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We aim to solve topology 
optimization problems with local 

stress constraints as a non-
aggregated constrained 

optimization problem

Aggregated vs. non-aggregated optimization problems
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Non-aggregated constrained optimization

Aggregated constrained optimization

Ermoliev, Y. M., Kryazhimskii, A. V., & Ruszczyński, A. (1997). Constraint aggregation principle in convex optimization. Mathematical
Programming, 76(3), 353-372.

Surrogate inequality

𝑠𝑠𝑗𝑗
(𝑘𝑘) ≥ 0 are aggregation coefficients
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Objective function

Stress constraints

Box constraints

Equilibrium

Typical stress-constrained TopOpt

Regularization filter
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Clustering techniques are typically used to solve 
stress-constrained topology optimization problems

The problem is reformulated by taking a stress measure in each of various clusters:

Different norms used to estimate the maximum stress in cluster 𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚

Local constraint

Clustered constraint

Q: How should the 
clusters be defined?

𝑝𝑝 − norm

𝐾𝐾𝐾𝐾 − function



5

Topology optimization results highly depend on 
the type of clustering technique
 Aggregation function: 𝑝𝑝 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚

 Parameter 𝑝𝑝 = 12
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 Number of clusters, 𝑚𝑚 = 5

Stress level Hierarchical clustering
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Topology optimization results highly depend on 
the number of clusters
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 Aggregation function: 𝑝𝑝 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚

 Parameter 𝑝𝑝 = 12

 Number of clusters, 𝑚𝑚 = variable
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Piecewise vanishing constraint

Objective function

Stress constraints

Box constraints

Equilibrium

Volume fraction

Our formulation aims to find the lightest structure 
satisfying von Mises stress limits locally

Regularization filter
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Relaxation is used to reach inside singular regions, 
but we solve the problem using unrelaxed constraints

Unrelaxed Relaxed

G.D. Cheng and X. Guo (1997)  ε-relaxed approach in Structural optimization. Structural Optimization 13(4), 258-266
Kirsch, U. (1990). On singular topologies in optimum structural design. Structural Optimization, 2(3),133-142
Y. K. Park. (1995). Extensions of optimal layout design using the homogenization method. Ph.D. thesis, University of Michigan, Ann Arbor. 

We solve the optimization problem 
using unrelaxed constraints

Feasible design space
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Our approach:
A modified Augmented Lagrangian method
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We modify the traditional Augmented Lagrangian 
function using two factors

Weight factor

Scale factor

Remarks: 
• Scale factor, 𝜂𝜂 = 1

𝑁𝑁𝑐𝑐
, normalizes the penalization factor of the AL function, which 

allows us to solve problems with a large number of constraints.
• Weight factors, 𝛾𝛾𝑒𝑒, lead to better optimization results.

Modified AL function

Traditional AL function
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Weight factors, 𝜸𝜸𝒆𝒆, control the relevance of the 
objective function term w.r.t. the penalty term

Increase 𝛾𝛾𝑒𝑒 Decrease 𝛾𝛾𝑒𝑒

Heuristic evolution of weight factors, 𝛾𝛾𝑒𝑒
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16,834 
Constraints

160,000 
Constraints

500,000 
Constraints

Geometry and loading

F. V. da Senhora, O. Giraldo-Londoño, and G.H. Paulino (2019). Topology optimization with local stress constraints: An aggregation-free approach. (under review)

2D L-bracket results
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265,000 Constraints

1,728,000 Constraints

Optimized topology Normalized von Mises stress

F. V. da Senhora, O. Giraldo-Londoño, and G.H. Paulino (2019). Topology optimization with local stress constraints: An aggregation-free approach. (under review)

Geometry and loading

3D L-bracket results
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3D portal frame results

1,200,000 Constraints



 We have developed an AL-based framework to solve 
topology optimization problems with local stress 
constraints

 The method can handle a large number of stress 
constraints while solving the original optimization 
problem.

 AL-based framework is a rational alternative to widely 
used aggregation approaches.
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Concluding remarks



WCSMO 2021:  PolyStress
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PolyTech Family of MATLAB codes: SMO Educational papers

PolyMesher PolyTop

PolyMatPolyFluid
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Raymond Allen 
Jones Chair

Thank you!

Topology optimization with local stress constraints: 
An aggregation-free approach
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