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Cohesive elements aim to capture the highly 

nonlinear behavior in the zone ahead of a crack tip

6

When the size of the

nonlinear zone ahead of

a crack tip is not

negligible, for example

in ductile or quasi-brittle

materials, the LEFM

may not be appropriate

Macro-crack tip

Nonlinear zone, voids 

and micro-cracks



In the inter-element approach, cohesive elements 

are inserted at the facets of bulk elements
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FEM analysis  displacements 

cohesive constitutive relation 

tractions

Cohesive elements 

consist of two facets that 

can separate from each 

other by means of a 

traction separation 

relation

Cohesive element 

with zero initial 

thickness

Bulk elements

Separation in cohesive 

element 

Cohesive tractions
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The PPR is an attractive model for cohesive 

failure simulation

9Park, K., & Paulino, G. H. AMR, 64(6), 060802, 2013.

Xu, X. P., and Needleman, A. Model. Simul. Mater. Sci. Eng., 1(2), pp. 111–13, 1993.

The traction-separation relation 

is valid only in the area of 

influence 

User had control over key material parameters

Critical boundary conditions are obeyed even when properties are different 

in each mode 

Shape of softening: Initial slope: 

Fracture energies: Cohesive strengths:



We employ the extrinsic approach in which a 

stress criteria is used to insert cohesive elements
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Consider a domain with an initial 

notch (dashed line)

Stresses are computed from 

displacements and extrapolated to 

the nodes



We employ the extrinsic approach in which a 

stress criteria is used to insert cohesive elements
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Consider a domain with an initial 

notch (dashed line)

Stresses are computed from 

displacements and extrapolated to 

the nodes

Nodes with stress greater than 

90% of the cohesive strength of 

the material are flagged for further 

investigation



We employ the extrinsic approach in which a 

stress criteria is used to insert cohesive elements

12

Compute the principle stress along 

the facets adjacent to the flagged 

nodes

If the stress is greater than the 

cohesive strength, insert a 

cohesive element



The dynamic simulation is carried out by means 

of an explicit time integration scheme
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1. Update 

displacements

3. Compute stress at 

nodes

11. Apply boundary 

conditions

2. Step = check 

cohesive step?

5. Insert cohesive 

elements

6. Compute internal 

force vector

7. Compute cohesive 

force vector
8. Update velocity

9. Update 

acceleration
10. Update energy

16. Print output

4. Check facets 

for insertion of 

cohesive 

elements

yes

no
yes

no

Begin time step

Next 

time step

Additional steps for 

adaptivity
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Crack patterns on structured grids may be biased 

by the mesh

16

4k structured mesh is 

commonly used in 

fracture simulation

Crack patterns on 

the structured 4k 

mesh are limited by 

the element facets

Zhang, Z., Paulino, G., & Celes, W. IJNME, 72(8), 893–923, 2007.



Mesh adaptivity operators are introduced 

improve fracture patterns

17

Original 4k mesh

K. PARK ET AL.

(a) (b) (c)

Figure 7. Three refinement steps executed inside a circular region: (a) level 1; (b) level 2; and (c) level 3.

(a) (b) (c)

Figure 8. Example of the edge-split operations.

procedure on a sample mesh for three levels of refinement. However, the edge-split operator along

a cohesive element is not used in the computational simulation, as mentioned previously.

The AMR strategy with the edge-split operations leads to new nodes whose quantities should

be interpolated from adjacent nodes in the non-linear finite element analysis. For example, in the

4k mesh with quadratic triangular elements of six nodes each (Figure 8(a)), two dashed edges are

split: one edge is on the boundary and the other is in the interior. The boundary edge-split operation

generates three dark-gray nodes, whereas the interior edge-split operation leads to four dark-gray

nodes, as shown in Figure 8(b). One can further split the dashed interior edge in Figure 8(b), and this

operation provides four additional light-gray nodes, as shown in Figure 8(c). Notice that these new

nodes can be locally relocated (or perturbed) at the time of the insertion of new nodes (if one utilizes

the nodal perturbation). In addition, nodal quantities (e.g. displacement, velocity, and acceleration)

of new nodes should be interpolated from neighboring nodes for the explicit time integration in

elasto-dynamic problems.

For the interpolation of new nodes, the choices of sampling nodes and interpolation functions are

essential. First, sampling nodes are selected in a recursive procedure. For example, the three new

dark-gray nodes, which resulted from the boundary edge-split operation, are interpolated from six

nodes, which correspond to the members of a triangular element that shares the boundary edge

(Figure 9(a)). Next, the four new dark-gray nodes, which resulted from the interior edge-split

operation, are interpolated from nine nodes, which are the members of the adjacent elements that

share the interior edge (Figure 9(a)). Similarly, the four light-gray nodes are interpolated from nine

nodes, which are the members of the adjacent elements that share the interior edge, as shown in

Figure 9(b). Because the light-gray nodes are interpolated from five black nodes and four dark-gray

nodes, the dark-gray nodes are interpolated before the light-gray nodes are interpolated. In other

words, new nodes which are inserted first should be interpolated first. Therefore, the sequence of

the interpolations is the same as the sequence of the edge-split operations.

For interpolation functions, the quadratic Lagrange basis functions (i.e. shape functions) are

utilized. The nine node quadratic interpolation functions (i.e. Q9 shape functions) are used for the

interior edge split, whereas the six node quadratic interpolation functions (i.e. T6 shape functions)

are utilized for the boundary edge split. Note that the six node quadratic interpolation functions

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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procedure on a sample mesh for three levels of refinement. However, the edge-split operator along

a cohesive element is not used in the computational simulation, as mentioned previously.

The AMR strategy with the edge-split operations leads to new nodes whose quantities should

be interpolated from adjacent nodes in the non-linear finite element analysis. For example, in the

4k mesh with quadratic triangular elements of six nodes each (Figure 8(a)), two dashed edges are

split: one edge is on the boundary and the other is in the interior. The boundary edge-split operation

generates three dark-gray nodes, whereas the interior edge-split operation leads to four dark-gray

nodes, as shown in Figure 8(b). One can further split the dashed interior edge in Figure 8(b), and this

operation provides four additional light-gray nodes, as shown in Figure 8(c). Notice that these new

nodes can be locally relocated (or perturbed) at the time of the insertion of new nodes (if one utilizes

the nodal perturbation). In addition, nodal quantities (e.g. displacement, velocity, and acceleration)

of new nodes should be interpolated from neighboring nodes for the explicit time integration in

elasto-dynamic problems.

For the interpolation of new nodes, the choices of sampling nodes and interpolation functions are

essential. First, sampling nodes are selected in a recursive procedure. For example, the three new

dark-gray nodes, which resulted from the boundary edge-split operation, are interpolated from six

nodes, which correspond to the members of a triangular element that shares the boundary edge

(Figure 9(a)). Next, the four new dark-gray nodes, which resulted from the interior edge-split

operation, are interpolated from nine nodes, which are the members of the adjacent elements that

share the interior edge (Figure 9(a)). Similarly, the four light-gray nodes are interpolated from nine

nodes, which are the members of the adjacent elements that share the interior edge, as shown in

Figure 9(b). Because the light-gray nodes are interpolated from five black nodes and four dark-gray

nodes, the dark-gray nodes are interpolated before the light-gray nodes are interpolated. In other

words, new nodes which are inserted first should be interpolated first. Therefore, the sequence of

the interpolations is the same as the sequence of the edge-split operations.

For interpolation functions, the quadratic Lagrange basis functions (i.e. shape functions) are

utilized. The nine node quadratic interpolation functions (i.e. Q9 shape functions) are used for the

interior edge split, whereas the six node quadratic interpolation functions (i.e. T6 shape functions)

are utilized for the boundary edge split. Note that the six node quadratic interpolation functions
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Nodal perturbation

Original 4k mesh Edge swap

Mesh refinement

Paulino, G. H., Park, K., Celes, W., & Espinha, R. IJNME, 84(11), 1303–1343. 2010.

Park, K., Paulino, G. H., Celes, W., & Espinha, R. IJNME, 92(1), 1–35, 2012. 



Even with adaptive operators, structured meshes 

exhibit bias for crack propagation

18

FEM distance measured with 

Dijkstra’s algorithm

Error in crack length is dependent on 

angle of propagation

Rimoli, J. J. & Rojas, J. J., “Meshing strategies for the alleviation of mesh-induced effects in cohesive element models,” submitted. 

Preprint: http://arxiv.org/abs/1302.1161  



Instead of structured meshes, we use CVT 

polygonal discretizations 

19

Start with a random 

point set and 

construct the Voronoi

diagram

Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

Run Lloyd’s algorithm 

iteratively until a 

Centroidal Voronoi

Tessellation is 

achieved



We can construct graded meshes using a non-

constant density function in Lloyd’s algorithm 

20
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 
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CVT meshes provide an alternative to structured 

meshes that reduces mesh bias

Crack length studies show the CVT meshes are isotropic

However, error is significantly higher than the 4k mesh
21

Leon, S. E., Spring, D. W., & Paulino, G. H. Submitted to IJNME.ç



Dynamic fracture simulations with polygonal 

elements led to unrealistic results

22
Paulino, G. H., Park, K., Celes, W., & Espinha, R. IJNME, 84(11), 1303–1343. 2010.

Expected result contains 

complete fragments

Internal 

Pressure



Dynamic fracture simulations with polygonal 

elements led to unrealistic results

23

Expected result contains 

complete fragments

Internal 

Pressure



Even as the mesh is refined, the crack patterns 

do not converge to the expected result

24

Mesh refinement



Poor results are explained by the lack of 

available crack directions in a CVT mesh 

25

4k Mesh CVT Mesh

8 possible directions

4 possible directions
Typically 3 possible directions
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We introduce element splitting to provide more 

directions for the crack to propagate

28



To avoid poorly shaped elements, we limit the 

available nodes for element splitting

29

Choose the 

node that 

minimizes 

difference in 

areas



Element splitting decreases the error in crack 

length

30



Element splitting decreases the error in crack 

length

Element splitting preserves isotropy and reduced error significantly

31



Simple refinement strategies can be implemented 

on polygonal element meshes

32
Spring, D. W., Leon, S. E., & Paulino, G. H., To be submitted to IJNME



In fracture simulation, crack tips are tracked and 

elements within a given radius are refined

33



In the quad refinement scheme, “hanging nodes” 

are handled naturally

Before refinement: 6-

sided polygon

After refinement:

8-sided polygon

34



The error in crack length decreases when the 

mesh is refined 

We want to take advantage of the splitting scheme, in which the error in crack 

length was between 3-5%

35

Plain CVT

Quad 

refined 

CVTs

Tri refined 

CVTs



Element splitting plus quad refinement increases 

the number of potential crack directions

36



When element splitting is combined with quad 

refinement, the crack length error is very low

All of the refinement schemes preserve isotropy
37

Plain CVT

Quad refined 

CVTs

Tri refined 

CVTs

Quad refined 

CVTs w/ 

splitting



Additional steps are performed to add new 

nodes and elements to the model

38

1. Update 

displacements

3. Compute stress at 

nodes

11. Apply boundary 

conditions

2. Step = check 

cohesive step?

5. Insert cohesive 

elements

6. Compute internal 

force vector

7. Compute cohesive 

force vector
8. Update velocity

9. Update 

acceleration
10. Update energy

16. Print output

4. Check facets 

for insertion of 

cohesive 

elements

yes

no
yes

no

Begin time step

Next 

time step

12. Cohesive 

element inserted?

yes

13. Refine about 

crack tips

no

14. Update element 

matrices and nodal 

mass

15. Transfer nodal 

quantities



We employ a topological data structure, TopS, 

that makes  on-the-fly mesh adaptation efficient

39

Implicit and explicit 

entities enabled mesh 

modification operators to 

occur in linear time

Celes, W., Paulino, G. H., & Espinha, R. IJNME, 64(11) 1529–1556, 2005.

Celes, W., Paulino, G.H., & Espinha, R.  Journal of Computing and Information Science in Engineering, 5(4) , 2005.



Dynamic fracture with element splitting results 

in desired crack patterns

40

Mesh refinement



Compact Compression Specimen investigated 

with polygonal elements and splitting

41
Rittel D, Maigre H. Mechanics of Materials, 23(3), 229–239, 1996.



Polygonal elements with splitting provide 

excellent results for CCS test

42



Polygonal elements with splitting provide 

excellent results for CCS test

43Papoulia, K. D., Vavasis, S. A., & Ganguly, P. IJNME, 67(1), 1–16, 2006.



Desirable results are obtained with mesh 

refinement while reducing computational cost

44

Mesh refinement is performed as needed in time (Case 

3)

Case Wall time 

(min)

(1) ~33,000 CVT polygons (60,314 Nodes) 141.7

(2) 6,000 CVT polygons refined = ~33,000 elements (33,629 

Nodes)

89.8

(3) 6000 CVT polygons with adaptive refinement (10,815 Nodes) 25.3
Kalthoff JF, Winkler S. International Conference on Impact Loading and Dynamic Behavior of Materials, 

Bremen, Germany, vol. 1, 185–195, 1987.



Quadrilateral refinement plus splitting is superior 

than individual schemes

45

Polygonal elements 

only

Refinement + element 

splitting

Full test specimen

Sharon, E., & Fineberg, J. Physical Review B. 54(10), 7128–7139, 1996.



Some concluding remarks

• Inter-element cohesive zone modeling provides a means to capture 

the complex nonlinear behavior at a crack tip

• Polygonal finite elements are well suited for fracture simulation as 

they do not impart bias on the crack patterns

• With the help of a topological data structure and an explicit time 

integration scheme, mesh adaptation can be performed on-the-fly to 

allow for improved results with reduced computational effort

46
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Back up slides



Many models exist in the literature, and PPR 

parameters can be tuned to recover them

49

PPR

α = β = 5

δn = 0.13

δt = 0.1

Φn = Φt = 352.3 

J/m2

σ = 324 MPa

τ = 755.4 MPa

Xu, X.-P., & Needleman, A. (1994). Journal of the Mechanics and Physics of Solids, 42(9).

Park, K., Paulino, G. H., & Roesler, J. R. (2009). Journal of the Mechanics and Physics of Solids, 57(6), 891–908. 

Xu and Needleman 

1994

r = 0

δcn = 0.4μm

δct = 0.4μm

Φn = Φt = 352.3 J/m2

σ = 324 MPa

τ = 755.4 MPa



The traction-separation relation is given by the 

PPR potential-based cohesive zone model 

50

Park, K., Paulino, G. H., & Roesler, J. R. JMPS, 57(6), 891–908, 2009.

Extrinsic elements 

are inserted based 

on an external 

criteria when and 

where they are 

need, thus there is 

no initial slope



The traction-separation relation is given by the 

PPR potential-based cohesive zone model 

51

Intrinsic 

elements are 

present at the 

beginning of the 

simulation, thus 

an initial slope 

exists

Park, K., Paulino, G. H., & Roesler, J. R. JMPS, 57(6), 891–908, 2009.



CZ elements may be inserted a priori (intrinsic) 

or when/where they are needed (extrinsic)

52

Intrinsic approach is 

appropriate for scenarios 

where the crack 

propagation direction is 

known, e.g. material 

interfaces, but are not well 

suited for scenarios when 

the crack direction is 

unknown

Mesh topology does not 

change in an intrinsic 

scheme, but constantly 

changes in an extrinsic 

scheme

Intrinsic Extrinsic

5 m/s



Hausdorff distances are also lower for polygonal 

meshes compared to 4k

Unperturbed 4K

Perturbed 4K

CVT

53

Given a discretized path, P, whose 

vertices are p, and a mathematical 

path Q, the Hausdorff distance is 



Quad refinement results in lower error for crack 

length studies

1,700 CVT elements

1,700 CVT element refined ~10,000 quads

~10,000 CVT elements

Without splitting With splitting

CVT element meshes that are refined with quads have lower error

than meshes with an equivalent number of CVT elements.

54



Error in Hausdorff distance with refinement is 

nearly as low as a mesh of fine polygons

1,700 CVT elements

1,700 CVT element refined ~10,000 quads

~10,000 CVT elements

Without splitting With splitting

Since the proposed refinement scheme will be applied adaptively, we will gain the 

benefit of a smaller Hausdorff distance associated with using a fine mesh without 

needing to refine the entire domain.

55



We also perform studies on crack angle because it is a quantity of 

interest in fracture simulation 

56
[Leon et al, 2013]



Crack angle deviation is significantly lower with polygonal meshes 

compared to 4K

With splitting/swapping

No splitting/swapping

57
[Leon et al, 2013]



Instead of structured meshes, we use polygonal 

discretizations obtained from a Voronoi diagram 

58

Voronoi tessellation associated with point set, P:

Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. Voronoi cells



Instead of structured meshes, we use polygonal 

discretizations obtained from a Voronoi diagram 

59
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

Set of seeds 

placed inside the 

domain



Instead of structured meshes, we use polygonal 

discretizations obtained from a Voronoi diagram 

60
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

Reflections of 

seeds about 

the boundary



Instead of structured meshes, we use polygonal 

discretizations obtained from a Voronoi diagram 

61
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

The mesh consists of the Voronoi cells associated with P: 

Seeds and its 

reflection have a 

common edge



E
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r

Number of DOFs CVT mesh

Random mesh

Quad mesh

Comparison of performance 10 sample random and CVT 

meshes with regular quadrilateral partition 

62 [Talischi, Paulino, Pereira, Menezes, 2010]



E
rr

o
r

Number of DOFs

~2150 DOFS

4224 DOFs

Roughly 2x DOFs are needed with the quad mesh for the same 

level of accuracy

CVT mesh

Random mesh

Quad mesh

63 [Talischi, Paulino, Pereira, Menezes, 2010]



The factor is x1.6 for the triangulation (connecting centroid to the 

vertices) of CVT meshes

CVT mesh

Triangulation

64

n triangles and one 

additional node for 

each n-gon

E
rr

o
r

Number of DOFs

[Talischi, Paulino, Pereira, Menezes, 2010]



Instead of structured meshes, we use CVT 

polygonal discretizations

65

Generate a random point set inside the domain and construct the Voronoi

diagram of each set

Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 



Instead of structured meshes, we use CVT 

polygonal discretizations

66

Each iteration consists 

of replacing each seed 

by the centroid of its cell 

Lloyd’s map

Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

Prescribed 

density 

function



Instead of structured meshes, we use CVT 

polygonal discretizations

67
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

Each iteration consists 

of replacing each seed 

by the centroid of its cell 

Lloyd’s map

Prescribed 

density 

function



Instead of structured meshes, we use CVT 

polygonal discretizations

68
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 

Lloyd’s algorithm produces 

a Centroidal Voronoi

Tessellation (CVT)

Each iteration consists 

of replacing each seed 

by the centroid of its cell 



We can construct graded meshes using a non-

constant density function

69
Talischi, C., Paulino, G. H., Pereira, A.,  & Menezes, I. F. M. JSMO 45(3), 309–328, 2012. 
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