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Failure Occurs at Various Scales and in Various Contexts
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The Cohesive Element Method for Fracture

Park, K., Paulino, G. H.,  and Roesler, J. R., A unified potential-based cohesive model of mixed-mode fracture. Journal of the Mechanics and 
Physics of Solids, vol. 57, pp. 891–908, 2009.

 The basic idea is to use cohesive elements to capture the
inelastic failure zone in front of the crack tip.

 Cohesive elements initially have zero thickness and impart a
traction on the surrounding bulk elements, as they separate.

 A macro-crack forms when the cohesive elements have fully
separated (the traction-separation relation goes to zero).

Crack

Cohesive 
Region

∆

𝑇

The Park-Paulino-Roesler (PPR) model is one example of a cohesive model:
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The Argument for using Unstructured Meshes

4k Mesh

Polygonal Mesh

4

8

Crack

One of the primary critiques of the cohesive element method is its mesh dependency

45°

45°
45°

Structured 4k meshes are biased to cracks propagating at
angles which are a multiple of 45°, but have a large
number of crack paths at each node

Polygonal meshes are unbiased, but limit number of crack
paths at each node

Zhang, Z., Paulino, G.H., Celes, W., Extrinsic cohesive zone modeling of dynamic fracture and microbranching instability in brittle 
materials. International Journal for Numerical Methods in Engineering. vol. 72, pp. 893-923, 2007.
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Dijkstra’s algorithm is used to compute the shortest path between two points in the mesh

How to Quantify Mesh Isotropy/Anisotropy

The path deviation is computed as: 𝜂 =
𝐿𝑔

𝐿𝐸
− 1

Element edges

Euclidean distance

start

end

Element edges
Euclidean distance

Leon, S. E.*, Spring, D. W.*, Paulino, G. H., Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal elements. 
Accepted to the International Journal for Numerical Methods in Engineering, 2014. 
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Quantification of Mesh Isotropy/Anisotropy

A study was conducted on the path deviation over a range of 180°

Leon, S. E.*, Spring, D. W.*, Paulino, G. H., Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal elements. 
Accepted to the International Journal for Numerical Methods in Engineering, 2014. 

The structured 4K mesh is anisotropic, while the unstructured polygonal discretization is
isotropic. However, the path deviation in the polygonal mesh is significantly higher that
that in the 4k mesh.



8

The First Topological Operator: Element Splitting

In order to reduce the path deviation in the polygonal mesh, we propose using an element
splitting technique to increase the number of fracture paths at each node in the mesh.
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Allow elements to be split along the 
path which minimizes the difference 
between the two areas. 
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The Second Topological Operator: Adaptive Refinement

However, this refinement scheme
does not increase the number of
fracture paths at the original
nodes.

To account for this, we permit
elements to be split.

We propose the use of a quadrilateral
refinement scheme, wherein each polygon
around the crack tip is removed and
replaced with a set of unstructured quads
which meet at the centroid of the original
polygon.

Spring, D. W., Leon, S. E., and Paulino, G. H., Unstructured adaptive refinement on polygonal meshes for the numerical simulation of 
dynamic cohesive fracture. Submitted to the International Journal of Fracture, 2014.
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Quantification of Improvement in Path Deviation

Path deviation studies with both topological operators

No SplittingWith Splitting

The results for 5 distinct meshes are illustrated.
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Spring, D. W., Leon, S. E., and Paulino, G. H., Unstructured adaptive refinement on polygonal meshes for the numerical simulation of 
dynamic cohesive fracture. Submitted to the International Journal of Fracture, 2014.
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Unstructured Constitutive Models (Weibull Distribution)

𝑉 =
𝐿𝑠
1/𝑚

𝐿𝑓
1/𝑚 𝑉𝑠 −ln 1 − 𝜌

1/𝑚 𝑉𝑠 = 𝜎, 𝜙, 𝐸

To account for microscale inhomogeneities in our simulations, we prescribe a statistical
distribution of material properties:

Zhou, F. and Molinari, J.F., Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. 
International Journal for Numerical Methods in Engineering, vol. 59, pp. 1-24, 2004.

where: 𝑚 is the Weibull modulus, 𝑉𝑠 is the average material property, 𝜌 is a randomly
generated number between 0 and 1, 𝐿𝑓 is the length of the cohesive element, and 𝐿𝑠 is a

scaling parameter

𝑚 = 50 𝑚 = 30 𝑚 = 10
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Example: Illustrating Influence of Element Splitting

𝐸 210𝐺𝑃𝑎

𝜌 7850  𝑘𝑔 𝑚3

𝜙 2000  𝑁 𝑚

𝜎 850𝑀𝑃𝑎

𝛼 2

0 10 20 30 40 50 60 70

200

250

300

350

400

Time (s)

Im
p

a
c
t 

p
re

ss
u

re
, 
P

 (
M

P
a
)

𝑃 𝑡 = 400𝑒  − 𝑡−1 100

160 mm

300 mm

Internal 

pressure 

(P)

Pervasive fracture of an internally impacted thick cylinder

Leon, S. E.*, Spring, D. W.*, Paulino, G. H., Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal elements. 
Accepted to the International Journal for Numerical Methods in Engineering, 2014. 
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Example: Illustrating Influence of Element Splitting

When we only use a geometrically 
unstructured mesh, we get unbiased 

fracture behavior, but unrealistic fracture 
patterns.

When we use both a geometrically and 
topologically unstructured mesh, we get 
unbiased fracture behavior and realistic 

fracture patterns.

Without element splitting With element splitting

Leon, S. E.*, Spring, D. W.*, Paulino, G. H., Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal elements. 
Accepted to the International Journal for Numerical Methods in Engineering, 2014. 
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Example: Illustrating Influence of Material Heterogeneity

Coordinates of Hole Locations

(14.86,18.57) (26.60,55.30) (72.46,70.99) (40.31,36.25)

(23.70,13.09) (45.03,54.38) (63.01,71.14) (48.54,31.07)

(13.03,33.66) (22.18,70.99) (50.67,62.76) (59.97,27.56)

(37.26,19.49) (13.34,80.59) (64.69,58.19) (51.28,19.64)

(26.14,38.53) (24.31,80.74) (76.27,56.51) (72.77,17.96)

(12.73,46.15) (43.51,75.71) (55.85,52.10) (64.08,14.91)

(31.01,46.76) (55.40,83.18) (75.51,40.97) (33.30,85.31)

(15.32,55.90) (72.46,83.94) (51.59,40.97)

E

(GPa)
v

𝜌
(  𝑘𝑔 𝑚3)

𝜎
(MPa)

𝜙
(N/m)

𝛼

3.26 0.38 1100 62.8 100.0 2

Al-Ostaz, A. and Jasiuk, I., Crack initiation and propagation in materials with randomly distributed holes. Engineering Fracture 
Mechanics, vol. 58, pp. 395-420, 1997. 
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Motivation

This problem was investigated experimentally on seven plates with the same geometry 
and macroscopic material parameters. The observed fracture patterns were different in 
each plate.

The authors noted that the different fracture patterns for macroscopically similar plates 
may be due to microscale heterogeneities. 

Combined experimental results

Al-Ostaz, A. and Jasiuk, I., Crack initiation and propagation in materials with randomly distributed holes. Engineering Fracture 
Mechanics, vol. 58, pp. 395-420, 1997. 
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Influence of Random Material Parameters

Variation in Elastic Modulus

 The bulk elastic modulus variation
captures some of the fracture trends,
but the cracks are limited to the lower
portion of the plate

 When a smaller distribution of material
properties is considered, little variation
in the fracture patterns is observed.

Variation in Cohesive Strength

 The variation in cohesive strength
captures more of the experimental
trends, in particular the crack along the
upper portion of the plate.

 When a smaller distribution of material
properties is considered, less variation
in the fracture patterns is observed.

The results shown are for a Weibull modulus of m=10, and are all for the same mesh.
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Results: Illustrating Influence of Material Heterogeneity

The authors who investigated this example experimentally noted that the different fracture 
patterns for macroscopically similar plates may be due to microscale heterogeneities. 

The numerical investigations we provide here support the authors conclusions. 

Summary of Experimental Results

The cracks almost exclusively  propagate 
through this section of the plate.

When the cohesive strength is randomly 
assigned, with a large range of heterogeneity, 
cracking in the upper portion of the plate can 
be captured

There are a wide range of fracture patterns 
spanning this portion of the plate. This 
behavior can be reproduced numerically

No Fracture

No Fracture
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Example: Single Dominant Crack with Microbranching

Sharon, E. and Fineberg, J., Microbranching instability and the dynamic fracture of brittle materials. Physical Review B, vol. 54, pp. 7128-
7139, 1996. 
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Fracture Patterns: Different Material Parameters

Cohesive Stress Cohesive Energy Elastic Modulus

𝑚 = 10

𝑚 = 30

𝑚 = 50

Various material properties and ranges of properties were considered. For each scenario,
multiple cases were run, and the following illustrate typical results.

In general, the overall crack path changes for different material property distributions, but
the fracture characteristics (microbranching and macrobranching) stay the same.

Spring, D. W., Leon, S. E., and Paulino, G. H., Unstructured adaptive refinement on polygonal meshes for the numerical simulation of 
dynamic cohesive fracture. Submitted to the International Journal of Fracture, 2014.
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Comparison of Crack-Tip Velocities
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Coarse Mesh

Coarse Mesh w/ Splitting

Adaptively Refined

Uniformly Refined w/ Polygons

Uniformly Refined w/ Quads

Homogeneous Material Distribution

Distribution of Material

Homogeneous m=50 m=30 m=10

Polygonal

Cohesive Stress (σ)

546

562 547 547

Cohesive Energy (φ) 557 531 551

Elastic Modulus (E) 533 521 504

Element Splitting

Cohesive Stress (σ)

602

630 624 638

Cohesive Energy (φ) 582 594 605

Elastic Modulus (E) 607 589 565

Adaptive

Cohesive Stress (σ)

672

681 662 689

Cohesive Energy (φ) 677 682 673

Elastic Modulus (E) 654 669 650

Spring, D. W., Leon, S. E., and Paulino, G. H., Unstructured adaptive refinement on polygonal meshes for the numerical simulation of 
dynamic cohesive fracture. Submitted to the International Journal of Fracture, 2014.
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Summary: Techniques for overcoming mesh dependency

We review three methods for overcoming mesh dependency:

Geometrically Unstructured
Unstructured meshes

Constitutivey Unstructured
Statistically distributing 

material properties

Topologically Unstructured
On-the-fly mesh modifications

Spring, D. W., Leon, S. E., and Paulino, G. H., Unstructured adaptive refinement on polygonal meshes for the numerical simulation of 
dynamic cohesive fracture. Submitted to the International Journal of Fracture, 2014.
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Summary

 Unstructured polygonal meshes produce an isotropic discretization.

 The two new topological operators (element splitting and adaptive refinement) reduce
the mesh induced path deviation.

 For pervasive fracture problems the element splitting operator improves overall
fracture behavior.

 Material heterogeneity may be the cause of dissimilar fracture patterns in similar test
specimens.

 For problems with a single dominant crack, material heterogeneity has a minimal
influence on the fracture behavior.

 The crack velocity is influenced by the mesh induced restrictions, but isn’t significantly
altered when the material parameters are statistically distributed.

 By combining unstructured geometries, topologies and material distributions the
model is truly random and minimizes numerically induced restrictions.

Thank You!

spring2@illinois.edu


