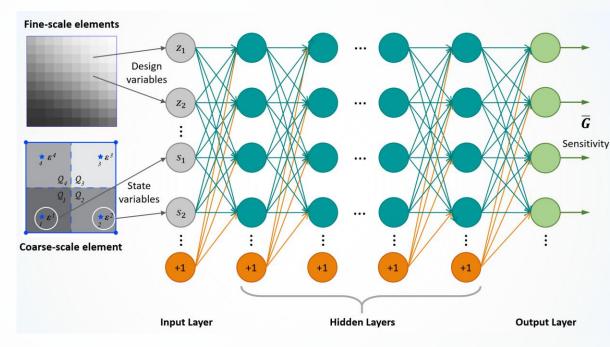
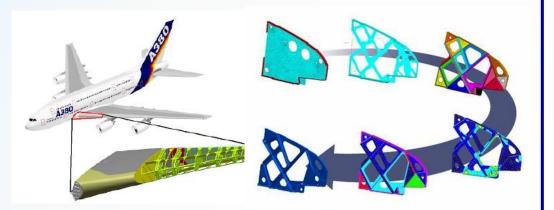
Universal Machine Learning for Topology Optimization

Heng Chi^a Yuyu Zhang^a Tsz Ling Elaine Tang^b Lucia Mirabella^b Livio Dalloro^b, Glaucio H. Paulino^a

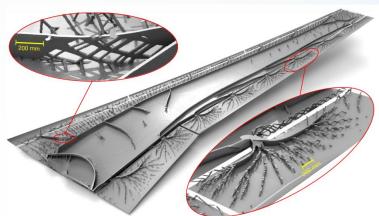


a: Georgia Institute of Technology*b*: Siemens Corporation, Corporate Technology

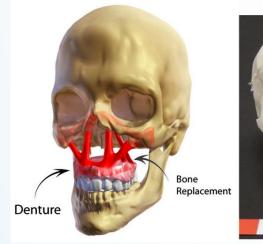
Topology Optimization in Engineering



de Klerk and Sotirov, 2009



Aage, Andreassen, Lazarov, Sigmund, Nature, 2017



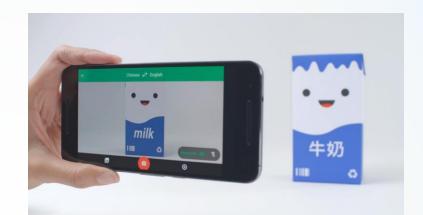
Sutradhar, Paulino, Miller, Nguyen, PNAS, 2010

Zegard and Paulino, JSMO, 2016

ALLE

Machine learning and artificial intelligence

Go Game (Silver et al. 2017)

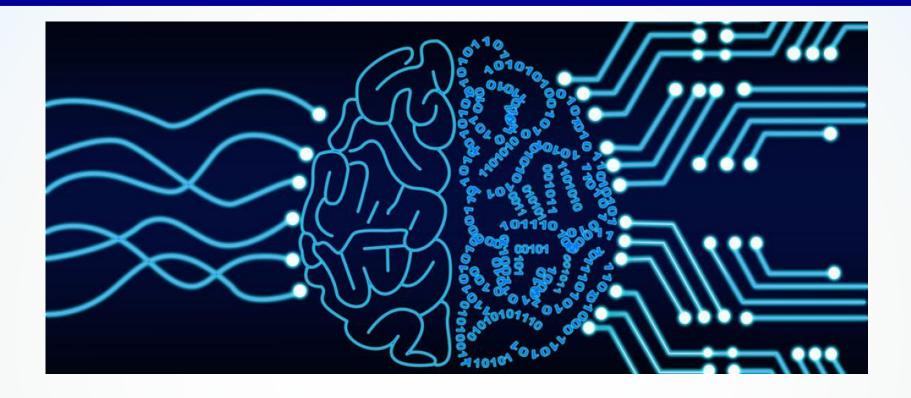


Instant translation (www.sciencemag.org)

Image Segmentation (Krähenbühl and Koltun, 2012)

Self-driving Car (aitrends.com)

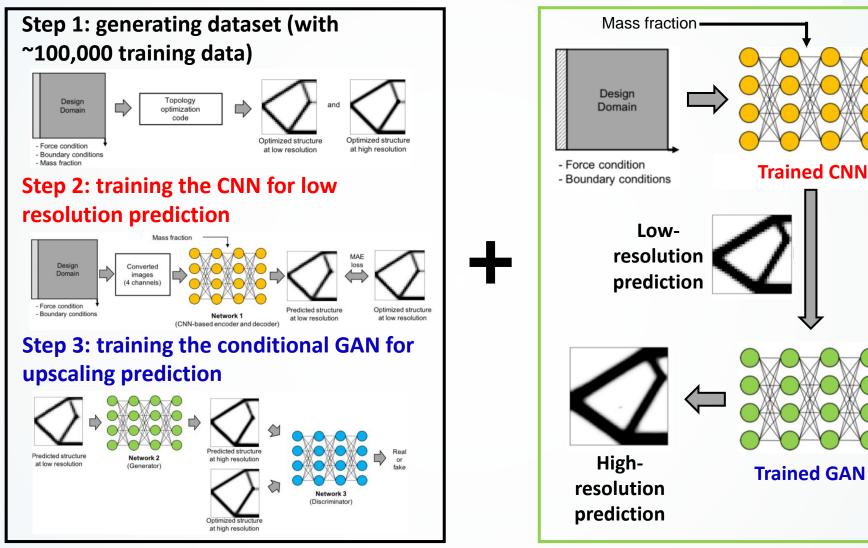
Artistic Style Transfer (Andrychowicz et al. 2016)



Can deep learning accelerate topology optimization without losing accuracy?

Machine learning in topology optimization

Training Stage



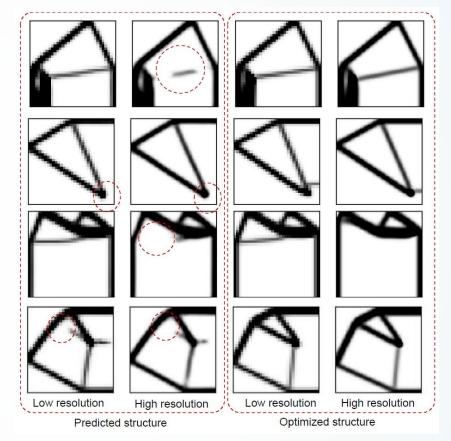
Y. Yu, T. Hur, J. Jung, and I. G. Jang. "Deep learning for determining a near-optimal topological design without any iteration", *Struct. Multidiscip. O.*, 2018

Prediction Stage

Limitations of the existing frameworks

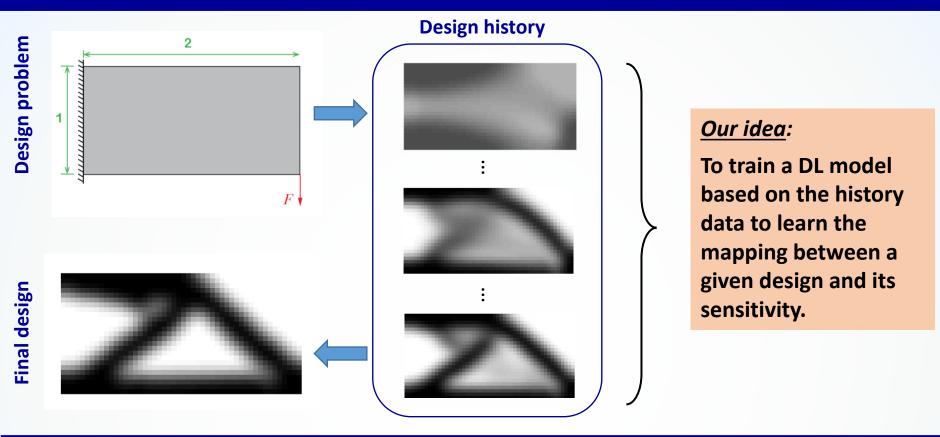
Major Limitations:

- Designs with structural defects
- Unable to perform large-scale designs
- Collecting training data is expensive
- Generalizable to any design domain?



Yu, Hur, Jung and Jang, 2018

Training from history data of topology optimization



Key challenges:

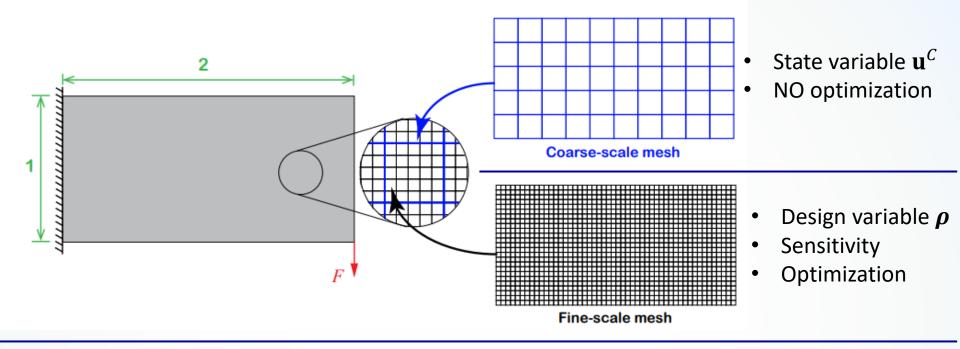
- 1. Limited training samples
- 2. Unable to scale up
- 3. Limited model capacity

A Neural Network with 4 hidden layers and 1000 neuron per layer

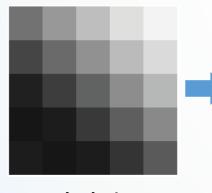
# of DVs	86K	250K	1.5M
# of params	175M	867M	3B
GPU memory	3.9GB	_	-

7

We propose a two-scale topology optimization setup

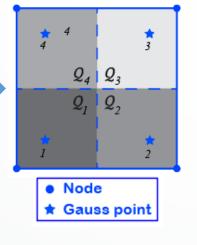


Fine-scale elements



Block size: $N_B = 5$

Coarse-scale element



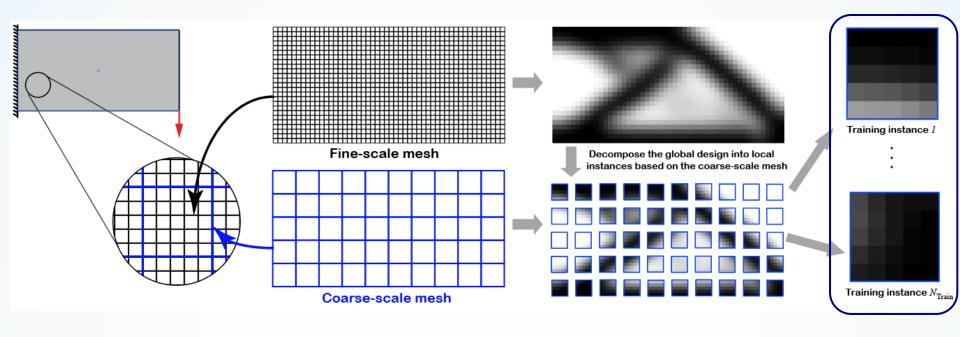
• The interpolated stiffness at *j*th integration point is defined as:

$$E_j^C = \frac{\sum_{i \in \mathcal{Q}_j} w_i^{\mathcal{Q}_j} E_i}{\sum_{i \in \mathcal{Q}_j} w_i^{\mathcal{Q}_j}}$$

 The local stiffness of a coarse-scale element is then computed as:

$$\mathbf{k}^{C} = \sum_{j} E_{j}^{C} W_{j} (\mathbf{B}_{j})^{T} \mathbf{D}_{0} \mathbf{B}_{j}$$

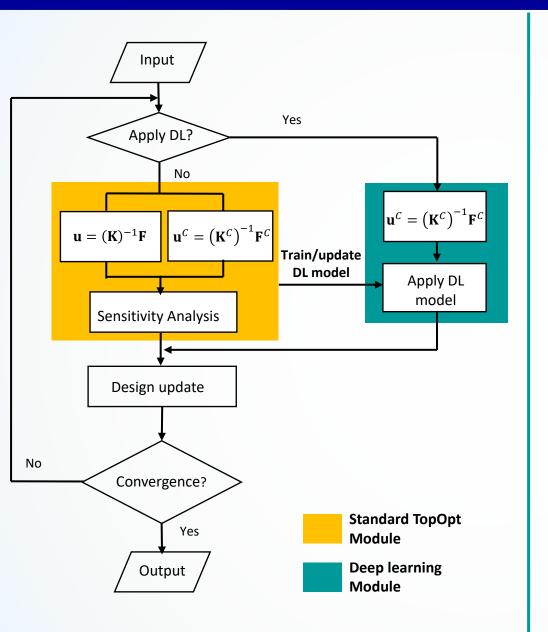
A tailored two-scale topology optimization setup



A Neural Network with 4 hidden layers and 1000 neuron per layer

	# of DVs	86K	250K	1.5M
Single coole	# of params	175M	867M	3B
Single-scale	GPU memory	3.9GB	-	-
Two-scale	# of params	3.3M	3.3M	3.3M
$(N_B = 5)$	GPU memory	0.7GB	0.7GB	0.9GB

Overall algorithmic flowchart



Main Features:

- No separate training step
- Online update to constantly provide new supervision
- Controllable GPU memory
- Highly scalable

Online Updating Scheme

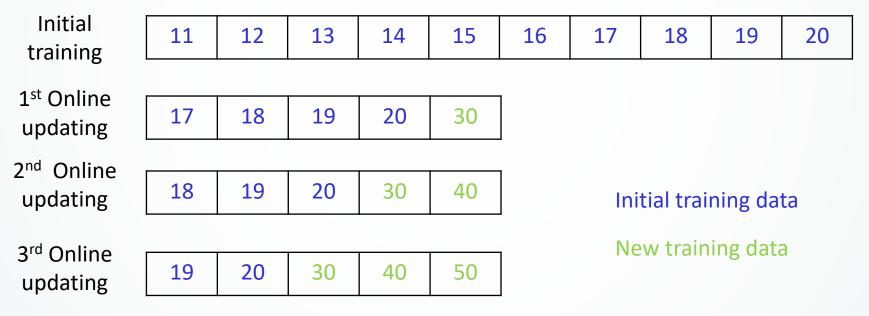
Key Parameters:

 N_I : Initial training step N_F : Online update frequency

 W_I : Initial training window size W_U : Online update window size

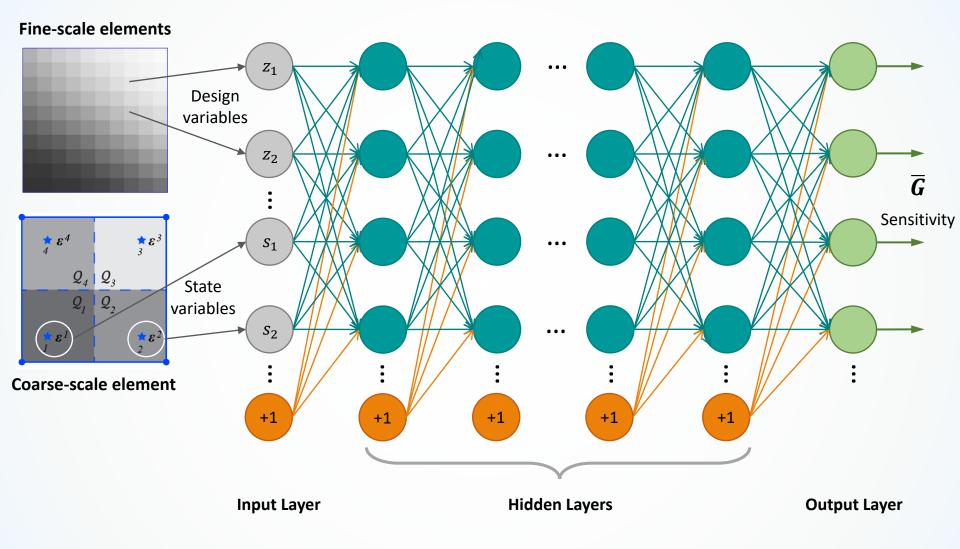
An example of the online updating strategy with $N_I = 10$, $N_F = 10$, $W_I = 10$, $W_U = 5$:

Optimization steps as training/updating data

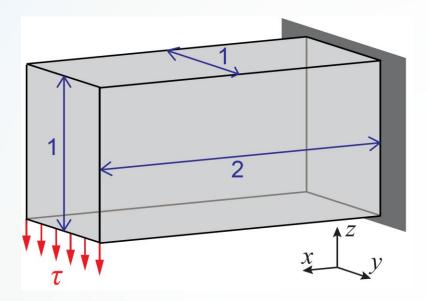


:

Architecture of the deep neural network



A cantilever design example



Design parameters:

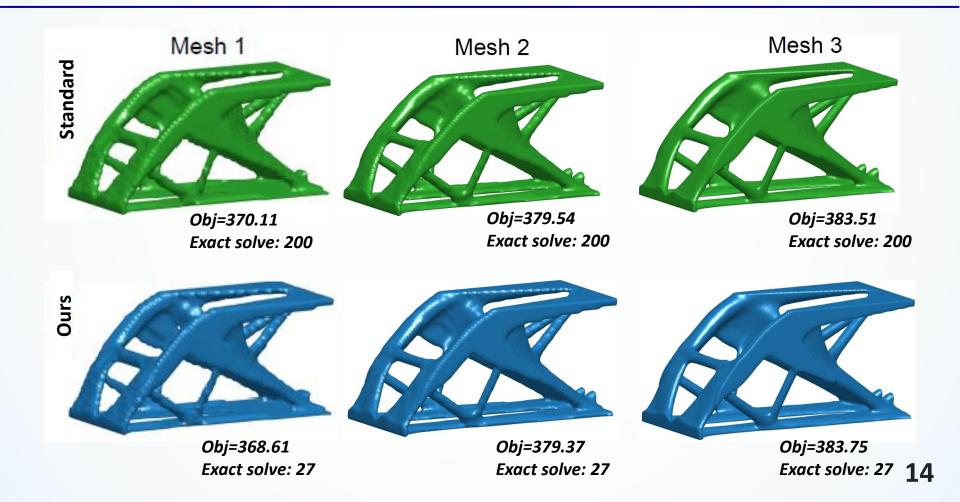
- Maximum optimization step: 200
- Volume Fraction: 12%
- $\tau = 1$
- Filter radius R = 0.08

$N_B = 5$	Mesh 1	Mesh 2	Mesh 3
# of DVs	86K	250K	1.5M
Fine-scale K size	276K	788K	4.5M
Coarse-scale K size	3K	8K	40K

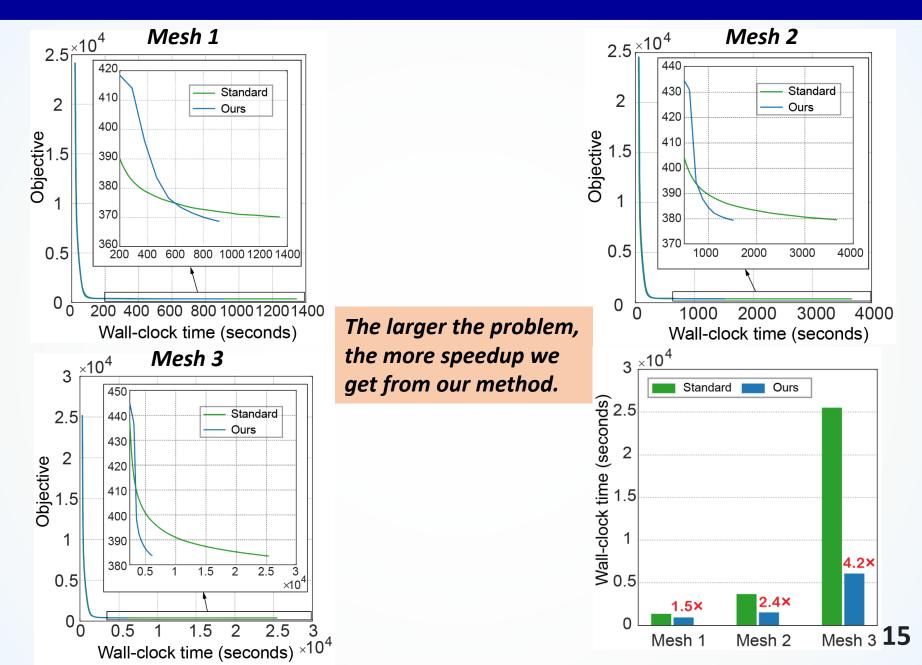
The state equations are solved using PCG with Jacobi preconditioner on a *single* GPU.

Cantilever design: problem setup and final topologies

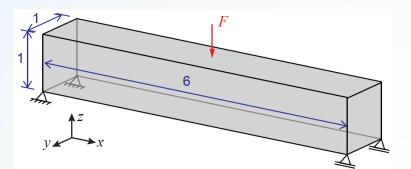
 $N_I = 10$ (Initial training step) $N_F = 25$ (Online update frequency) $W_I = 10$ (Initial training window size) $W_U = 2$ (Online update window size)



Cantilever design: convergence history and speedup



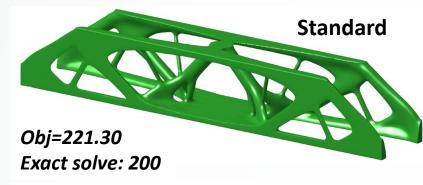
MBB beam design: problem setup and final topologies

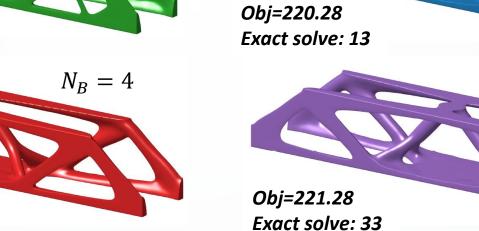


Obj=220.52

Exact solve: 14

N_B	2	4	8
# of DVs	1.4M	1.4M	1.4M
Fine-scale K size	4.1M	4.1M	4.1M
Coarse-scale K size	533K	71K	10K



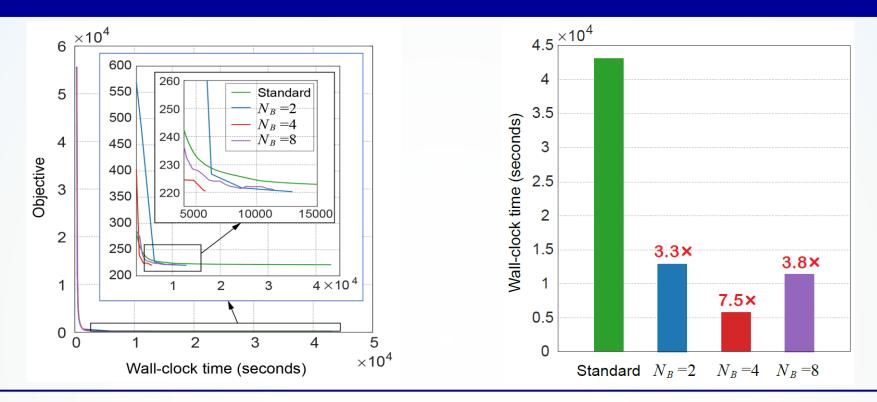


Smaller block size allows us to provide less supervisions (exact solves) to the DL model in our proposed framework.

 $N_{R} = 2$

 $N_{B} = 8$

MBB beam design: convergence history and speedup



The trade-off between small and large block sizes:

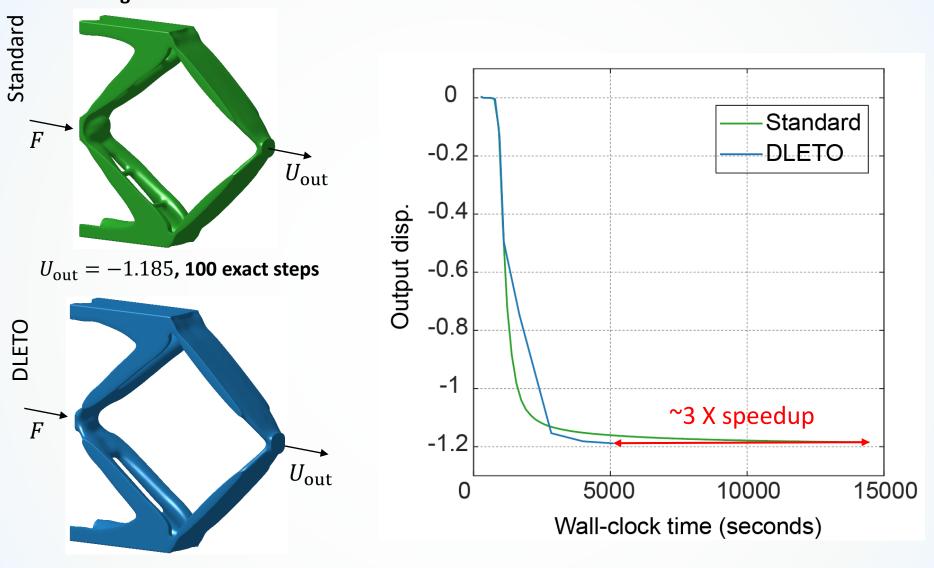
- Smaller block sizes
 - ✤ Need less supervision→ less exact solves
 - Larger coarse-scale mesh

Larger block sizes

- ✤ Need more supervision→ more exact solves
- Smaller coarse-scale mesh

Compliant mechanism design

~1M design variables



Conclusions

- We demonstrate that the proposed machine learning-based topology optimization framework is universal:
 - * No pre-collected training data is needed
 - * Can be readily applied to any design problems
 - * Can be potentially combined with any regression machine learning models
- The proposed machine-learning-based topology optimization framework can offer more speedup for problem of larger scale without any sacrifice in accuracy.
- With the two-scale topology optimization setup, the proposed framework is highly scalable and efficient.