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Machine learning and artificial intelligence

Go Game
(Silver et al. 2017)

Artistic Style Transfer
(Andrychowicz et al. 2016)

Instant translation
(www.sciencemag.org)

Image Segmentation
(Krähenbühl and Koltun, 2012)

Self-driving Car
(aitrends.com)
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Can deep learning accelerate
topology optimization without 

losing accuracy? 
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Machine learning in topology optimization
Prediction Stage

Trained CNN

Low-
resolution
prediction

Trained GANHigh-
resolution 
prediction

Training Stage

Step 1: generating dataset (with 
~100,000 training data)

Step 2: training the CNN for low 
resolution prediction

Step 3: training the conditional GAN for 
upscaling prediction

Y. Yu, T. Hur, J. Jung, and I. G. Jang. "Deep learning for determining a near-optimal topological design without any 

iteration”, Struct. Multidiscip. O., 2018

Mass fraction
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Limitations of the existing frameworks

Yu, Hur, Jung and Jang, 2018

Major Limitations:

• Designs with structural defects

• Unable to perform large-scale designs

• Collecting training data is expensive

• Generalizable to any design domain?
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Training from history data of topology optimization

Key challenges:

1. Limited training samples

2. Unable to scale up

3. Limited model capacity

…
…
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Design history

Our idea: 

To train a DL model 
based on the history 
data to learn the 
mapping between a 
given design and its 
sensitivity.

# of DVs 86K 250K 1.5M

# of params 175M 867M 3B

GPU memory 3.9GB - -

A Neural Network with 4 hidden layers and 1000 neuron per layer
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We propose a two-scale topology optimization setup

• Design variable 𝝆
• Sensitivity
• Optimization 

• State variable 𝐮𝐶

• NO optimization

Fine-scale elements Coarse-scale element

Block size: 
𝑁𝐵 = 5

• The interpolated stiffness at 𝑗th integration 
point is defined as:

𝐸𝑗
𝐶 =

σ𝑖∈𝒬𝑗
𝑤
𝑖

𝒬𝑗
𝐸𝑖

σ𝑖∈𝒬𝑗
𝑤
𝑖

𝒬𝑗

• The local stiffness of a coarse-scale element is 
then computed as:

𝐤𝐶 = σ𝑗 𝐸𝑗
𝐶𝑊𝑗 𝐁𝑗

𝑇
𝐃0𝐁𝑗
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A tailored two-scale topology optimization setup

# of DVs 86K 250K 1.5M

Single-scale
# of params 175M 867M 3B

GPU memory 3.9GB - -

Two-scale 
(𝑁𝐵 = 5)

# of params 3.3M 3.3M 3.3M

GPU memory 0.7GB 0.7GB 0.9GB

A Neural Network with 4 hidden layers and 1000 neuron per layer
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Overall algorithmic flowchart

Standard TopOpt
Module

Deep learning 
Module

Input

Apply DL?

Sensitivity Analysis

Apply DL 
model

Design update

Convergence?

Output

No

Yes

Yes

No

Train/update 
DL model

𝐮 = 𝐊 −1𝐅 𝐮𝐶 = 𝐊𝐶 −1
𝐅𝐶

𝐮𝐶 = 𝐊𝐶 −1
𝐅𝐶 Main Features:

• No separate training step

• Online update to constantly 
provide new supervision

• Controllable GPU memory

• Highly scalable  
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Online Updating Scheme

Initial 
training

1st Online 
updating

Optimization steps as training/updating data

11 12 13 14 15 16 17 18 19 20

17 18 19 20 30

18 19 20 30 40

19 20 30 40 50

2nd Online 
updating

3rd Online 
updating

An example of the online updating strategy with 𝑁𝐼 = 10,𝑁𝐹 = 10,𝑊𝐼 = 10,𝑊𝑈 = 5:

…

Initial training data

New training data

Key Parameters:

𝑁𝐼: Initial training step                       𝑊𝐼: Initial training window size

𝑁𝐹: Online update frequency 𝑊𝑈: Online update window size
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Architecture of the deep neural network

Coarse-scale element

…………

Input Layer Output LayerHidden Layers

𝑧1

𝑧2

𝑠1

+1 +1 +1+1
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…

…

Design 
variables

State 
variables

Fine-scale elements

……

…

𝑠2

Sensitivity

ഥ𝑮
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A cantilever design example

𝑁𝐵 = 5 Mesh 1 Mesh 2 Mesh 3

# of DVs 86K 250K 1.5M

Fine-scale 𝐊 size 276K 788K 4.5M

Coarse-scale 𝐊 size 3K 8K 40K

Design parameters:

• Maximum optimization step: 200

• Volume Fraction: 12%

• 𝜏 = 1

• Filter radius 𝑅 = 0.08

The state equations are solved using PCG 
with Jacobi preconditioner on a single GPU.
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Cantilever design: problem setup and final topologies
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Obj=370.11
Exact solve: 200

Obj=379.54
Exact solve: 200

Obj=383.51
Exact solve: 200

Obj=368.61
Exact solve: 27

Obj=379.37
Exact solve: 27

Obj=383.75
Exact solve: 27

𝑁𝐼 = 10 (Initial training step)                       𝑊𝐼 = 10 (Initial training window size)

𝑁𝐹 = 25 (Online update frequency)           𝑊𝑈 = 2 (Online update window size)
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Mesh 1 Mesh 2

Mesh 3

The larger the problem, 
the more speedup we 
get from our method.

Cantilever design: convergence history and speedup
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MBB beam design: problem setup and final topologies

𝑁𝐵 2 4 8

# of DVs 1.4M 1.4M 1.4M

Fine-scale 𝐊 size 4.1M 4.1M 4.1M

Coarse-scale 𝐊 size 533K 71K 10K

Obj=221.30
Exact solve: 200

Obj=220.28
Exact solve: 13

Obj=220.52
Exact solve: 14

Obj=221.28
Exact solve: 33

Smaller block size allows us to provide less supervisions (exact 
solves) to the DL model in our proposed framework.

Standard 𝑁𝐵 = 2

𝑁𝐵 = 4 𝑁𝐵 = 8
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MBB beam design: convergence history and speedup

The trade-off between small and large block sizes:

• Smaller block sizes

 Need less supervision→ less exact solves

 Larger coarse-scale mesh

• Larger block sizes

 Need more supervision→ more exact solves

 Smaller coarse-scale mesh 
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Compliant mechanism design
~1M design variables

~3 X speedup
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𝑈out = −1.185, 100 exact steps

𝑈out

𝐹

D
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TO

𝑈out = −1.189, 12 exact steps

𝑈out

𝐹
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Conclusions

• We demonstrate that the proposed machine learning-based topology optimization 

framework is universal:

 No pre-collected training data is needed

 Can be readily applied to any design problems

 Can be potentially combined with any regression machine learning models

• The proposed machine-learning-based topology optimization framework can offer 

more speedup for problem of larger scale without any sacrifice in accuracy.

• With the two-scale topology optimization setup, the proposed framework is highly 

scalable and efficient. 


