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Machine learning and artificial intelligence

Go Game

Instant translation
(www.sciencemag.org)

Image Segmentation
(Krahenbiihl and Koltun, 2012)

Self-driving Car
(aitrends.com)

Artistic Style Transfer
(Andrychowicz et al. 2016)
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Can deep learning accelerate
topology optimization without
losing accuracy?




Machine learning in topology optimization

Training Stage

Step 1: generating dataset (with
~100,000 training data)
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Limitations of the existing frameworks

Major Limitations:

Designs with structural defects

Unable to perform large-scale designs

Collecting training data is expensive

Generalizable to any design domain?

Predicted structure Optimized structure

Yu, Hur, Jung and Jang, 2018



Training from history data of topology optimization

Design history

Our idea:

-t
VRIS RSN N IS IR T NI

Design problem

To train a DL model
based on the history
> data to learn the
mapping between a
given design and its
sensitivity.

Final design

Key challenges: _ .
A Neural Network with 4 hidden layers and 1000 neuron per layer

1. Limited training samples # of DVs 36K 250K 15M
2. Unable to scale up # of params 175M 867M 3B
GPU memory 3.9GB - -

3. Limited model capacity 7



We propose a two-scale topology optimization setup

e State variable u®

7/_ * NO optimization

Coarse-scale mesh

ISR RSN RR I NI IR

* Design variable p
Sensitivity
Optimization

Fine-scale mesh

Fine-scale elements

Block size:
NB == 5

Coarse-scale element

® Node

* Gauss point

The interpolated stiffness at jth integration
point is defined as:
Q.
c  Zieo; Wi &1
Jj
Zier 7

The local stiffness of a coarse-scale element is
then computed as:

k¢ = 3, EFW;(B;) DB



A tailored two-scale topology optimization setup

Training instance I
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A Neural Network with 4 hidden layers and 1000 neuron per layer

# of DVs 86K 250K 1.5M
# of params 175M | 867M 3B
GPU memory | 3.9GB - -
Two-scale # of params 3.3M 3.3M 3.3M
(Ng = 5) GPU memory | 0.7GB | 0.7GB | 0.9GB

Single-scale




Overall algorithmic flowchart
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Main Features:

. No separate training step

*  Online update to constantly
provide new supervision

. Controllable GPU memory

. Highly scalable

10



Online Updating Scheme

Key Parameters:

N;: Initial training step W;: Initial training window size
Ng: Online update frequency Wy: Online update window size

An example of the online updating strategy with N; = 10, N, = 10, W; = 10, W, = 5:

Optimization steps as training/updating data

Initial 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
training

= lilling 17 18 19 20

updating

2nd Online

updating 18 19 20 Initial training data
3rd Online

updating 19 20
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Architecture of the deep neural network
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A cantilever design example

Design parameters:

*  Maximum optimization step: 200
* Volume Fraction: 12%

e 7=1

* Filter radius R = 0.08

Ng =5 Meshl | Mesh2 | Mesh3
# of DVs 86K 250K 1.5M
Fine-scale K size 276K 788K 4.5M
Coarse-scale Ksize 3K 8K 40K

The state equations are solved using PCG
with Jacobi preconditioner on a single GPU.
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Cantilever design: problem setup and final topologies

N; = 10 (Initial training step) W; = 10 (Initial training window size)
N = 25 (Online update frequency) Wy = 2 (Online update window size)

Standard

Obj=370.11 Obj=379.54 Obj=383.51
Exact solve: 200 Exact solve: 200 Exact solve: 200

Obj=368.61 Obj=379.37 Obj=383.75
Exact solve: 27 Exact solve: 27 Exact solve: 27 14



Cantilever design: convergence history and speedup
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MBB beam design: problem setup and final topologies

Npg 2 4 8
# of DVs 1.4M 1.4M 1.4M
Fine-scale K size 4.1M 4.1M 4.1M
Coarse-scale K size 533K 71K 10K

Obj=221.30
Exact solve: 200

Obj=220.28
Exact solve: 13

Obj=220.52
Exact solve: 14

Obj=221.28
Exact solve: 33

Smaller block size allows us to provide less supervisions (exact

solves) to the DL model in our proposed framework.
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MBB beam design: convergence history and speedup
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The trade-off between small and large block sizes:

* Smaller block sizes

/

% Need less supervision— less exact solves

/

** Larger coarse-scale mesh

e Larger block sizes

/

+* Need more supervision— more exact solves

X/

** Smaller coarse-scale mesh 17



Compliant mechanism design

~1M design variables
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Conclusions

* We demonstrate that the proposed machine learning-based topology optimization

framework is universal:

** No pre-collected training data is needed
*** Can be readily applied to any design problems

** Can be potentially combined with any regression machine learning models

* The proposed machine-learning-based topology optimization framework can offer

more speedup for problem of larger scale without any sacrifice in accuracy.

*  With the two-scale topology optimization setup, the proposed framework is highly

scalable and efficient.
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