given a discretized path, P, whose %300- - Unperturbed 4K
vertices are p, and a mathematical £200
path Q, the Hausdorff distance is 2 100, - “II
H(P d % 3.61 ot 1 002 0.03
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Quad refinement results in lower error for crack
length studies

1,700 CVT elements
1,700 CVT element refined ~10,000 quads
~10,000 CVT elements

Without splitting With splitting

Percent error in crack length
Percent error in crack length

‘ ‘ i i i i i j 0 ‘ ‘ ‘
0 45 90 135 180 225 270 315 360 0 45 90 135 180
Angle (°) Angle (°)

I | I
225 270 315 360

CVT element meshes that are refined with quads have lower error
than meshes with an equivalent number of CVT elements.
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Error in Hausdorff distance with refinement is
nearly as low as a mesh of fine polygons

1,700 CVT elements
1,700 CVT element refined ~10,000 quads
~10,000 CVT elements

Without splitting With splitting

o o o

o o o

N w s
T T T

Hausdorff distance

o
o
=

o

; ; ; ; ; ; ; j ; ; ; ; ; ; ; j
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Angle (°) Angle (°)

Since the proposed refinement scheme will be applied adaptively, we will gain the
benefit of a smaller Hausdorff distance associated with using a fine mesh without
needing to refine the entire domain.

55



We also perform studies on crack angle because it is a quantity of
interest in fracture simulation

== Target angle = 34° /
== FE path
===| east squares linear fit of FE path _ /
=383
0._= 33.0613°
E
| ==Target angle = 34°
4=®=FE path _ 1340 .
==+ | east squares linear fit of FE path ST
56

[Leon et al, 2013]



Crack angle deviation is significantly lower with polygonal meshes
compared to 4K
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57
[Leon et al, 2013]



Instead of structured meshes, we use polygonal
discretizations obtained from a Voronoi diagram

Voronoi tessellation associated with point set, P:
TP;Q)={V,NQ:yecP}
Vi = {x€R": [lx —y[| < [[x—z|,Vz € P\ {y}}

\

. 58
Talischi, .. palino, &. 1., pere MATQNQLCEHS) ssmo 45(3), 309-328, 2012.



Instead of structured meshes, we use polygonal
discretizations obtained from a Voronoi diagram

Set of seeds
placed inside the
domain

OO0 OO0 O OO0 0O

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.
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Instead of structured meshes, we use polygonal
discretizations obtained from a Voronoi diagram

R . Reflections of
/ seeds about

the boundary
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ofof O o\9 0 000 00 00 00P0
atolo L oloocooooooo ooloo
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60
Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.



Instead of structured meshes, we use polygonal
discretizations obtained from a Voronoi diagram

S080800ec08
Sseeoas
Shesece

Oo oo o oo o

ssososco  reflection have a

common edge

The mesh consists of the Voronoi cells associated with P:
Mq(P) :={V, e T(PURq(P);R) :y € P}

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.



Comparison of performance 10 sample random and CVT
meshes with regular quadrilateral partition

'IO1 -
Random mesh
10° | ///;;
I //////
]
o ////
L] yd
Quad mesh
'IO_1 -
10° 10
Number of DOFs CVT mesh

62 [Talischi, Paulino, Pereira, Menezes, 2010]



Roughly 2x DOFs are needed with the quad mesh for the same
level of accuracy

'|01 -
Random mesh
10° | 4224 DOFs g
E //j/
T R d
Quad mesh
107 ~2150 DOFS
10° 10"
Number of DOFs CVT mesh

63 [Talischi, Paulino, Pereira, Menezes, 2010]



The factor is x1.6 for the triangulation (connecting centroid to the
vertices) of CVT meshes

1 T T T T T T L T T T T T T L T .
100 1 ntriangles and one
- I additional node for
each n-gon

5 %

o S
Triangulation

107 -

10° 10
Number of DOFs CVT mesh

64 [Talischi, Paulino, Pereira, Menezes, 2010]



Instead of structured meshes, we use CVT
polygonal discretizations

Generate a random point set inside the domain and construct the Voronoi
diagram of each set

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.
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Instead of structured meshes, we use CVT

polygonal discretizations

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.

Each iteration consists
of replacing each seed
by the centroid of its cell

Py =L (P

Lloyd’'s map

B ny(P)ﬂQ xp (x) dx

by (P) = ny(P)ﬂQ p(x) dx

Prescribed
density
function

66



Instead of structured meshes, we use CVT

polygonal discretizations

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.

Each iteration consists
of replacing each seed
by the centroid of its cell

Py =L (P

Lloyd’'s map

B ny(P)ﬂQ xp (x) dx

by (P) = ny(P)ﬂQ p(x) dx

Prescribed
density
function
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Instead of structured meshes, we use CVT

polygonal discretizations

Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.

Each iteration consists
of replacing each seed
by the centroid of its cell

P =L (P

Lloyd’s algorithm produces
a Centroidal Voronoi
Tessellation (CVT)

B ny(P)mQ X (x) dx
(x) dx

= ,Vy eP
ny(P)ﬂQ'u
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We can construct graded meshes using a hon-
constant density function
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Talischi, C., Paulino, G. H., Pereira, A., & Menezes, |. F. M. JISMO 45(3), 309-328, 2012.
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