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Abstract

DYNAMIC STRESS INTENSITY FACTORS

FOR HOMOGENEOUS AND NONHOMOGENEOUS MATERIALS

USING THE INTERACTION INTEGRAL METHOD

Seong Hyeok Song

Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign

Glaucio H. Paulino, Advisor

Dynamic stress intensity factors (DSIFs) are important fracture parameters in under-

standing and predicting dynamic behavior of a cracked body. To evaluate DSIFs for both

homogeneous and nonhomogeneous materials, the interaction integral (conservation integral)

originally proposed to evaluate SIFs for a static homogeneous medium is extended to incor-

porate dynamic effects and material nonhomogeneity, and is implemented in conjunction

with the finite element method. In this study, a research code is developed and verified us-

ing benchmark problems. Then, various homogeneous and nonhomogeneous cracked bodies

under dynamic loading are employed to investigate dynamic fracture behavior such as the

variation of DSIFs for different material profiles, the relation between initiation time and

the domain size (for integral evaluation), and the contribution of each distinct term in the

interaction integral.
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Chapter 1

Introduction

Stress intensity factors (SIFs) are important fracture parameters in understanding dynamic

fracture behavior for both homogeneous and nonhomogeneous materials. For evaluation

of SIFs, various methods have been proposed, such as displacement correlation technique

(DCT) [3, 5, 39], standard and modified J integral [19, 21, 32, 50, 59]. The interaction

integral is a two-state integral, which was originally proposed to determine SIFs for ho-

mogeneous materials under quasi-static conditions by Yau et al. [60]. In this work, the

interaction integral is extended to include material gradient and dynamic effects to investi-

gate fracture behavior. In this Chapter, comprehensive literature reviews on the evaluation

of dynamic stress intensity factors (DSIFs) for homogeneous and nonhomogeneous materials

are addressed. Then, dynamic stress fields are derived to explain dynamic behavior of a

cracked body. Finally, dynamic auxiliary fields for nonhomogeneous materials are discussed

in conjunction with the interaction integral.

1.1 Literature Review on Dynamic Stress Intensity

Factors

DSIFs are relevant to determine the stress state of a cracked body. Thus, an accurate

evaluation of DSIFs is crucial in fracture mechanics as they can be used to investigate crack

initiation and propagation. Several methods have been developed and applied by many

researchers to evaluate DSIFs for various problems, as discussed below.

For homogeneous materials, Chen [9] examined a centrally cracked rectangular finite

strip subjected to step loading using a Lagrangian finite difference method (FDM). DSIFs

were obtained from the relation between DSIFs and stress fields in the vicinity of a crack

tip. This problem has been considered as a benchmark problem and explored by many
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researchers. Aoki et al. [3] utilized the relationship between displacements and DSIFs to

obtain mode I or mode III DSIFs. Kishimoto et al. [32] proposed a modified path-independent

J-integral, which involves the inertial effects to determine DSIFs in conjunction with the

finite element method (FEM), and employed a decomposition procedure for mixed-mode

problems. Brickstad [5] used an explicit time scheme in a special FEM program to evaluate

DSIFs. By means of the relationship between SIFs and crack opening displacement, DSIFs

were determined without singular elements. Murti and Valliappan [39] examined various

problems, such as Chen’s problem [9], using quarter-point elements (QPEs) and the FEM.

DSIFs were evaluated from the relation between the first two coefficients of Williams [58]

solution and the finite element displacement in the vicinity of the crack. The effect of

QPE size was assessed qualitatively in their works. Lee and Freund [35] solved mixed mode

problems of a semi-infinite plate containing an edge crack under an impact loading and

determined DSIFs through linear superposition of several stress wave propagation solutions.

Lin and Ballmann [36] revisited Chen’s problem [9] using the Lagrangian FDM. They adopted

the same technique by Chen [9] to evaluate DSIFs. Their numerical results are almost

identical with those obtained by Chen except for a few time periods when wave fluctuations

occurs. They contended that Chen [9] used too few cells to capture actual peaks of DSIFs.

Dominguez and Gallego [16] computed DSIFs using time domain boundary element method

with singular quarter-point boundary elements. Fedelinski et al. [21] adopted the ÝJ-integral

to obtain DSIFs by means of the dual boundary element method. In the ÝJ-integral approach,

the mode decomposition procedure is employed for mixed mode problems. Belytschko et

al. [4] determined static and dynamic SIFs using the Element Free Galerkin (EFG) method,

which is a meshless method based on moving least square interpolants. The DSIFs were

calculated by conservation integrals, which directly evaluate the individual SIFs for the

mixed mode problem in terms of known auxiliary solutions. Sladek et al. [50, 51] used the
ÝJ-integral to determine DSIFs in conjunction with the boundary element method (BEM).

They proposed the interaction integral for the computation of T-stress (non-singular stress),

and the ÝJ-integral for the evaluation of DSIFs. Krysl and Belytschko [34] investigated

three-dimensional (3D) stationary and dynamically propagating crack problems. DSIFs

were obtained from the interaction integral in conjunction with the EFG method. Zhang [61]

explored transient dynamic problems using hypersingular time-domain traction BEM. DSIFs

were obtained from relating the crack tip opening displacements and SIFs. Tabiei andWu [52]

investigated fracture behavior including DSIFs and energy release rate for a cracked body

subjected to dynamic loadings using DYNA3D [57], which is a non-linear explicit finite

element code. An element deletion-and-replacement remeshing scheme was employed using

the FEM to simulate crack propagation. Enderlein et al. [19] investigated fracture behavior
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for two-dimensional (2D) and 3D cracked bodies under impact loading using FEM. They

adopted the J-integral, the modified crack closure integral and the displacement correlation

technique to evaluate pure mode I DSIFs.

For bimaterials, Tan and Meguid [53] examined cracked body where cracks are perpen-

dicular to bimaterial interfaces. They utilized the relationship between stress and SIFs near

the crack tip to evaluate DSIFs. Chang and Wu [8] proposed a pair of contour integrals to

obtain DSIFs for a crack normal to a bimaterial interface.

For nonhomogeneous materials, Rousseau and Tippur [48] obtained DSIFs for FGMs

both numerically and experimentally. The DSIFs prior to crack initiation were determined

utilizing asymptotic fields of Williams’ solution [58], which is equivalent to the stationary

fields. After initiation, the crack tip fields for steadily growing cracks in FGMs obtained

by Parameswaran and Shukla [43] were used to obtain DSIFs. Material gradients were

employed in the commercial software ABAQUS [1] by applying temperature, which is a

function of material properties, and by letting the coefficient of thermal expansion be zero.

As the distance is close to the crack tip, the DSIFs were underestimated because no singular

elements were used. Therefore, regression technique was employed to obtain DSIFs at the

crack tip based on the DCT. Wu et al. [59] extended the J-integral to incorporate material

gradients and dynamic effects. They evaluated J for a single edge cracked FGM panel under

step loading in conjunction with the EFG method.

Unlike the works mentioned above, Gurtin [25] proposed a path independent integral in

the time domain for stationary and moving crack, utilizing convolution as basic tools. He

assumed that the body is homogeneous and body force is zero. This integral is well defined

and path-independent for a moving crack at a given time. Notice that if we transform the

integral from time domain into Laplace domain, the integral by Gurtin [25] is equivalent to

the integral by Nilsson [42].

1.2 Dynamic Stress Fields

Delale [14] stated that “in nonhomogeneous materials with continuous and continuously

differentiable elastic constants the nature of the stress singularity at a crack tip would be

identical to that of a homogeneous solidÔ. Eischen [18] investigated static crack tip fields

for nonhomogeneous materials by extending Williams’ eigenfunction expansion technique.

In his work, he concluded that if the material properties (Young’s modulus E and Poisson’s

ratio ν) are continuous, bounded and generally differentiable functions of space satisfying

the conditions E > 0 and −1 < ν < 1/2 everywhere in the domain, then the asymptotic

3



singular stress (O(r−1/2)) and the associated displacement (O(r1/2)) fields around the crack

tip in nonhomogeneous materials are identical to those in homogeneous materials. However,

the higher order terms for nonhomogeneous materials do differ from those for homogeneous

materials.

Rice [47] obtained dynamic stress fields of homogeneous materials for constant crack tip

speed. Then, Freund [22], Freund and Clifton [23] and Nilsson [42] investigated dynamic

stress fields of homogeneous materials for non-uniformly moving crack speed. They observed

that, under dynamic loading, the stress fields retain 1/
√
r singularity, which is the same as

the static case. However, if the crack propagates, the solution also depends on the crack

speed .

Dynamic problems of nonhomogeneous materials are naturally more involved than those

of homogeneous materials. Chiu and Erdogan [11] examined one-dimensional wave propaga-

tion in a functionally graded elastic medium using Laplace transform technique. Parameswaran

and Shukla [43] investigated stress fields around a crack tip which propagates with constant

speed in nonhomogeneous materials. They also concluded that the asymptotic singular

dynamic stress fields in nonhomogeneous materials are identical to those in homogeneous

materials.

In summary, the asymptotic singular stress fields of nonhomogeneous materials under

dynamic loading show similar behavior to those of homogeneous materials under quasi-

static condition as discussed above [18, 22, 23, 42, 43]. In this section, wave equations are

derived and discussed. Then, dynamic stress fields for mode I under steady state condition

are provided. The mode I stress fields are obtained by applying Helmholtz decomposition

procedures and boundary conditions such as traction free around the crack faces.

1.2.1 Linear Elastodynamics

For dynamic problems, the governing equilibrium equation is given by [2, 22]

σij,j + fi = ρ(x)üi, (1.1)

where ρ(x) is mass density which varies spatially, fi denotes the body force components,

σij refers to the stress component, and each super-imposed dot indicates a derivative with

respect to time. The compatibility condition and constitutive relation are expressed by

εij =
1

2
(ui,j + uj,i), (1.2)

σij = λ(x)δijεkk + 2µ(x)εij, (1.3)
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respectively, where λ(x) and µ(x) are the Lame constants which are a function of coordinates,

and the strain displacement relation, Eq. (1.2), is valid for infinitesimal strains.

With no body force, a combination of Eqs. (1.1), (1.2) and (1.3) leads to the following

equation:

µ(x)ui,jj + (λ(x) + µ(x))uj,ji + λ(x),iuk,k + µ(x),j(ui,j + uj,i) = ρ(x)üi. (1.4)

If homogeneous materials are adopted, Eq. (1.4) is reduced to the Navier’s equation:

µ∇2u+ (λ+ µ)∇(∇ · u) = ρü or µui,jj + (λ+ µ)uj,ji = ρüi. (1.5)

Using the vector identity ∇× (∇× u) = ∇(∇ · u)−∇2u, one rewrites Eq. (1.5) as follows

c2d∇(∇ · u)− c2s∇× (∇× u) = ü, (1.6)

where cd and cs are dilatational and shear wave speeds, respectively, given by

cd =

√

λ+ 2µ

ρ
and cs =

√

µ

ρ
. (1.7)

Multiplying Eq. (1.6) by the divergence operator (∇·), one obtains

c2d∇2(∇ · u) = (∇ · u),tt or c2d(ui,i),jj = (ui,i),tt (1.8)

Moreover, multiplying Eq. (1.6) by the curl operator (∇×), one obtains

c2s∇2(∇× u) = (∇× u),tt or c2s(εijkuk,j),nn = (εijkuk,j),tt . (1.9)

The dilatation ∇ · u and the rotation vector (∇ × u)/2 satisfy the wave equation with

dilatational wave speed (cd) and shear wave speed (cs), respectively.

1.2.2 Dynamic Stress Fields for Homogeneous Materials

Parameswaran and Shukla [43] examined crack tip dynamic stress fields in nonhomogeneous

materials under steady state condition and concluded that the dynamic stress fields for

nonhomogeneous materials retain singularity, which is the same for homogeneous materials.

In their work, two material variations are adopted: (1) exponential variation of shear modulus

and mass density; (2) linear variation of the shear modulus with constant mass density.

5



However, these material variations do not represent real material profiles. Moreover, the

steady state condition that they assumed is questionable because material nonhomogeneity

induces varying crack tip speed. Therefore, dynamic stress fields for homogeneous materials

are derived in this section.

Wave equations are solved by means of Helmholtz decomposition of displacements [2, 22]:

ux =
∂φ

∂X
+

∂ψ

∂Y
, uy =

∂φ

∂Y
− ∂ψ

∂X
, (1.10)

where (X, Y ) represents the fixed coordinate before the crack propagates, and φ and ψ are

the dilatational and shear wave potentials, respectively. As illustrated in Figure 1.1, V is

crack tip speed, t is time, (x, y) is the coordinate system based on the current crack tip, and

(X, Y ) is the coordinate system based on the original crack tip.

V

Y

X x

Vt

y

Figure 1.1: Two coordinate systems under steady state condition. Dashed line indicates the
original crack faces, while solid line represents the current crack faces. At time t=0, the
crack starts to grow from the origin (X, Y) with a constant velocity V.

Stress can be expressed in terms of displacement potential using Eqs. (1.2), (1.3) and

(1.10) for homogeneous materials

σxx = (2µ+ λ)

(

∂2φ

∂X2
+

∂2φ

∂Y 2

)

− 2µ
∂2φ

∂Y 2
+ 2µ

∂2ψ

∂X∂Y
,

σyy = (2µ+ λ)

(

∂2φ

∂X2
+

∂2φ

∂Y 2

)

− 2µ
∂2φ

∂X2
− 2µ

∂2ψ

∂X∂Y
,

σxy = 2µ
∂2φ

∂X∂Y
+ µ

(

∂2ψ

∂2Y
− ∂2ψ

∂X2

)

. (1.11)
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Substituting Eq. (1.10) into Eq. (1.6), one obtains

(λ+ 2µ)
∂

∂X

(

∂φ2

∂X2
+

∂φ2

∂Y 2

)

+ µ
∂

∂Y

(

∂ψ2

∂X2
+

∂ψ2

∂Y 2

)

= ρ

(

∂

∂X

∂2φ

∂t2
+

∂

∂Y

∂2ψ

∂t2

)

,

(λ+ 2µ)
∂

∂Y

(

∂φ2

∂X2
+

∂φ2

∂Y 2

)

− µ
∂

∂Y

(

∂ψ2

∂X2
+

∂ψ2

∂Y 2

)

= ρ

(

∂

∂X

∂2φ

∂t2
− ∂

∂Y

∂2ψ

∂t2

)

.(1.12)

In order to satisfy Eq. (1.12), the potentials φ and ψ should be wave functions satisfying

c2d∇2φ− φ̈ = 0 and c2s∇2ψ − ψ̈ = 0. (1.13)

The double differentiation of each wave potential with respect to time yields

φ̈ = V 2∂
2φ

∂x2
− 2V

∂2φ

∂x∂t
+

∂2φ

∂t2
− ÚV

∂φ

∂x
, (1.14)

ψ̈ = V 2∂
2ψ

∂x2
− 2V

∂2ψ

∂x∂t
+

∂2ψ

∂t2
− ÚV

∂ψ

∂x
. (1.15)

The first term on the right hand side of Eqs. (1.14) and (1.15) dominates the stress field of

Eq. (1.11) in the near-tip regions.

In order to express the rate of change of each wave potential in terms of space derivative,

a new moving coordinate system is used:

x = X − V t and y = Y. (1.16)

By substituting the dominant terms of Eqs. (1.14) and (1.15) into Eq. (1.13), one obtains

the following relationships:

α2
d

∂2φ

∂x2
+

∂2ψ

∂y2
= 0 and α2

s

∂2ψ

∂x2
+

∂2φ

∂y2
= 0, (1.17)

where αd and αs are nondimensional parameters relating crack tip speed and wave speed

given by

αd = 1−
(

V

cd

)2

and αs = 1−
(

V

cs

)2

. (1.18)

In order to solve the wave equation, i.e. Eq.(1.17), Freund and Clifton [23] applied

a complex variable method. Using traction free boundary conditions at the crack faces,

σyy = τxy = 0, dynamic stress fields for the mode I crack under steady state condition are

7



obtained by

σxx =
KI(t)√
2πr

1 + α2
s

D(t)

[

(

1 + 2α2
d − α2

s

)

cos

(

θ1
2

)√

r

r1
− 4αdαs

1 + α2
s

cos

(

θ2
2

)√

r

r2

]

,

σyy =
KI(t)√
2πr

1 + α2
s

D(t)

[

−
(

1 + α2
s

)

cos

(

θ1
2

)√

r

r1
− 4αdαs

1 + α2
s

cos

(

θ2
2

)√

r

r2

]

,

σxy =
KI(t)√
2πr

2αd(1 + α2
s)

D(t)

[

sin

(

θ1
2

)√

r

r1
− sin

(

θ2
2

)√

r

r2

]

, (1.19)

where

D(t) = 4αdαs − (1 + α2
s)

2. (1.20)

Equation (1.19) is reduced to Williams’ solution under stationary condition, i.e. V = 0.

1.3 Dynamic Auxiliary Fields for Nonhomogeneous

Materials

The interaction integral utilizes two admissible fields: auxiliary and actual fields. Auxiliary

fields are based on known fields such as Williams’ solution [58], while actual fields utilize

quantities such as displacements, strains and stresses obtained by means of numerical meth-

ods, e.g. FEM.

In this section, the choice of the auxiliary fields is discussed thoroughly. Then, three

alternative formulations owing to nonhomogeneous materials are derived and presented in

conjunction with the auxiliary fields.

1.3.1 The Choice of Auxiliary Fields

An appropriate choice of auxiliary fields leads to the computation of SIFs by means of

the interaction integral or M -integral. The auxiliary fields should be suitably defined and

contain the quantities to be determined, i.e. KI and KII . Yau et al. [60] adopted Williams’

solution [58] as the auxiliary fields to evaluate SIFs for a homogeneous cracked body. Dolbow

and Gosz [15], Rao and Rahman [45], and Kim and Paulino [29] employed this same auxiliary

fields for a nonhomogeneous cracked body under quasi-static conditions. Sladek et al. [51]

defined the elastostatic field, i.e. σaux
ij,j = 0, as dynamic auxiliary field for the computation of

T-stress of a homogeneous medium. In the present work, the asymptotic fields of Williams’

solution [58] are employed as the auxiliary fields for dynamic nonhomogeneous materials,

because the dynamic asymptotic fields of nonhomogeneous materials show similar behavior to

8



those of quasi-static homogeneous materials around the crack tip locations [18, 22, 23, 42, 43].

The asymptotic auxiliary stress fields, defined according to the illustration in Fig. 1.2,

are given by [2, 17]:

σaux
xx =

Kaux
I√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
)− Kaux

II√
2πr

sin
θ

2
(2 + cos

θ

2
cos

3θ

2
) (1.21)

σaux
yy =

Kaux
I√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
) +

Kaux
II√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(1.22)

σaux
xy =

Kaux
I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

Kaux
II√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
), (1.23)

and the corresponding auxiliary displacement fields are

uaux
x =

Kaux
I

4µtip

√

r

2π
{(2κ− 1) cos

θ

2
− cos

3θ

2
}+ Kaux

II

4µtip

√

r

2π
{(2κ+ 3) sin

θ

2
+ sin

3θ

2
} (1.24)

uaux
y =

Kaux
I

4µtip

√

r

2π
{(2κ+ 1) sin

θ

2
− sin

3θ

2
} − Kaux

II

4µtip

√

r

2π
{(2κ− 3) cos

θ

2
+ cos

3θ

2
}, (1.25)

where µtip is the shear modulus at the crack tip, κ is given by

κ =

{

3− 4µ Plane Strain

(3− µ)/(1 + µ) Plane Stress
(1.26)

and Kaux
I and Kaux

II are the auxiliary mode I and mode II SIFs, respectively.

As mentioned earlier, the asymptotic fields of Williams’ solution [58] are selected as the

auxiliary fields to evaluate DSIFs in conjunction with the M -integral in this work. When

a finite domain is chosen to evaluate the M -integral, however, these auxiliary fields cannot

hold except for the crack tip location due to nonhomogeneous material properties. This

aspect is noticeable when auxiliary fields are evaluated at finite distances from the crack tip.

As a consequence, extra terms appear in the formulation to compensate for the difference in

response owing to material nonhomogeneity.

1.3.2 Three Formulations

Due to the difference between material properties at the crack tip and away from the tip,

three different additional formulations, which are non-equilibrium, incompatibility and con-

stant constitutive tensor, are derived. The additional terms and the corresponding formu-

lations for nonhomogeneous materials have been discussed by various researchers. Dolbow

and Gosz [15] proposed the incompatibility formulation and used this formulation to ob-

9



crack θ

2π

x

r

aux

=auxσij ij

r xx

yy

xy

σ
σ

σ

K
f (θ)

y

Figure 1.2: Williams’ [58] solution for SIF evaluation. Here x and y indicate the local
coordinate system.

tain SIFs for an arbitrarily oriented crack in FGMs using the extended FEM. They also

discussed non-equilibrium and constitutive tensor formulations. Rao and Rahman [45] em-

ployed the constant constitutive tensor and the incompatibility formulations to evaluate SIFs

for FGMs by means of the Element Free Galerkin (EFG). Kim and Paulino [29] proposed

the non-equilibrium formulation to determine SIFs for various cracked FGMs in conjunction

with FEM. Theoretically, this non-equilibrium formulation is equivalent to the incompati-

bility formulation and the constant constitutive tensor formulation. In this work, the non-

equilibrium term and the corresponding non-equilibrium formulation are used in conjunction

with FEM to determine SIFs for arbitrarily oriented cracks in nonhomogeneous materials

under dynamic loading.

Non-Equilibrium Formulation

The field quantities fromWilliams’ solution such as displacements, strains and stresses should

be evaluated properly in order to be valid as the auxiliary fields. But all quantities can not be

used at the same time because they are valid at the crack tip location and not valid at other

points due to nonhomogeneity. Therefore, only two quantities can be selected from Williams’

solution and the other quantity is obtained by considering material nonhomogeneity.

In this formulation, the auxiliary displacements and strains are obtained directly from

Williams’ solution and the auxiliary stresses are evaluated from the nonhomogeneous consti-

tutive model. The auxiliary displacement is given by Eqs.(1.24) and (1.25). Then auxiliary
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strain fields are obtained using the relation between strain and displacement:

εauxij =
1

2
(uaux

i,j + uaux
j,i ). (1.27)

Finally, the auxiliary stress is obtained from

σaux
ij = Cijkl(x)ε

aux
kl , (1.28)

where Cijkl(x) is a constitutive tensor which vary spatially.

Since displacement and strains are obtained from the Williams’ solutions directly, the

compatibility condition is satisfied. However, the auxiliary stress field does not satisfy the

equilibrium equation, i.e., σaux
ij,j 6= 0, because the constitutive tensor consists of material

properties, which are functions of location. This condition will lead to a non-equilibrium

term in the formulation.

Incompatibility Formulation

The auxiliary displacements and stresses are obtained fromWilliams’ solutions and the auxil-

iary strain is obtained from the the constitutive model. The auxiliary stress and displacement

fields are given by Eqs.(1.21) to (1.25), and the auxiliary strain field is obtained from

εauxij = Sijkl(x)σ
aux
kl , (1.29)

where Sijkl(x) is the compliance tensor of the nonhomogeneous material.

In this formulation, the equilibrium condition, σaux
ij,j = 0, is satisfied because stress fields

of Williams’ solution are employed. However, the auxiliary displacement and strain fields

violate the compatibility condition, εauxij 6= 1
2
(uaux

i,j + uaux
j,i ), because the displacement field is

based on constant material properties, and the strain is obtained considering material gradi-

ent effects, S(x), as expressed in Eq. (1.29). This condition will lead to an incompatibility

term in the formulation.

Constant Constitutive Tensor Formulation

In this formulation, the displacement and stress fields are selected from Williams’ solution,

and the strain field is obtained from the following relationship,

εauxij = (Sijkl)tipσ
aux
kl , (1.30)
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where (Sijkl)tip is a constant compliance tensor based on the material properties at the crack

tip. Since the compliance tensor is defined at the crack tip, the constitutive relationship is

valid at the crack tip and is not valid at other points. This condition will lead to a correction

term associated to the constitutive properties of the material.
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Chapter 2

Theoretical Formulation

Since the J-integral was presented by Rice [46], this method has been widely used in evalu-

ating SIFs for various problems and has been a basis for new methods such as the ÝJ integral

where decomposition procedures are employed to determine mixed-mode SIFs. The interac-

tion integral, which is used to evaluate DSIFs for nonhomogeneous materials, is also based

on the J-integral. Therefore, a generalized J-integral is derived and explained. Then, three

formulations of the interaction integral are presented considering non-equilibrium, incompat-

ibility and constant constitutive tensor terms, which follow the description given in Chapter

1.

2.1 Generalized J-Integral

An equilibrium equation can be expressed with zero body force as follows [2, 38, 40]:

σij,j = ρüi, (2.1)

where ρ is mass density and each dot indicates a derivative with respect to time. Taking

inner product of both sides with velocity and rearranging the result, one obtains

(σij Úui),j = ρüi Úui + σij Úui,j = ÚL+ ÚW, (2.2)

where L and W are kinetic energy and strain energy density, respectively, and are given by

W =

∫ t

0

σij Úεijdt, L =

∫ t

0

ρüi Úuidt. (2.3)

Equation (2.2), which is a strong form of energy balance, is a generalized balance law.
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Transforming from local to global form, and applying the divergence theorem, one obtains

∫

∂Ω

σijuimjdA =

∫

Ω

( ÚL+ ÚW )dV, (2.4)

where Ω is volume, ∂Ω is the surface, and mj is the outward normal vector of the surface.

Equation (2.4) is a weak form of energy balance. Applying Reynolds Transport theorem to

Eq.(2.4), one obtains

∫

∂Ω

(σij Úuimj)dA =
d

dt

∫

Ω

(L+W )dV −
∫

∂Ω

(L+W )VjmjdA, (2.5)

where Vj is the instantaneous velocity of ∂Ω.

X

Y

mj nj,

A

Γ0

Γ

Γ

+

-

nj

mj

Γ

Γ0+Γ+- Γ

Γs

s+Γ-=

Figure 2.1: Domain with the crack tip which propagates with a constant speed, V . The area
A is enclosed by Γ, the normal vector is mj = nj on Γ0,Γ

+ and Γ−, and mj = −nj on Γs.

In order to apply the above energy balance law, i.e. Eq.(2.5), to planar crack propagation

problems, let’s consider a 2D domain with a crack which is oriented along the X axis. The

contour Γ0 is fixed in space, and the inner contour Γs is fixed in size and translates with a

constant speed, V . The area A enclosed by Γ = Γo + Γ+ − Γs + Γ− is free of singularity as

illustrated in Figure 2.1. Crack faces are assumed to be traction free. Therefore, Eq. (2.5)

becomes
∫

Γ0

ti ÚuidΓ =
d

dt

∫

A

(W + L)dA−
∫

Γs

[(W + L)V δ1j + σij Úui]mjdΓ, (2.6)

where ti = σijnj and δ1j denotes the Kronecker delta. The term on the left hand side of

Eq. (2.6) is the rate of energy input into the body. The first term and second term on the
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right hand side of Eq. (2.6) are the rate of increase in internal energy and the instantaneous

rate of energy at which energy is lost due to flux of internal energy into the crack tip region,

respectively [2]. By using mj = −nj on Γs, one rewrites the instantaneous rate of energy as

F (Γ) =

∫

Γs

[(W + L)V δ1j + σij Úui]njdΓ. (2.7)

In order for Eq. (2.7) to have significance in fracture mechanics, the fundamental property

of path-independence should be satisfied. For evaluation of path-independence, let’s consider

two different contours Γ1 and Γ2 as illustrated in Figure 2.2. Application of the divergence

theorem to Eq. (2.7) leads to

F (Γ2)− F (Γ1) =

∫

A12

(σij Úui + (L+W )V δ1j),j dA, (2.8)

where A12 indicates the area between the contour Γ1 an Γ2.

Differentiating Eq. (2.8) and substituting Eq. (2.2) into the result, one obtains

F (Γ2)− F (Γ1) =

∫

A12

[( ÚL+ ÚW ) + (L+W ),1V ]dA

=

∫

A12

[( ÚW + VW,1) + ( ÚL+ V L,1)]dA. (2.9)

In order to obtain path independence, Eq. (2.9) must be zero. Therefore, the path indepen-

dence is satisfied if
∂f

∂t
+ V

∂f

∂x1
= 0, (2.10)

where f is a field variable. If the crack propagates with constant speed, which is the definition

of steady state condition, Eq. (2.10) is satisfied.

The dynamic energy release rate, which is equal to J-integral under linear elastic condi-

tion, is defined as F/V as the contour Γs shrinks to the crack tip. Under the steady state

condition, the energy release rate becomes

J = G = lim
Γs→0

dΠ

dA
= lim

Γs→0

F (Γ)

V
= lim

Γs→0

∫

Γs

[(W + L)δ1j − σijui,1]njdΓ. (2.11)

Equation (2.11), so called generalized J-integral, is applicable to static and to dynamic

problems with a constant crack tip speed to evaluate the energy required for a crack to

propagate.
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x

Γ

Γ1

2

y r
θ

A12

Figure 2.2: The domain enclosed by two different contours Γ1 and Γ2. A12 indicates the
domain enclosed by Γ1, Γ2 and crack faces.

Equation (2.11) reduces to the following form under stationary condition, i.e. V=0,

J = lim
Γs→0

∫

Γs

(Wδ1j − σijui,1)njdΓ, (2.12)

because the kinetic energy L, a function of crack tip speed, is zero under the stationary

condition, and thus

L =
1

2
ρ Úui Úui =

1

2
ρ(−V

∂u

∂x
)2 = 0. (2.13)

So, the kinetic energy does not contribute to the J-integral. This statement is numerically

observed by Vargas and Dodds [54] who determined the dynamic J integral for impact

fracture testing. They concluded that the kinetic energy contribution is less than 0.1 percent

to the total J integral.

2.2 Interaction Integral Formulation

Assuming that the crack faces are traction-free and using the q function (q is 1 on Γs and 0

on Γ0) according to Figure 2.3, one rewrites the generalized J-integral from Eq. (2.12), i.e.

J = lim
Γs→0

∫

Γs

(Wδ1j − σijui,1)njdΓ = − lim
Γs→0

∮

Γ

(Wδ1j − σijui,1)mjqdΓ, (2.14)
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where Γ = Γo + Γ+ − Γs + Γ−, mj is a unit normal vector to the contour (Γ), as illustrated

in Figure 2.4. Application of the divergence theorem to Eq. (2.14) leads to the equivalent

q

1.0

Figure 2.3: The q function (plateau weight function).

domain integral (EDI) [44] as follows:

J =

∫

A

(σijui,1 −Wδ1j)q,j dA+

∫

A

(σijui,1 −Wδ1j),jq dA. (2.15)

Considering the following relationships, which can be applied for general cases including

material gradient and dynamic effects,

W,1 =
1

2
σij,1εij +

1

2
σijεij,1 (2.16)

and

(σijui,1),j = σij,jui,1 + σijui,1j, (2.17)

one obtains the following expression:

J =

∫

A

(σijui,1 −Wδ1j)q,jdA+

∫

A

(σij,jui,1 + σijui,1j −
1

2
σij,1εij −

1

2
σijεij,1)qdA, (2.18)

which is modified as

J =

∫

A

(σijui,1 −Wδ1j)q,jdA+

∫

A

(ρüiui,1 −
1

2
Cijkl,1εijεkl)qdA, (2.19)

17



Γ0
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-

y

mj
n
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j

Γ
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θ

X

Y

Crack

Γt

Γu

Γ= Γ0 +

Γ

Γ+ - Γs+ Γ

Figure 2.4: Transformation from line integral to equivalent domain integral (EDI). Notice
that the normal vector mj = nj for Γ0,Γ

+ and Γ−, and mj = −nj on Γs.

using the following equalities:

σij,j = ρüi,

σij,1εij = (Cijklεkl),1εij = (Cijkl,1εklεij + σijεij,1) ,

σijui,1j = σijεij,1, (2.20)

where Cijkl denotes the elasticity tensor. Notice that Eq. (2.19) is the extended J-integral

under the stationary condition. Equation (2.19) is reduced to the J-integral for the static

nonhomogeneous material case as derived by Kim and Paulino [27]. Besides, for homogeneous

materials, Eq. (2.19) is identical to the one derived by Moran et al. [38] under the stationary

condition, i.e. V=0.

Superimposing the actual and auxiliar fields on Eq. (2.18), one obtains

J =

∫

A

{

(σaux
ij + σij)(u

aux
i,1 + ui,1)−

1

2
(σaux

ik + σik)(ε
aux
ik + εik)δ1j

}

q,jdA

+

∫

A

{

(σaux
ij,j + σij,j)(u

aux
i,1 + ui,1) + (σaux

ij + σij)(u
aux
i,1j + ui,1j)

}

qdA

− 1

2

∫

A

{

(σaux
ij,1 + σij,1)(ε

aux
ij + εij) + (σaux

ij + σij)(ε
aux
ij,1 + εij,1)

}

qdA, (2.21)
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which is decomposed into

Js = J + Jaux +M, (2.22)

where J and Jaux are given by

J =

∫

A

(σijui,1 −
1

2
σikεikδ1j)q,jdA

∫

A

(σij,jui,1 + σijui,1j −
1

2
σij,1εij −

1

2
σijεij,1)qdA, (2.23)

Jaux =

∫

A

(σaux
ij uaux

i,1 − 1

2
σaux
ik εauxik δ1j)q,jdA

∫

A

(σaux
ij,j u

aux
i,1 + σaux

ij uaux
i,1j −

1

2
σaux
ij,1 ε

aux
ij − 1

2
σaux
ij εauxij,1 )qdA, (2.24)

respectively. The resulting M integral is given by

M =

∫

A

{

(σaux
ij ui,1 + σiju

aux
i,1 )− 1

2
(σaux

ik εik + σikε
aux
ik )δ1j

}

q,jdA

+

∫

A

{

(σaux
ij,j ui,1 + σij,ju

aux
i,1 ) + (σaux

ij ui,1j + σiju
aux
i,1j )

}

qdA

− 1

2

∫

A

{

(σaux
ij,1 εij + σij,1ε

aux
ij ) + (σaux

ij εij,1 + σijε
aux
ij,1 )

}

qdA. (2.25)

2.2.1 Non-equilibrium Formulation

This formulation creates the non-equilibrium terms explained in Section 1.3.1. Since the

actual fields employ the quantities obtained from numerical simulation, the equilibrium and

compatibility condition are satisfied, i.e.,

σij,j = ρüi (2.26)

εij =
1

2
(ui,j + uj,i), σijui,1j = σijεij,1. (2.27)

For the auxiliary fields, the equilibrium condition is not satisfied, i.e.,

σaux
ij,j 6= 0, (2.28)

while the relation between strain and displacement are compatible:

εauxij =
1

2
(uaux

i,j + uaux
j,i ), σiju

aux
i,1j = σijε

aux
ij,1 . (2.29)
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Notice that the auxiliary fields are chosen as asymptotic fields for static homogeneous ma-

terials as explained in Section 1.3. For the superimposed actual and auxiliary fields, the

following equalities are obtained:

σijε
aux
ij = Cijkl(x)εklε

aux
ij = σaux

kl εkl = σaux
ij εij, (2.30)

Cijkl,1(x)ε
aux
kl εij = Cijkl,1(x)ε

aux
ij εkl, (2.31)

Cijkl(x)εkl,1ε
aux
ij = σaux

ij εij,1, (2.32)

Cijkl(x)ε
aux
kl,1εij = σijε

aux
ij,1 . (2.33)

Substitution of Eqs. (2.26) and (2.30) into Eq. (2.25) leads to

M =

∫

A

{

(σaux
ij ui,1 + σiju

aux
i,1 )− σaux

ik εikδ1j
}

q,j dA

+

∫

A

{

σaux
ij,j ui,1 + ρüiu

aux
i,1 + (σaux

ij ui,1j + σiju
aux
i,1j )

}

qdA

− 1

2

∫

A

{

(σaux
ij,1 εij + σij,1ε

aux
ij ) + (σaux

ij εij,1 + σijε
aux
ij,1 )

}

qdA. (2.34)

Since σaux
ij = Cijkl(x)ε

aux
kl , then σaux

ij,1 εij can be expressed by

σaux
ij,1 εij = (Cijkl(x)ε

aux
kl ),1εij = (Cijkl,1(x)ε

aux
kl + Cijkl(x)ε

aux
kl,1)εij (2.35)

and the expression σij,1ε
aux
ij is given by

σij,1ε
aux
ij = (Cijkl(x)εkl),1ε

aux
ij = (Cijkl,1(x)εkl + Cijkl(x)εkl,1)ε

aux
ij . (2.36)

Substituting Eqs. (2.35) and (2.36) into (2.34) and using the equality of Eqs. (2.31),

(2.32) and (2.33), one obtains

M =

∫

A

{

(σaux
ij ui,1 + σiju

aux
i,1 )− σaux

ik εikδ1j
}

q,jdA

+

∫

A

{

σaux
ij,j ui,1 + ρüiu

aux
i,1 − Cijkl,1ε

aux
kl εij

}

qdA, (2.37)

where σaux
ij,j ui,1 , ρüiu

aux
i,1 , and Cijkl,1ε

aux
kl εij appear due to non-equilibrium of the auxiliary

fields, dynamic effect of the actual fields, and nonhomogeneous effects of the actual fields,

respectively. If dynamic effects are ignored, this equation reduces to the interaction integral

for the static nonhomogeneous material case derived by Kim and Paulino [30].
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2.2.2 Incompatibility Formulation

This formulation creates the incompatibility terms explained in Section 1.3.2. For the actual

field, the equilibrium and compatibility conditions are

σij,j = ρüi, (2.38)

εij =
1

2
(ui,j + uj,i), σijui,1j = σijεij,1. (2.39)

In this formulation, the equilibrium condition is satisfied,

σaux
ij,j = 0, (2.40)

while the relation of between strain and displacement are not compatible:

εauxij 6= 1

2
(uaux

i,j + uaux
j,i ). (2.41)

For the superimposed field of actual and auxiliary field, the following equality is obtained

as

σijε
aux
ij = Cijkl(x)εklε

aux
ij = σaux

kl εkl = σaux
ij εij,

Cijkl,1(x)ε
aux
kl εij = Cijkl,1(x)ε

aux
ij εkl,

Cijkl(x)εkl,1ε
aux
ij = σaux

ij εij,1,

Cijkl(x)ε
aux
kl,1εij = σijε

aux
ij,1 . (2.42)

Using Eqs. (2.38) through (2.42), one obtains

M =

∫

A

{

(σaux
ij ui,1 + σiju

aux
i,1 )− σaux

ik εikδ1j
}

q,jdA

+

∫

A

{

σij(u
aux
i,1j − εauxij,1 ) + ρüiu

aux
i,1 − Cijkl,1ε

aux
kl εij

}

qdA, (2.43)

where σij(u
aux
i,1j − εauxij,1 ), ρüiu

aux
i,1 , and Cijkl,1ε

aux
kl εij appear due to incompatibility of the aux-

iliary fields, dynamic effect of the actual fields, and nonhomogeneous effects of the actual

fields, respectively.

21



2.2.3 Constant-constitutive-tensor Formulation

This formulation generates the constant constitutive tensor terms explained in Section 1.3.3.

Actual fields satisfy the equilibrium and compatibility condition:

σij,j = ρüi, (2.44)

εij =
1

2
(ui,j + uj,i), σijui,1j = σijεij,1. (2.45)

While auxiliary fields satisfy the equilibrium and compatibility condition, they violate

the constitutive relationship, i.e.

σaux
ij,j = 0, (2.46)

εauxij =
1

2
(uaux

i,j + uaux
j,i ), (2.47)

σaux
ij = (Cijkl)tipε

aux
kl , (Cijkl)tip 6= Cijkl(x). (2.48)

Therefore, Eq. (2.42) is not valid any more.

Substituting Eqs. (2.44) through (2.47) leads to

M =

∫

A

{

(σaux
ij ui,1 + σiju

aux
i,1 )− 1

2
(σaux

ik εik + σikε
aux
ik )δ1j

}

q,jdA

+

∫

A

{

ρüiu
aux
i,1 − 1

2
(σaux

ij,1 εij − σij,1ε
aux
ij + σaux

ij εij,1 − σijε
aux
ij,1 )

}

qdA (2.49)

From a numerical point of view, due to derivatives of the actual stress and strain fields

(underlined terms), the accuracy might not be as good as the two previous formulations.

2.2.4 Extraction of SIFs

The actual and auxiliary relationship between J and mixed mode SIFs are, respectively

Jlocal =
K2

I +K2
II

E∗
tip

, (2.50)

Jaux
local =

(Kaux
I )2 + (Kaux

II )2

E∗
tip

(2.51)

where

E∗
tip =

{

Etip Plane Stress

Etip/(1− υ2
tip) Plane Strain

(2.52)

For the superimposed fields of actual and auxiliary fields, the relationship between J and
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SIFs of actual and auxiliary field is obtained as:

Js
local =

(KI +Kaux
I )2 + (KII +Kaux

II )2

E∗
tip

= Jlocal + Jaux
local +M, (2.53)

where

Mlocal =
2

E∗
tip

(KIK
aux
I +KIIK

aux
II ). (2.54)

Using judicious choice of auxiliary modes I and II SIFs, the SIFs of actual field is decou-

pled and determined as:

KI =
E∗

tip

2
Mlocal (Kaux

I = 1, Kaux
II = 0), (2.55)

KII =
E∗

tip

2
Mlocal (Kaux

I = 0, Kaux
II = 1). (2.56)

The relationship between SIFs and M-integral, i.e. Eqs. (2.55) and (2.56), is identical

with those for homogeneous materials [60], except that the material properties are sampled

at the crack tip location for nonhomogeneous materials.
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Chapter 3

Numerical Implementation

To investigate dynamic fracture behavior under different material gradients by means of the

FEM, a dynamic finite element code considering nonhomogeneous materials in conjunction

with the Newmark β method was developed. The M-integral, which is used to obtain DSIFs,

was also implemented in the code. In this section, the concept of isoparametric finite element

formulation for incorporating nonhomogeneous material properties at the element level is

addressed. The dynamic finite element formulation, the Newmark β method, and the M-

integral implementation are explained below.

3.1 Generalized Isoparametric Formulation (GIF)

To incorporate material nonhomogeneity, we can use either graded elements or homogeneous

elements. Graded elements incorporate the material property gradient at the size scale of

the element, while the homogeneous element produces a stepwise constant approximation

to a continuous material property field such as the one shown in Figure 3.1. It is clearly

observed that graded elements approximate the real material gradations better than homo-

geneous elements. The difference of numerical results using two different schemes can be

more distinct for relatively coarse meshes where the material gradation is steep. Kim and

Paulino [28] investigated the performance of both elements for nonhomogeneous materials

where material gradations are either parallel or perpendicular to the applied external loading

such as bending, tension and fixed grip loading. Buttlar et al. [7] applied both schemes in

pavement systems where material gradations occur due to temperature gradients and aging

related stiffness gradients. They implemented the graded elements using the UMAT [1] ca-

pability of the finite element software ABAQUS. The authors of both works concluded that

graded elements lead to more accurate unaveraged stress along the interface where mate-

rial properties are not continuous. So, the use of graded elements are more desirable for
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Z

E(z)

(b) (c)(a)

Figure 3.1: Homogeneous versus graded finite elements: (a) property variation along one
coordinate axis; (b) homogeneous elements; (c) graded elements. Notice that the property
of the homogeneous elements corresponds to the property at the centroids of the graded
elements.

nonhomogeneous materials than standard homogeneous elements (see Figure 3.1).

The Generalized Isoparametric Formulation (GIF) of Kim and Paulino [28] consists of

interpolating geometry, displacements and material properties from nodal points. Thus,

material properties such as elastic modulus (E), Poisson’s ratio (ν), and mass density (ρ) at

Gauss points can be interpolated using shape functions from nodal points as illustrated in

Figure 3.2.

ρ

x

z

y

E(x,y),υ(x,y), (x,y)

Figure 3.2: Generalized isoparametric formulation (GIF) [28].

The interpolation procedure is summarized as follows [12, 28]:

Displacements : u =
∑

i

uiNi(ξ, η), v =
∑

i

viNi(ξ, η) (3.1)

Coordinates : x =
∑

i

xiNi(ξ, η), y =
∑

i

yiNi(ξ, η) (3.2)

Material properties : E =
∑

i

EiNi(ξ, η), ν =
∑

i

νiNi(ξ, η), ρ =
∑

i

ρiNi(ξ, η) (3.3)
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where Ni are the shape functions, which are functions of the intrinsic coordinates ξ and η.

This formulation is implemented in the present code.

Using the GIF, the finite element stiffness matrix relations for nonhomogeneous materials

can be written as [26]

[Ke] {ue} = {F e} (3.4)

with

[Ke] =

∫

Ωe

[Be]T [De(x)][Be]dΩe, (3.5)

where {ue} is nodal displacement vector, {F e} is the load vector, [Be] is the strain-displacement

matrix which contains gradients of the interpolating functions, [De(x)] is the constitutive

matrix (variable), and Ωe is the domain of element "e". In the present work, the elasticity

matrix [De(x)]= [De(x, y)] is assumed to be a function of spatial co-ordinates.

The integral in Eq. (3.5) is evaluated by Gauss quadrature, and the matrix [De(x)]

is calculated at each Gaussian integration point. Thus for two-dimensional problems, the

resulting integral becomes:

[Ke] =
N
∑

i=1

N
∑

j=1

[Be
ij]

T [De
ij(x)][B

e
ij]Jijwiwj, (3.6)

where the subscripts i and j refer to the Gaussian integration points, Jij is the determinant

of the Jacobian matrix, and wi are the standard Gaussian weights.

3.2 Dynamic Finite Element Formulation

In addition to the implementation details discussed above, the dynamic FEM formulation is

presented. It includes aspects such as the background, equilibrium equations, Newmark β

method, and displacement control analysis.

3.2.1 Background

In general, if the lowest natural frequency of a structure is bigger than 4 times the frequency

of excitation imposed on the structure, the inertia effect is not important which is so called

quasistatic [13]. Otherwise, it should be taken into account in deriving a dynamic equilibrium

equation.

Dynamic problems are divided into either wave propagation problems or structural dy-

namic problems [12]. In wave propagation problems, a loading is an impact or an explosive
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blast such that the duration of period is normally short. In this kind of problems, the in-

fluence of stress waves is of main interest. Problems of structural dynamics involve analyses

of either time history or natural frequency of vibration. Two methods, modal method and

direct integration method, are proposed in time history analysis. In general, the Newmark

β methods are among direct integration methods frequently used in dynamic analysis. So,

Newmark β methods are implemented here and used in order to obtain field quantities such

as displacements, strains and stresses.

There are two distinct schemes of direct integration: an explicit scheme and an implicit

scheme. In the explicit scheme, a current solution depends only on previous history infor-

mation such as displacement, velocity and acceleration. Easy implementation and accurate

treatment of general nonlinearities are the key advantages. However, compared to the im-

plicit scheme it is conditionally stable. A central difference method is one of the popular

explicit schemes. In the implicit scheme, a current solution depends on previous history infor-

mation and current unknown information such that it is more computationally complicated

than the explicit schemes. However it is unconditionally stable. An average acceleration

method is one of the popular implicit methods [13].

Stiffness matrix [K], mass matrix [M], and damping matrix [C] are three major com-

ponents in the dynamic equilibrium equation. The procedure for calculating the stiffness

matrix in dynamic problems is exactly the same as that in static cases (see Section 3.1). In

determining the mass matrix, consistent mass matrix and lumping mass matrix schemes are

used. The consistent mass matrix uses the same shape functions as those for the stiffness ma-

trix. The properties of the consistent mass matrix are non-diagonal, symmetric and positive

definite. With implicit methods, this scheme is preferred for accuracy because the consistent

mass matrix has the upper bound property for the frequency and the implicit method has an

effect in decreasing the frequency. The lumping scheme is an effective method for producing

a diagonal mass matrix. It is recommended for arbitrary elements. With explicit methods

like the central difference method, the lumping scheme is preferred for accuracy and economy

[12]. In calculating the damping matrix, a Rayleigh damping, which is a linear combination

of the stiffness matrix and mass matrix, is employed and has the following form;

[C] = A[K]+B[M ], (3.7)

where A and B are scalar coefficients.
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3.2.2 Dynamic Equilibrium Equation

The dynamic equilibrium equation is obtained from the the principle of virtual work [12]:

∫

Ve

{δu}T {F } dV +

∫

Se

{δu}T {Φ} dS +
n

∑

i=1

{δu}Ti {p}i

=

∫

Ve

({δε}T {σ} + {δu}T ρ(x) {ü} + {δu}T κd(x) { Úu})dV, (3.8)

where {δu} and {δε} are arbitrary virtual displacements and corresponding strains, respec-

tively, {F } are body forces, {Φ} are surface tractions, {p} are concentrated loads, κd(x) is

a parameter which is analogous to viscosity, ρ(x) is mass density, and a each super-imposed

dot indicates derivative with respect to time.

The vectors {u}, { Úu}, and {ü} are functions of time and space and can be interpolated

as follows

{u} = [N ] {d} , { Úu} = [N ]
{

Úd
}

, {ü} = [N ]
{

d̈
}

, (3.9)

where the shape functions, [N ], are functions of space, {d},
{

Úd
}

and
{

d̈
}

denote the nodal

displacements, velocities and accelerations, respectively. Substituting Eq. (3.9) into Eq.

(3.8), one obtains

[

∫

Ve

ρ(x)[N ]T [N ]dV
{

d̈
}

+

∫

Ve

κd(x)[N ]T [N ]dV
{

Úd
}

+

∫

Ve

[B]T [D(x)][B]dV {d}

−
∫

Ve

[N ]T {F } dV −
∫

Se

[N ]T {Φ} dS −
n

∑

i=1

{p}i] {δd}
T = 0, (3.10)

where [B] is the strain-displacement matrix, and [D(x)] is the constitutive matrix.

Since {δd} is arbitrary, the following finite element system of equations is obtained:

[M ]
{

d̈
}

+ [C]
{

Úd
}

+ [K] {d} =
{

rext
}

, (3.11)

where the mass, damping and stiffness matrices are respectively defined as

[M ] =

∫

Ve

ρ(x)[N ]T [N ]dV, (3.12)

[C] =

∫

Ve

κd(x)[N ]T [N ]dV, (3.13)

[K] =

∫

Ve

[B]T [D(x)][B]dV, (3.14)

28



and the external force vector is defined as

{

rext
}

=

∫

Ve

[N ]T {F } dV +

∫

Se

[N ]T {Φ} dS +
n

∑

i=1

{p}i . (3.15)

For the evaluation of the constitutive matrix, [D(x)], considering the material gradients,

the GIF explained in Section 3.1 is employed.

3.2.3 Newmark β Method

Newmark [41] proposed a family of direct integration schemes, which has been widely used

in dynamic analysis. The Newmark β method consists of the following expressions refer to

the original paper by Newmark [41]:

[M ]
{

d̈
}

n+1
+ [C]

{

Úd
}

n+1
+ [K] {d}n+1 =

{

rext
}

n+1
, (3.16)

{d}n+1 = {d}n +∆t
{

Úd
}

n
+

∆t2

2
(1− 2β)

{

d̈
}

n
+ β∆t2

{

d̈
}

n+1
, (3.17)

{

Úd
}

n+1
=

{

Úd
}

n
+ (1− γ)∆t

{

d̈
}

n
+ γ∆t

{

d̈
}

n+1
, (3.18)

where subscripts n and n+1 indicate respective time steps, ∆t is time increment, and β and

γ are parameters depending on the integration schemes employed.

By defining the new quantities
{

d̃
}

n+1
and

{

Ú̃d
}

n+1
at the current time step [26],

{

d̃
}

n+1
= {d}n +∆t

{

Úd
}

n
+

∆t2

2
(1− 2β)

{

d̈
}

n
, (3.19)

{

Ú̃d
}

n+1
=

{

Úd
}

n
+ (1− γ)∆t

{

d̈
}

n
, (3.20)

one rewrites Eqs. (3.17) and (3.18) as follows:

{d}n+1 =
{

d̃
}

n+1
+ β∆t2

{

d̈
}

n+1
, (3.21)

{

Úd
}

n+1
=

{

Ú̃d
}

n+1
+ γ∆t

{

d̈
}

n+1
. (3.22)

Substituting Eqs. (3.19) through (3.22) into (3.16), one obtains an acceleration form of the

Newmark method as follows:

([M ] + γ∆t[C] + β∆t2[K])
{

d̈
}

n+1
=

{

rext
}

n+1
+ [C]

{

Ú̃d
}

n+1
− [K]

{

d̃
}

n+1
. (3.23)
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The vectors
{

d̃
}

n+1
and

{

Ú̃d
}

n+1
need to be evaluated to solve Eq. (3.23) for

{

d̈
}

n+1
. Both

quantities are obtained based on previous information
{

d̈
}

n
,
{

Úd
}

n
, and {d}n using Eqs.

(3.19) and (3.20). Once
{

d̈
}

n+1
is determined through Eq.(3.23), a combination of

{

d̈
}

,
{

d̃
}

, and
{

˜̈d
}

at time step (n+1) yields
{

Úd
}

and
{

Úd
}

at time step (n+1) using Eqs. (3.21)

and (3.22). The next step follows the same procedure explained above, except that (n) is

changed to (n+1) and (n+1) becomes (n+2).

The stability and accuracy of Newmark β methods depend on the parameters γ and β

[12]. It is unconditionally stable when

2β ≥ γ ≥ 1

2
, (unconditionally stable), (3.24)

and conditionally stable for zero damping when

2β <
1

2
, γ ≥ 1

2
, and ∆t ≤ (γ/2− β)1/2

ωmax(γ/2− β)
, (conditionally stable), (3.25)

where ωmax is the maximum natural frequency of the structure.

When γ = 1
2
and β = 1

4
, the method is called an average acceleration method, which is

implicit and unconditionally stable with second order accuracy. When γ = 1
2
and β = 0, it

is called a central difference method. It is explicit and conditionally stable with second order

accuracy.

3.2.4 Displacement Control Analysis

In some situations, a displacement control tends to be more stable than load control. So it

is worth explaining in detail how it is implemented in this code. Unlike the general acceler-

ation form, expressing Newmark β methods in a displacement form is useful to implement

displacement control analysis. By solving Eq. (3.17) for
{

d̈
}

n+1
and substituting it into Eq.

(3.18), one obtains the equations expressed as [13]

{

d̈
}

n+1
=

1

β∆t2
({d}n+1 − {d}n −∆t

{

Úd
}

n
)− (

1

2β
− 1)

{

d̈
}

n
, (3.26)

{

Úd
}

n+1
=

γ

β∆t
({d}n+1 − {d}n)− (

γ

β
− 1)

{

Úd
}

n
−∆t(

γ

2β
− 1)

{

d̈
}

n
. (3.27)
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Substituting these equations into Eq. (3.16) and solving for {d}n+1, one obtains

[Keff ] {d}n+1 =
{

rext
}

n+1
+ [M ]

{

1

β∆t2
{d}n +

1

β∆t

{

Úd
}

n
+ (

1

2β
− 1)

{

d̈
}

n

}

+[C]

{

γ

β∆t
{d}n + (

γ

β
− 1)

{

Úd
}

n
+∆t(

γ

2β
− 1)

{

d̈
}

n

}

, (3.28)

where

[Keff ] =
1

β∆t2
[M ] +

γ

β∆t
[C] + [K]. (3.29)

In Eq.(3.29), {rext}n+1 is zero because in the displacement control analysis, there is no

external force. The only variable determining the structural behavior is the displacement at

the nodes where displacement boundary condition is prescribed.

Let’s let

{

peff
}

n
= [M ]

{

1

β∆t2
{d}n +

1

β∆t

{

Úd
}

n
+ (

1

2β
− 1)

{

d̈
}

n

}

+[C]

{

γ

β∆t
{d}n + (

γ

β
− 1)

{

Úd
}

n
+∆t(

γ

2β
− 1)

{

d̈
}

n

}

. (3.30)

Based on the Eqs. (3.29) and (3.30), [Keff ] and
{

peff
}

can be divided as follows [37]:

[

[Keff
ff ] [Keff

fs ]

[Keff
sf ] [Keff

ss ]

]{ {df}n+1

{ds}n+1

}

=

{

{

peff
f

}

n
{

peff
s

}

n

}

(3.31)

where subscript f , s , (n) and (n + 1) denote free boundary, support boundary, (n)th time

step and (n + 1)th time step, respectively. In the above matrix form, {ds} and
{

peff
f

}

are

known. Therefore the general solution is obtained by

{

{df}n+1

}

= [Keff
ff ]−1

{{

peff
f

}

n
− [Keff

fs ] {ds}n+1

}

. (3.32)

3.3 Numerical Implementation

The M-integral used to obtain SIFs consists of actual and auxiliary fields, which are based

on the global coordinate system and local systems, respectively. Thus, transformation is

unavoidable to obtain SIFs. In this section, numerical aspects on evaluating M-integral

are provided. They include the relation between global M-integral quantities and local M-

integral quantities, and the transformation of auxiliary fields from local to global coordinate

systems.
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3.3.1 M-Integral: Numerical Aspects

The actual fields such as displacements, strains and stresses are evaluated globally by means

of the FEM, while the auxiliary fields and SIFs are local quantities. In this work, the M-

integral given by Eq. (2.37) is first computed globally to utilize the actual fields without any

transformation and then transformed into the local system to obtain the SIFs.

The global M-integral quantities are evaluated as (m = 1, 2):

(Mm)
g =

∫

A

{

(σaux
ij ui,m + σiju

aux
i,m )− σaux

ik εikδmj

} ∂q

∂Xj

dA

+

∫

A

{

σaux
ij,j ui,m + ρüiu

aux
i,m − Cijkl,mε

aux
kl εij

}

qdA, (3.33)

where superscript "g" means global coordinate and X denotes the global coordinate system.

The local M-integral quantities are evaluated as

Mlocal = (M1)
g cos θ + (M2)

g sin θ. (3.34)

3.3.2 Computation of M-Integral Terms

Since the computation of the M-integral is first evaluated in the global coordinate system,

each term of auxiliary fields should be evaluated globally, too. In other words, since the

auxiliary fields are local quantities, they are computed locally and then transformed into

global coordinates to be used in the M-integral. Derivation and explanation of auxiliary field

evaluation is based on the non-equilibrium formulation, which is the method implemented

in the code (see discussion of alternative methods in Section 1.3.2).

The displacement field of Williams’ [58] solution can be written in compact form as (cf.

Eqs. (1.24) and (1.25))

ul(r, θ)auxi =
Kaux

I

µtip

f I
i (r, θ) +

Kaux
II

µtip

f II
i (r, θ), (i = 1, 2), (3.35)

where Kaux
I and Kaux

II are mode I and mode II SIFs of the auxiliary fields, respectively, and

the angular functions f I
i (r, θ) and f II

i (r, θ) are given by Eqs. (1.24) and (1.25).

The derivatives of auxiliary displacements with respect to the global coordinate systems

are calculated as follows (k = 1, 2) :

ug(r, θ)auxi,k =
∂ug(r, θ)auxi

∂Xk

=
∂ug(r, θ)auxi

∂r

∂r

∂Xk

+
∂ug(r, θ)auxi

∂θ

∂θ

∂Xk

, (3.36)
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where
{

ug(r, θ)aux1

ug(r, θ)aux2

}

=

[

cosα − sinα

sinα cosα

]{

ul(r, θ)aux1

ul(r, θ)aux2

}

, (3.37)

and
∂r

∂Xk

=
∂r

∂x1

∂x1

∂Xk

+
∂r

∂x2

∂x2

∂Xk

,
∂θ

∂Xk

=
∂θ

∂x1

∂x1

∂Xk

+
∂θ

∂x2

∂x2

∂Xk

, (3.38)

with

∂r

∂x1
= cos θ,

∂r

∂x2
= sin θ

∂θ

∂x1
= −sin θ

r
,

∂θ

∂x2
=

cos θ

r
∂x1

∂X1
= cosα ,

∂x1

∂X2
= sinα

∂x2

∂X1
= − sinα ,

∂x2

∂X2
= cosα. (3.39)

As illustrated in Figure 3.3, α is the angle between global and local coordinates, r is the

Crack

r

α

θ

Y

X

x
y

Figure 3.3: Local (x, y) and global (X,Y) coordinate systems.

radial distance, and θ is the angle between local and the point where field quantities are

obtained.

Due to the non-equilibrium formulation, the auxiliary strain field is obtained using the
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compatibility condition as:

εg(r, θ)auxij =
1

2
(ug(r, θ)auxi,j + ug(r, θ)auxj,i ), (3.40)

where ug(r, θ)i,j is obtained using Eq. (3.36).

The auxiliary stress is evaluated using the constitutive relationship (cf. Eq. (1.28)):

σg(r, θ)auxij = Cijkl(x)ε
g(r, θ)auxkl . (3.41)

The material properties used in the constitutive tensor are computed using the isoparametric

formulation, which is explained in Section 3.1.

The derivative of the auxiliary stress is given by

(σg(r, θ)auxij ),j = (Cijkl(x)ε
g(r, θ)auxkl ),j

= Cijkl,jε
g(r, θ)auxkl + Cijklε

g(r, θ)auxkl,j , (3.42)

where the derivative of auxiliary fields with respect to global coordinates, εg(r, θ)auxkl,j , is

evaluated as follows:

εg(r, θ)auxij,k =
∂εg(r, θ)auxij

∂Xk

=
∂εg(r, θ)auxij

∂r

∂r

∂Xk

+
∂εg(r, θ)auxij

∂θ

∂θ

∂Xk

. (3.43)

In computing Eq. (3.43), the expressions (3.38) and (3.39) are used.
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Chapter 4

Verification

Since a new finite element code has been developed, verification of the code is crucial before

we discuss the influence of material profiles on the variation of DSIFs for a nonhomogeneous

cracked body in Chapter 5. Thus, five different examples are examined to verify the numer-

ical implementations such as the Newmark β method and the M-integral, which are used

to obtain dynamic field quantities and SIFs, respectively. The first problem is a nonhomo-

geneous infinite plate with material gradation perpendicular to external loadings. The σyy

stress is compared with analytical solutions. The second problem is a homogeneous can-

tilever beam where sinusoidal external loading is applied. The tip displacement is verified

through comparison with analytical solutions. This problem is also extended to consider

nonhomogeneous materials. The third problem is a nonhomogeneous unbounded plate with

an arbitrarily oriented crack where SIFs are verified. The fourth problem is a homogeneous

edge cracked semi-infinite plate under impact velocity. The history of mixed mode DSIFs

is obtained analytically and compared with present numerical solutions. The last problem

is a nonhomogeneous edge cracked semi-infinite plate subjected to dynamic loading where

Young’s modulus varies exponentially along the x direction. An UMAT of Abaqus and DCT

are adopted to verify DSIFs for dynamic nonhomogeneous case.

4.1 Verification Problems without Cracks

In this section, two uncracked bodies are employed and examined to verify static and dynamic

finite element implementations. For the static case, analytical solutions of σyy for isotropic

nonhomogeneous materials, where material properties vary exponentially along the x direc-

tion, are used as reference solutions to verify the numerical implementation [20]. For the

dynamic case, the numerical tip displacement of a homogeneous cantilever beam subjected

to a transient sinusoidal dynamic loading is compared with analytical solutions [55].
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4.1.1 Static Response of a Nonhomogeneous Infinite Plate

Erdogan and Wu [20] investigated an infinite nonhomogeneous medium where material

gradations are perpendicular to external loading, which may be of the following type: a fixed

grip, membrane loading and bending.

=0.3

X

L
2

X

Y

σ

Y

W

H
=9

W=9

σ    (x)=1-
9
2 x

b

E(x)=E(0)eβx

oo

υ

Figure 4.1: Geometry and boundary conditions for a nonhomogeneous plate.

A rectangular finite plate with the widthW=9 and the heightH=9 is chosen as illustrated

in Figure 4.1. The external forces which vary with a function, σ(x) = 1− 2x/9, are applied

to the top edge given by

M =
σbW

2

6
, (4.1)

where σb is the magnitude of external traction applied at the top right or left node (see

Figure 4.1). Displacement boundary conditions, u2 = 0 for the bottom edge and u1 = 0 for

the left bottom node, are prescribed. Constant Poisson’s ratio ν=0.3 is used. The elastic

36



modulus varies exponentially along the x direction, that is,

E(x) = E(0)eβx, β =
1

W
log

(

E(W )

E(0)

)

, (4.2)

where E(0)=1, E(W )=8 and β is a material nonhomogeneity parameter. Plane stress,

eight-node quadrilateral (Q8) and six-node triangular (T6) elements are used with a reduced

integration scheme.

The compatibility condition, ∂ε2yy/∂x
2 = 0, yields strain and stress fields given by [20]

εyy = Ax+B, (4.3)

σyy(x) = E(0)eβx(Ax+B), (4.4)

where the coefficients A and B are determined from the following equilibrium equations for

bending,
∫ W

0

σyy(x) dx = 0 ,

∫ W

0

σyy(x)x dx = M, (4.5)

where the moment M is given by Eq. (4.1). So, the stress distribution is

σyy(x) = β2Meβx
{(

β (1− eβW )

eβWβ2W 2 − e2βW + 2eβW − 1

)

x

+
βWeβW − eβW + 1

eβWβ2W 2 − e2βW + 2eβW − 1

}

. (4.6)

Figure 4.2 shows a comparison between the analytical solutions and the numerical results.

The abscissa indicates the horizontal distance where y is zero. The ordinate indicates σyy.

The numerical results agree well with the analytical solutions. The discrepancy between

numerical and analytical results might be due to the fact that the analytical solution is

derived based on an infinite length, while numerical results are determined based on a finite

length. The difference between numerical results using Q8 and T6 elements is negligible.

4.1.2 Dynamic Response of Homogeneous and Nonhomogeneous

Cantilever Beams

A homogeneous cantilever beam is used to verify dynamic field quantities by means of com-

parison of present numerical results with analytical solution, and a nonhomogeneous can-

tilever beam is employed to examine the influence of material gradation on the dynamic

behavior.
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Figure 4.2: Comparison of FEM results for stress distribution (σyy) with analytical solu-
tions [20] for bending loads.

Warburton [55] investigated transient dynamic response of a cantilever beam subjected

to a sinusoidal dynamic loading assuming no damping. Figure 4.3 illustrates the boundary

conditions and geometry of a cantilever beam with length L=20mm and height H=0.1mm.

The loading, applied to the free end of the beam, consists of a sinusoidal function whose

duration T corresponds to the fundamental period of a vibration mode given by [55]

T =
2π

ω1
, ω2

i = λ4
i

EI

ρA
(i = 1, 2, 3, ....), (4.7)

where ωi is the fundamental frequency and A, E, ρ, and I denote the cross-sectional area,

Young’s modulus, mass density and moment of inertia, respectively. Besides, λi is given by

λ1L = 1.875, λ2L = 4.694, λ3L = 7.855. (4.8)

The tip deflection w(L,t) is [55]

w(L, t) = 4
P

m

∑

i

[
1

ωi

∫ t

0

sin
πτ

T
sinωi(t− τ)dτ ] for 0 ≤ t ≤ T
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= 4
PL3

EI

∑

i

[
π/(ωiT )

(λiL)
4((π/(ωiT ))2 − 1)

{(cosωiT + 1) + sinωi(t− T ) + sinωiT cosωi(t− T )}].

for T ≤ t (4.9)
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Figure 4.3: A cantilever beam subjected to half-sine pulse loading: (a) half-sine pulse loading;
(b) cantilever beam with height 0.1mm and length 2mm. The vertical tip displacement is
denoted by w(L,t).

For the nonhomogeneous beam, the Young’s modulus vary linearly as given by

E = E1 + (E2 − E1)x/L, (4.10)
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where subscripts 1 and 2 indicates the location of clamped end and free end, respectively.

Table 4.1 shows material properties for both homogeneous and nonhomogeneous beams.

Constant Poisson’s ratio of 0.3 and constant mass density of 7850 Kg/m3 are used for all

the analyses. The input loading (Fig. 4.3 (a)) is the same for all the beams (see Table 4.1).

Damping is neglected and a consistent mass matrix method is used. Plane stress condition

is adopted and the average acceleration method is employed.

Table 4.1: Material properties for both homogeneous and nonhomogeneous beams.

Beam E1(GPa) E2(GPa)
Homogeneous 210 210

Nonhomogeneous (clamped end is stiff) 336 84
Nonhomogeneous (clamped end is soft) 84 336

Figure 4.4 illustrates the comparison of the present numerical results for the homogeneous

beam with the analytical solution by Warburton [55]. Numerical results are also given for

the nonhomogeneous beams. The abscissa indicates time normalized with respect to T,

the first fundamental period for the homogeneous beam, and the ordinate indicates the tip

displacement normalized as PL3/EavgI. Notice that Eavg is same for homogeneous and

nonhomogeneous beams. The same T, obtained from expression (4.7) for the homogeneous

beam, is adopted for all the cases (homogeneous and nonhomogeneous beams). For the

homogeneous case, the present numerical results match remarkably well with the analytical

solution as illustrated in Figure 4.4. For nonhomogeneous case, a beam softer at the clamped

end (E1/E2 = 1/4) is more compliant than a beam stiffer at the clamped end (E1/E2 = 4)

such that it produces larger period and higher magnitude compared to the latter.

4.2 Verification Problems with Cracks

In this section, three cracked bodies of either homogeneous or nonhomogeneous materials

are analyzed to verify the M -integral implementation. The first problem is an unbounded

nonhomogeneous elastic medium containing an arbitrarily oriented crack. Analytical mixed-

mode SIFs from the literature are compared with present numerical results to verify the

M -integral implementation for the static nonhomogeneous case. The second problem is a

homogeneous edge-cracked semi-infinite plate under dynamic loading. Calculated DSIFs are

used as reference solution to verify the M -integral implementation for dynamic loading of

homogeneous cracked specimen. The last problem is a nonhomogeneous edge-cracked semi-

infinite plate under dynamic loading. In order to verify the M -integral implementation for
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Figure 4.4: Normalized tip deflection versus normalized time. The time is normalized with
respect to T, which denotes the first fundamental period for the homogeneous beam.

the dynamic nonhomogeneous case, the UMAT of ABAQUS and the DCT are employed.

4.2.1 Nonhomogeneous Unbounded Plate with an Arbitrarily

Oriented Crack

Konda and Erdogan [33] obtained mixed-mode SIFs for an unbounded nonhomogeneous

elastic medium containing an arbitrarily oriented crack by solving integral equations. A

finite plate, which is large relative to a crack length 2a = 8, is chosen with width 2W=80

and height 2H=80, as illustrated in Figure 4.5 (a). Figures 4.5 (b), (c) and (d) show the

whole mesh configuration, crack tip region and three different contours, respectively.

Young’s modulus varies exponentially along the x direction with a function, E(x) = Ēeβx,

and a constant Poisson’s ratio of 0.3 is used. Due to the material gradient for the fixed-

grip loading, the applied load is equal to σ22(x, 40) = ε̄ĒeβX where ε̄ and Ē are equal to

1. Displacement boundary conditions, u2 = 0 for the bottom edge and u1 = 0 for the left

bottom node, are prescribed. Plane stress elements are used for the bulk elements which

consist of 446 Q8 and 274 T6 elements. Ratios βa = 0.5 and θ/π = 0.32 are chosen.

Table 4.2 shows normalized KI and KII for three different contours, demonstrating path

41



δ

��������������������
��������������������
��������������������
��������������������

2H=80

2W=80

θ=36

E(x)=Ee x

υ=0.3

2a=8

β

y

x

X

Y

Z X

Y

Z

(a) (b)

X

Y

Z X

Y

Z X

Y

Z X

Y

Z

Contour

Contour

Contour 1

2

3

(c) (d)

Figure 4.5: Nonhomogeneous unbounded plate: (a) geometry, boundary conditions and
material properties; (b) mesh configuration for the whole geometry; (c) mesh details for the
crack tip (12 sectors and 4 rings); (d) 3 different contours.

independence of the M -integral. The mixed mode SIFs are normalized with respect to

K0 = ε̄Ē
√
πa. Table 4.3 compares the present normalized SIFs with the analytical solu-

tions obtained by Konda and Erdogan [33], and numerical results obtained by Dolbow and

Gosz [15] using X-FEM and by Kim and Paulino [31] using the I-FRANC2D finite element

code. Dolbow and Gosz [15], and Kim and Paulino [31] used the M -integral to obtain SIFs.
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Table 4.2: Normalized SIFs at the right crack tip for 3 different contours (βa = 0.5 and
θ/π = 0.32).

Contour 1 Contour 2 Contour 3
KI 0.9270 0.9225 0.9224
KII -0.5446 -0.5492 -0.5502

Good agreement exists between the present numerical results and the analytical solutions,

which have a maximum difference of 0.8 percent.

Table 4.3: Comparison of normalized SIFs at both crack tips between the present solution,
and the current analytical solution and numerical results (βa = 0.5 and θ/π = 0.32).

Left crack tip Right crack tip
References KI KII KI KII

Konda and Erdogan [33] 0.925 -0.548 0.460 -0.365
Present 0.9225 -0.5492 0.4560 -0.3623

Kim and Paulino [31] 0.9224 -0.5510 0.4559 -0.3621
Dolbow and Gosz [15] 0.930 -0.560 0.467 -0.364

4.2.2 Homogeneous Edge Cracked Semi-Infinite Plate

Lee and Freund [35] evaluated mixed-mode DSIFs for an edge-cracked semi-infinite plate

under impact loading using linear superposition of obtainable stress wave solutions. During

the period from initial loading until the first scattered waves at the crack tip are reflected,

the mixed-mode SIF history was determined. Belytschko et al. [4] studied this problem

numerically and evaluated DSIFs using the EFG method.

A finite plate with width W=0.2m, height H=0.3m and crack length a=0.05m is chosen,

as illustrated in Figure 4.6. The velocity, v=6.5m/s, is imposed on the upper half of the

left boundary and no other boundary conditions are prescribed (see Figure 4.6 (a)). The

material properties of steel are chosen as E=200GPa, ρ = 7850Kg/m3 and ν=0.25. The

corresponding wave speeds are

Cd =

√

E(1− ν)

ρ(1 + ν)(1− 2ν)
= 5529.3 m/sec, (4.11)

Cs =

√

E

2ρ(1 + ν)
= 3192 m/sec, (4.12)

CR ≈ 0.928cs ≈ 2962 m/sec, (4.13)
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Figure 4.6: Edge cracked semi-infinite plate: (a) geometry and boundary conditions; (b)
mesh configuration for the whole geometry; (c) close up of crack tip (12 sectors and 4 rings)
and 3 different contours.

where Cd, Cs and CR are the longitudinal wave, shear wave, and Rayleigh wave speeds [24],

respectively. Plane strain condition is used with a full integration scheme, and the average

acceleration method is used with a time step of ∆t = 0.4 µs. Consistent mass matrix is used

for the mass matrix formulation.

Due to the instantaneous velocity, first compressive waves are propagated and then rel-

atively large shear waves are induced around the crack tip. Normalized mixed-mode DSIFs
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versus normalized time are plotted for three different contours in Figure 4.7. The abscissa

is time normalized with respect to the crack length and dilatational wave speed, and the

ordinate is DSIFs normalized as
Ev

√

a
π

2Cd(1− ν2)
. (4.14)

The history of DSIFs is plotted from the initial loading until the first wave scattered at the

crack tip bounces back from the boundary. Since the numerical results overlap each other,

path independence is demonstrated numerically.
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Figure 4.7: Normalized DSIFs for three different contours.

The present numerical results are compared with the analytical solutions [35] in Fig. 4.8.

For both KI and KII , the present numerical results and analytical solutions agree well. The

magnitude of DSIFs increases gradually, due to the instantaneous velocity. Besides, the

compressive waves and relatively large shear waves generated from the velocity induce the

negative KI and positive KII , respectively, as shown in Fig. 4.8.

4.2.3 Nonhomogeneous Edge Cracked Semi-Infinite Plate

In the previous example, the M -integral implementation for dynamic homogeneous case was

verified by comparing the present numerical results with the analytical solutions by Lee and
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Figure 4.8: Comparison of the numerical results with the analytical solutions.

Freund [35]. In this section, UMAT of ABAQUS [1] is used to incorporate material gradations

of Young’s modulus and Poisson’s ratio under dynamic loading, and the DCT [49] is employed

to verify the M -integral implementation for the dynamic nonhomogeneous case. The UMAT

is developed to analyze pavement systems which are graded due to temperature gradients

and aging related stiffness gradients [7]. In the UMAT, graded elements are implemented by

means of direct sampling of properties at the Gauss points of the element [28].

The same geometry and boundary conditions shown in Figure 4.6 (a) are used. The

mass density and Poisson’s ratio are ρ = 7850Kg/m3 and ν=0.25, respectively. The elastic

modulus varies exponentially along the x direction as follows:

E(x) = E(0)eβx, β =
1

W
log

(

E(W )

E(0)

)

, (4.15)

where W=0.2m, E(0)=100GPa, E(W )=300GPa and β is the material nonhomogeneity

parameter. The material properties at the crack tip are E = 131.6GPa, ρ = 7850Kg/m3

and ν = 0.25. Plane strain elements are used with both reduced and full integration schemes.

The average acceleration method is adopted with a time step of ∆t = 0.4 µs and consistent

mass matrix is employed.
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Figure 4.9 illustrates the variation of DSIFs with time and compares the DSIFs using the

M -integral and the DCT from the present results with those using the DCT from ABAQUS.

Notice that DSIFs using the M -integral are based on both reduced and full integration

schemes, and DSIFs using the DCT are based on the full integration scheme. The abscissa

and ordinate indicate time and DSIFs, respectively. DSIFs of KI and KII using the DCT for

both the present and ABAQUS results are overlapped. Besides, the two different numerical

schemes, i.e. the M -integral and the DCT, yield almost identical KI values and close KII

values. The present numerical results of KI and KII using both full and reduced integration

schemes are overlapped as shown in Figure 4.9, indicating that the influence of the selected

integration orders on DSIFs for nonhomogeneous materials is negligible for this problem.

4.3 Remarks

The M -integral implemented here to incorporate material nonhomogeneity and dynamic

effects is given by Eq. (2.37). Notice that the first three terms correspond to homogeneous

materials under static conditions, the term ρüiu
aux
i,1 accounts for dynamic effects, and the

terms σaux
ij,j ui,1 and Cijkl,1ε

aux
kl εij arise due to material nonhomogeneity.

For the verification of the dynamic finite element implementation, two examples are
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adopted: 1) Nonhomogeneous infinite plate [20] where stress fields are verified; 2) Homoge-

neous cantilever beam [55] where displacement fields are verified.

For the verification of the M -integral implementation, three cracked media are employed:

1) Nonhomogeneous unbounded plate with an arbitrarily oriented crack [33] where the terms

σaux
ij,j ui,1 and Cijkl,1ε

aux
kl εij are verified because the terms account for material nonhomogeneity;

2) Homogeneous edge cracked semi-finite plate [35] where the term ρüiu
aux
i,1 is verified since

the term accounts for dynamic effects; 3) Nonhomogeneous edge cracked semi-finite plate

where the terms σaux
ij,j ui,1, Cijkl,1ε

aux
kl εij and ρüiu

aux
i,1 are verified. So, field quantities, which

are the components of each term consisting in the M -integral, and individual terms in the

M -integral are verified.
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Chapter 5

Computational Results

With the code verified in the previous chapter, various problems are examined to evaluate

DSIFs for homogeneous and nonhomogeneous materials and to explore fracture behavior for

different material profiles. In this chapter, the following problems are considered:

• Homogeneous center cracked tension (CCT) specimen, which is a pure mode I problem.

• Nonhomogeneous CCT specimen with mixed-mode crack behavior.

• Homogeneous and nonhomogeneous rectangular plate with an inclined crack.

• Homogeneous and nonhomogeneous rectangular plate with cracks emanating from a

circular hole.

In the examples, path-independence is assessed and the present numerical results are

compared with reference solutions. The dynamic fracture behavior is investigated for dif-

ferent material gradations considering the influence of the time step on DSIFs, the relation

between initiation time and the domain size, and the contribution of each distinct term in

the M-integral.

5.1 Homogeneous CCT Specimen

This problem was first examined by Chen [9] and since then, it has been considered as

a benchmark problem. Chen [9] determined mode I SIFs under step loading for a CCT

specimen using a time dependent Lagrangian finite difference method (FDM). In his work,

DSIFs were determined using the relation between stresses and SIFs around the crack tip.

Chen’s [9] problem has been studied by many researchers. Brickstad [5] utilized the

relation between SIFs and crack opening displacement (COD) to obtain DSIFs. Murti and

Valliappan [39] employed the finite element method to determine DSIFs using the DCT.
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Lin and Ballmann [36] revisited Chen’s problem using the FDM. They employed a greater

number of finite difference cells and obtained slightly different numerical results. Dominguez

and Gallego [16] computed DSIFs using the BEM with quarter-point elements (QPEs).

Sladek et al. [50, 51] used the ÝJ integral to determine DSIFs in the BEM context.

5.1.1 Problem Description

Consider a rectangular finite plate of width 2W=20mm and height 2H=40mm, with a center

crack of length 2a=4.8mm. Geometry, boundary conditions, finite element discretization,

and three different M -integral domain contours are illustrated in Figure 5.1. The total

mesh (see Figure 5.1 (b)) consists of 816 Q8 and 142 T6 2D plane strain elements. Notice

that 8 T6 elements and 24 Q8 elements, which consist of four rings and eight sectors are

employed as the crack tip template and lead to sufficient mesh refinement around the crack

tips. The external force, p(t), is applied instantaneously to both top and bottom edges

with a step function, as shown in Figure 5.2. No other boundary conditions are prescribed.

Young’s modulus, mass density and Poisson’s ratio are 199.992 GPa, 5000 Kg/m3 and 0.3,

respectively, and the corresponding wave speeds are

Cd =

√

E(1− ν)

ρ(1 + ν)(1− 2ν)
= 7.34 mm/µsec, (5.1)

Cs =

√

E

2ρ(1 + ν)
= 3.92 mm/µsec, (5.2)

CR ≈ 0.928cs ≈ 3.63 mm/µsec, (5.3)

where Cd, Cs and CR are the longitudinal wave, shear wave, and Rayleigh wave speeds [24],

respectively. In the following simulation, we adopt the average acceleration method with a

time step of ∆t = 0.05µs, full integration, and consistent mass matrix.

5.1.2 Path Independence of the M-Integral for Homogeneous

Materials

Path independent domain integrals such as the J and M -integrals are significant in fracture

mechanics because accurate results can be obtained regardless of domain size. To evaluate

path independence numerically, three different contours are selected, as illustrated in Figure

5.1(d). Figure 5.3 shows the normalized DSIFs versus normalized time for the three different

contours. The time is normalized with respect to the dilatational wave speed (cd), and the

50



2H
=4

0m
m

2W=20mm

2a=4.8mm

P(t)

P(t)

x

y

X

Y

Z X

Y

Z

(a) (b)

X

Y

Z X

Y

Z X

Y

Z X

Y

Z

Contour

2Contour

Contour3

1

(c) (d)

Figure 5.1: Benchmark CCT specimen: (a) geometry and boundary conditions; (b) mesh
configuration for whole geometry; (c) mesh detail for the crack tip regions (8 sectors and 4
rings); (d) domain contours.
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Figure 5.3: Numerical results for three different contours.

DSIFs are normalized with respect to

Ks = σ0(
√
πa), (5.4)

where the σ0 is the magnitude of the applied stress and a is half of the total crack length.

The similarity of numerical results for the three different contours demonstrate numerical

path independence.
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5.1.3 Comparison between J and M-Integrals

In 1968, Rice proposed the J integral which is equivalent to the energy release rate under

static linear elastic conditions [46]. Since then, this method has been widely used and has

been the basis of new methods proposed by many researchers. For instance, the J-integral can

be decomposed to evaluate mixed mode SIFs [6, 32, 21]. Under dynamic loading conditions,

it is necessary to include dynamic terms in order to obtain path independent DSIFs [59, 38].

Owing to significance of the J integral in fracture mechanics, we implemented Eq. (2.19)

in the code employing the equivalent domain integral formulation (EDI) [44] and used the

J-integral to verify the implementation of the M -integral.

This problem is a pure mode I problem since homogeneous materials are adopted. There-

fore, a comparison of numerical results between using the J-integral and M-integral in terms

of DSIFs is performed. Figure 5.4 compares DSIFs obtained using the J and theM -integrals.

Up to the normalized time T1 of 4.3 in Figure 5.4, the two numerical results match within

0.02 percent, which is expected because the M -integral is based on the J-integral. However,

after the time T1 both schemes yield nearly equal magnitude but they are opposite in sign

as illustrated in Figure 5.4. Because J represents an energy which is always positive, the
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Figure 5.4: Numerical comparison between the J-integral and the M -integral
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calculation of SIFs from J values, which follows

K =
√
JE∗, (5.5)

always yields a positive value of KI . This fact indicates that the J-integral may have

limitations for dynamic problems because transient DSIFs often oscillate between positive

and negative values. Here the negative mode I SIF simply indicates crack closure.

5.1.4 Comparison of Present Results with a Numerical

Reference Solution

Lin and Ballmann [36] revisited Chen’s problem using the FDM and obtained DSIFs utilizing

the relation between SIFs and stress. Figure 5.5 compares the present numerical results with

those of Lin and Ballmann [36]. A software named as DigXY was used to extract numerical

values from graphical data in reference [36].

Overall, there is good agreement between the present numerical results and the reference

solution. The reference solution shows a theoretical normalized initiation time of 1 as illus-

trated in Figure 5.5 because the step function is adopted for external loading. The present

numerical results indicate an initiation time smaller than the theoretical value. However,

the numerical initiation time approaches the theoretical value as the time step is decreased,

which will be presented below (see Section 5.1.5). For the first peak, both results show a

similar magnitude and corresponding time.

5.1.5 Comparison of Theoretical Initiation Time and First Peak

In this section, two important time locations, the initiation time and the first peak, during

transient responses, are discussed by comparing the present numerical values with theoreti-

cal ones. The theoretical initiation time corresponds to the time necessary for a dilatational

wave induced by external forces to reach a crack tip location, and in this case it equals H/cd.

Ideally, the numerical initiation time should coincide with the theoretical initiation time. In

reality, numerical initiation values precede the theoretical values. For this problem, the nor-

malized initiation time of the numerical results is 0.9 when time step 0.05µs is adopted, and

the normalized theoretical initiation time is 1. Through numerical simulations, we observe

that as the time step decreases, the numerical initiation time approaches the theoretical

value of 1 in Figure 5.6. The normalized KI for different time steps (0.05µs, 0.1µs, 0.3µs

and 0.5µs) is plotted versus the normalized time in Figure 5.6.
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Figure 5.5: Comparison between the present numerical results and the reference solution by
Lin and Ballmann [36]

The first peak, indicated in Figure 5.5, occurs in this problem when dilatational waves

reach the crack tip, and generated Rayleigh waves travel to the opposite crack tip. At that

instant, the Rayleigh waves cause compression at the crack tip and thus reduce theKI values.

The normalized theoretical time for this event is 1.485 and the present numerical value is

1.523 for a time step of ∆t = 0.05 µs. There is reasonably good agreement between these

numbers with a relative error less than 3 %.

5.1.6 Sensitivity of Numerical Results with Respect to Time

Step Size

For step loading, transient DSIFs are highly influenced by time step increment because the

waves induced by this loading have a significant influence on crack tip fields, whereas for

ramp loading, the crack tip fields are influenced primarily by the remote load. In the ramp

loading, the load is always increasing with time and, as a consequence, the magnitude of

SIFs increases monotonically with time and shows little variation due to propagating waves.

Therefore, SIFs are not very sensitive to the time step increment for ramp loading.

Four different time steps, 0.05µs, 0.1µs, 0.3µs and 0.5µs, are chosen to investigate the
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Figure 5.6: Initiation time for 4 different time steps.

influence of time step on the DSIFs for step loading. As illustrated in Figure 5.7, numerical

results are highly influenced by the time step. The abscissa and ordinate represent normalized

time and normalized KI , respectively. As the time step decreases, the numerical results

appear to converge. For the larger time steps, the difference between numerical results is

especially pronounced near the peaks. This result indicates that for large time steps, the

transient response cannot be captured accurately.

5.1.7 Discussion of M-Integral Terms

The M-integral based on the non-equilibrium formulation is given by Eq. (2.37), i.e.,

M =

∫

A

{

(σaux
ij ui,1 + σiju

aux
i,1 )− σaux

ik εikδ1j
}

q,jdA

+

∫

A

{

−Cijkl,1ε
aux
kl εij + σaux

ij,j ui,1 + ρüiu
aux
i,1

}

qdA. (5.6)

The above expression consists of various terms which accounts for dynamic loading and

nonhomogeneous materials. Now, we will investigate and discuss the contribution of each

56



0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Normalized Time (C
d
*t / H)

N
or

m
al

iz
ed

 K
I

Time step: 0.05µs
Time step: 0.10µs
Time step: 0.30µs
Time step: 0.50µs

P(t)

2a
2H

2W

P(t)

Figure 5.7: Normalized KI at the right crack tip for 4 different time steps: 0.05 µs, 0.1µs,
0.3µs and 0.5µs.

term of the M -integral and its path independence. Let’s define

Term 1 =

∫

A

σaux
ij ui,1q,jdA (5.7)

Term 2 =

∫

A

σiju
aux
i,1 q,jdA (5.8)

Term 3 = −
∫

A

σaux
ik εikδ1jq,jdA (5.9)

Term 4 = −
∫

A

Cijkl,1ε
aux
kl εijqdA (5.10)

Term 5 =

∫

A

σaux
ij,j ui,1qdA (5.11)

Term 6 =

∫

A

ρüiu
aux
i,1 qdA (5.12)

Terms 1, 2, and 3 are the same as those for homogeneous materials under quasi-static

conditions. Terms 4 and 5 arise due to material nonhomogeneity, and Term 6 is due to

dynamic effects.

For this simulation, the contours used are shown in Figure 5.1 (a). Contour 1 includes 8
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T6 and 24 Q8 elements, contour 2 contains 54 T6 and 24 Q8 elements, and contour 3 has 54

T6 and 72 Q8 elements. Figures 5.8 (a), (b), and (c) show the contribution of each term for

contours 1, 2, and 3, respectively. The abscissa and ordinate represent normalized time and

normalized KI , respectively. Terms 4 and 5 are not included in Figures 5.8 because they

are zero for homogeneous materials. For all contours, the contributions of Terms 1 and 2

are higher than those of the other terms. Terms 1, 2, and 3 follow the trend of the total K,

whereas Term 6 oscillates. Two important phenomena are observed from this simulation.

The first is the oscillatory nature of the contribution of Term 6 for different contours. The

second is the relationship between initiation time and domain size.

For contour 1, illustrated in Figure 5.8 (a), the magnitude of Term 6 is small compared

to that of other terms. But as the domain size increases (from contour 1 to contour 3),

the magnitude of Term 6 increases as illustrated in Figure 5.9. It turns out that even if

Term 6, which accounts for dynamic effects, is relatively small compared to other terms, the

influence of this term in obtaining DSIFs becomes significant as the domain size increases.

Therefore, this term must be taken into account to satisfy path-independence and to obtain

correct DSIFs for dynamic problems.

Dilatational waves reach the boundary of larger domains earlier than the boundary of

small domains. We now investigate initiation times of individual terms for different domain

sizes. Figures 5.8 show the contribution of each term for the three contours. Because contour

1 is very small, the difference between the initiation time for each term and for the total

DSIF is small (see Figure 5.8 (a)). However, for the larger contours 2 and 3 (see Figures 5.8

(b) and (c), respectively), it is clearly observed that Terms 1 and 6 initiate earlier than

the total DSIF. Moreover, Terms 1 and 6 initiate earlier in the larger domain as shown in

Figures 5.10 and 5.9, respectively. However, the change of initiation time for the different

domain sizes is not pronounced for Terms 2 and 3 (see Figure 5.8). Notice that even if a

few terms initiate earlier as the domain size increases, the initiation time of the total DSIF

is independent of domain size, demonstrating path-independence (see Figure 5.3).

5.2 Nonhomogeneous CCT Specimen

Dynamic fracture behavior of a homogeneous CCT specimen is examined thoroughly in

Section 5.1. In this section, various material profiles are adopted to investigate fracture

behavior in a nonhomogeneous specimen. First, path independence of DSIFs for nonhomo-

geneous material is verified. Then, behavior of DSIFs at the right and left crack tips is

explored.
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Figure 5.8: Normalized KI for three different contours: (a) Contribution of each term for
contour 1; (b) Contribution of each term for contour 2; (c) Contribution of each term for
contour 3.
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Young’s modulus and mass density vary exponentially, such that E/ρ ≡ constant, as

given by

E = EH exp(β1x+ β2y), (5.13)

ρ = ρH exp(β1x+ β2y), (5.14)

where EH and ρH are Young’s modulus and mass density for homogeneous materials and β1

and β2 are nonhomogeneity parameters along the x and y directions, respectively. When β1

and β2 are equal to zero, Eqs. (5.13) and (5.14) reflect homogeneous materials. A constant

Poisson ratio of 0.3 is used. Plane strain elements with full integration and consistent mass

matrices are adopted for the bulk elements. The average acceleration method is used with a

time step of ∆t = 0.1 µs. The geometry and the boundary conditions are identical to those

of homogeneous specimen analyzed in Section 5.1. Notice again that no other boundary

conditions are prescribed except for the external loading.

5.2.1 Path Independence for Nonhomogeneous Materials

In this section, path independence of theM -integral for nonhomogeneous materials is demon-

strated numerically. In order to employ severe material gradations, relatively high β values

are chosen: β1 = 0.1 and β2 = 0.1. Material properties vary simultaneously along both the

x and y directions according to coordinate system shown in Figure 5.1 (a).

Figure 5.11 shows DSIFs at the right crack tip for the same contours used in the ho-

mogeneous specimen (see Figure 5.1 (d)). The abscissa and ordinate are normalized by

the homogeneous material constants, given by the dilatational wave speed of 7.34 mm/µsec

in expression (5.1) and the SIF in expression (5.4), respectively. Even with high material

gradation, the normalized KII is relatively small for this loading and geometry. The nu-

merical results for the three different contours shown in Figure 5.11 are almost identical,

demonstrating path independence for nonhomogeneous materials.

5.2.2 Exponentially Graded Materials in the x Direction

Here, various material gradations which vary only along the x direction are employed to

investigate dynamic fracture behavior. For this analysis, the material gradation parameter

β1 is chosen as 0.0, 0.05, and 0.1, and β2 equals 0.0. The ratio of the material properties at

the left and right boundary ranges from 1.0 to 7.4.

Figures 5.12 (a) and (b) show the variation of normalized KI at the left and right

crack tips, respectively. The contour 3 shown in Figure 5.1 (d) is used to obtain DSIFs.

The abscissa is normalized with respect to the homogeneous dilatational wave speed of
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7.34 mm/µsec in expression (5.1), and the ordinate is normalized with respect to the homo-

geneous material analytical SIF in expression (5.4), respectively. This analysis leads to three

observations which are coincident with physical intuition. First, for both crack tips, the

crack initiation time is the same regardless of material gradation. Initiation time depends

on the dilatational wave speed which is a function of Young’s modulus, Poisson’s ratio, mass

density, and geometry. Because the same exponential function describes the variation of

Young’s modulus and mass density (E/ρ ≡ constant), these material gradations result in

the same initiation time. Second, for the same β1, the maximum normalized SIF at the left

crack tip is smaller than that at the right crack tip. This is due to the fact that material at

the right crack tip has higher stiffness than the material at the left crack tip. Third, as β1

increases, the maximum DSIF decreases at the left crack tip, while it increases at the right

crack tip. The values of KII are relatively small, because cracks and material gradation are

parallel to external loadings. Therefore, the variation of KII is not discussed in this section.

5.2.3 Exponentially Graded Materials in the y Direction

In this section, we consider material properties that vary along the y direction. The material

gradation parameter β1 is set to 0.0, and β2 is chosen as 0.0, 0.05 and 0.1. Since material
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Figure 5.12: DSIFs for different material gradations along the x-direction: (a) Normalized
KI at the left crack tip; (b) Normalized KI at the right crack tip
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properties vary along the y direction, the material properties are the same at both crack

tips. The ratios of material properties between the bottom and top edges are 1.0, 7.4 and

54.6, which correspond to β1=0.0, 0.05, and 0.1, respectively.

Figure 5.13 shows mixed mode DSIFs at the right crack tip. The contour 3 shown in

Figure 5.1 (d) is used to evaluate the M -integral. The abscissa indicates time normalized

with respect to the homogeneous dilatational wave speed of 7.34 mm/µsec in expression

(5.1) and the ordinate indicates the DSIFs normalized as the homogeneous analytical SIF

in expression (5.4). Since material gradations vary along the y direction, KI is identical at

both crack tips, while the magnitude of KII at the left crack tip is equal in magnitude and

opposite in sign to the value at the right crack tip. The initiation time at both crack tips

remains the same for all cases of material gradation because the same exponential function

describes Young’s modulus and mass density. Values of KII , induced by material gradients,

are more significant with increasing β, whereas the maximum magnitude of KI is relatively

insensitive to β. Nevertheless, the magnitude of KII is relatively small compared to that of

KI .

5.3 Rectangular Plate with an Inclined Crack

Chen and Wilkins [10] studied the problem of a rectangular plate with an inclined crack using

the FDM and obtained results which have been questioned by several researchers. Murti

and Valliappan [39] investigated this problem using QPEs with the FEM. Dominguez and

Gallego [16], Fedelinski et al. [21], and Sladek et al. [51] investigated this problem using the

BEM. Krysl and Belytschko [34], and Tabiei and Wu [52] explored the problem with the 3D

EFG and the 3D FEM, respectively.

Consider an inclined crack of length 2a=14.14 mm in a rectangular plate of width 2W=30

mm and height 2H=60 mm, as shown in Figure 5.14(a). Figures 5.14(b) and (c) illustrate

the mesh for the whole geometry, and the four contours employed at each crack tip. The

entire mesh consists of 206 Q8 and 198 T6 elements. Contour 1 includes only 8 T6 elements,

contour 2 encloses 8 T6 and 24 Q8 elements, contour 3 contains 31 T6 and 24 Q8 elements,

and contour 4 has 77 T6 and 26 Q8 elements. To obtain a reasonable mesh resolution near

the crack tips, 4 rings and 8 sectors of elements are used. The external force, p(t), is applied

instantaneously to both the top and bottom edges with a step function (see Figure 5.2). No

other boundary conditions are prescribed.

For the nonhomogeneous case, Young’s modulus and mass density vary exponentially
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Figure 5.13: DSIFs for different material gradations along the y-direction: (a) Normalized
KI at the right crack tip; (b) Normalized KII at the right crack tip.
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along the x and y directions, such that E/ρ ≡ constant, according to

E = EH exp(β1x+ β2y) (5.15)

ρ = ρH exp(β1x+ β2y), (5.16)

where EH and ρH are Young’s modulus and mass density for homogeneous material, and

β1 and β2 are the material nonhomogeneity parameters that describe material gradation.

When β1 and β2 equal zero, homogeneous material properties are recovered. A constant

Poisson’s ratio of 0.3 is employed. Plane strain elements with full integration are used. The

average acceleration method is adopted with a time step ∆t = 0.1 µs. For the mass matrix

formulation, consistent mass matrix is employed.

In this section, we compare the present numerical results with current available reference

solutions for homogeneous materials. Then, material gradations which vary along the x

direction are adopted to investigate dynamic fracture behavior in terms of DSIFs for nonho-

mogeneous materials. The effects of domain sizes and the contribution of each term in the

M -integral is explored.

5.3.1 Homogeneous Rectangular Plate

Here, the present numerical results are compared with available reference solutions for the

homogeneous material case. With parameters β1 and β2 set to zero, the following homoge-

neous material properties are employed:

E = 199.992GPa, ρ = 5000Kg/m3, ν = 0.3. (5.17)

The corresponding wave speeds are given by expressions (5.1), (5.2) and (5.3).

Figure 5.15 shows a comparison between the present numerical results and the reference

solutions by Fedelinski et al. [21] who used a time-domain BEM, Dominguez and Allego [16]

who used the dual BEM with the ÝJ integral, and Murti and Valliappan [39] who used FEM

with QPEs. The abscissa indicates time. The ordinate indicates the DSIF normalized with

respect to Ks given by expression (5.4).

The reference results plotted here are obtained from graphical data using special-purpose

software. Up to 10µs, the difference between the results is not significant. After that time,

the discrepancy among the results becomes greater when the influence of reflected waves

becomes significant. This implies that the various numerical schemes differently predict the

transient fracture response which is highly influenced by propagating waves reflected from the
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boundary and crack surfaces. Up to 10µs, the present results match well with the solution

by Dominguez and Allego [16], and afterwards, the present results are within the range of

the other solutions. Moreover, the present results show more oscillations (small amplitude)

than the other solutions.
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Figure 5.15: Numerical comparison between the present results and the reference solu-
tions [16, 21, 39]

5.3.2 Exponentially Graded Materials in the x Direction

Material properties varying along the x direction are employed to investigate DSIFs for

nonhomogeneous materials. The material gradation parameter β1 is chosen as 0.0, 0.05,

0.1 and 0.15, and β2 is set to zero. The ratio of material properties at the left and right

boundaries ranges from 1.0 to 90.0. Although this high material ratio, i.e. 90, is not realistic,

such high material gradation is adopted in order to clearly observe the influence of different

material profiles on the variation of DSIFs.

Figure 5.16 illustrates the variation of mixed mode DSIFs at the left and right crack tip

locations. The ordinate indicates normalized DSIFs and the abscissa indicates time up to

22µs. Both crack tips have the same initiation time for the different material gradations

because Young’s modulus and mass density follow the same exponential function. As the
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Figure 5.16: Mixed mode DSIFs: (a) Normalized KI at the left crack tip; (b) Normalized
KI at the right crack tip; (c) Normalized KII at the left crack tip; (d) Normalized KII at
the right crack tip

parameter β1 increases, the magnitude of KI(t) at the right crack tip increases. At the

left crack tip, up to around 15µs, the magnitude of KI(t) is larger for smaller values of β1

and after that time, the magnitude of KI(t) becomes smaller for smaller values of β1. For

KII(t), as β1 increases, the absolute magnitude of KII(t) at both crack tips first decreases

and then increases. Moreover, the absolute value of maximum KI(t) at the right crack tip

is higher than that at the left crack tip as β1 increases. This behavior is reasonable because

the material property values at the right crack tip are higher than those at the left crack tip.
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5.3.3 Discussion of M-Integral Terms for Nonhomogeneous

Materials

In Section 5.1.8, the contribution of each term was explored throughly for homogeneous

materials. To account for material nonhomogeneity in the current specimen, the M -integral

includes Terms 4 and 5. In this section, we examine the influence of each term of the M -

integral. Also, we discuss the influence of domain size on the magnitude of Terms 4, 5

and 6, which account for nonhomogeneity and dynamic effects. The four different contours

illustrated in Figure 5.14 (a) are used. The value of β1 is chosen as 0.1 and β2 is chosen as

zero, i.e. (β1, β2) = (0.1, 0.0). The element type, numerical schemes and time step are the

same as in the homogeneous case for this specimen.

Figure 5.17 shows the contribution of individual terms to normalized DSIFs, KI(t)/Ks

and KII(t)/Ks where Ks is given by expression (5.4), versus time at both the right and left

crack-tip locations for the four different contours. The different terms are given by Eqs.

(5.7) through (5.12). For contour 1, Terms 4 and 5, representing nonhomogeneous material

effects, and Term 6, accounting for dynamic effects, are small. This shows numerically that

the influence of inertia and nonhomogeneity on DSIFs is almost negligible very near the crack

tip. For other contours, the contribution of Terms 4, 5 and 6 to DSIFs is larger than for

contour 1. Overall, the trend and contribution of Terms 1 and 2 are similar for all contours.

During the time period up to 22 µs, Terms 1, 2, 3 and 5 are positive, Term 4 is negative, and

Term 6 oscillates. Notice that even though the contribution of each term varies for different

contours, the total K is the same for each contour, demonstrating path independence. We

now discuss two important observations: 1) The effects of domain size on nonhomogeneous

and dynamic terms; 2) the relationship between initiation time and domain size.

Figures 5.18 (a), (b) and (c) respectively illustrate the contribution of Terms 4, 5 and 6 for

different domain sizes. For contours 2, 3 and 4, the contribution of the nonhomogeneous and

dynamic terms is significant. As we increase the domain size from contour 1 to contour 4, the

contribution of Terms 4 and 5, which account for nonhomogeneity, increases. Term 6, which

represents dynamic effects, increases in magnitude from contour 1 to contour 4. Therefore, if

we neglect these terms in evaluating the M -integral for dynamic loading of nonhomogeneous

materials, path independence is violated and accuracy worsens as the domain size increases.

Figures 5.19 (a) and (b) show the initiation time of each term for contours 1 and 4,

respectively. For both figures, the abscissa indicates time from 1.5 µs to 3.5 µs and the

ordinate indicates normalized KI(t). For contour 1, each term and the total DSIF initiate

at the same time denoted by T in Figure 5.19 (a). For contour 4, however, the initiation

time of Terms 1, 2, 3 and 6, T1 in Figure 5.19 (b), is less than that of total DSIF, which is
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Figure 5.17: Contribution of individual terms to the DSIFs for different contours: (a) Con-
tribution of each term for contour 1; (b) Contribution of each term for contour 2; (c) Con-
tribution of each term for contour 3; (d) Contribution of each term for contour 4

reasonable because waves reach the boundary of larger domains earlier than the boundary

of small domains. On the contrary, initiation time T of Terms 4 and 5 and total DSIF are

almost identical. Even though a few terms initiate early, the initiation time of the total

DSIF for different contours is the same satisfying path independence.
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Figure 5.18: The influence of domain size on the contribution of each term to DSIFs: (a)
Term 4 contribution; (b) Term 5 contribution; (c) Term 6 contribution.
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Figure 5.19: Relationship between domain size and initiation time of each term in the M -
integral: (a) Normalized KI at right crack tip for contour 1; (b) Normalized KI at right
crack tip for contour 4
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5.4 Rectangular Plate with Cracks Emanating from a

Circular Hole

Fedelinski el al. [21] used the dual BEM and ÝJ integral to determine DSIFs in a rectangular

plate with cracks emanating from a circular hole. A decomposition procedure was employed

for mode mixity. Various angles which range from 0◦ to 60◦ were adopted to investigate

fracture behavior in terms of the variation of DSIFs. In this study, crack angles of 30◦ are

chosen to verify DSIFs for homogeneous materials and to investigate the influence of material

gradation on DSIFs for nonhomogeneous materials.

Figure 5.20 (a) illustrates a rectangular finite plate with a width 2W=30 mm and a

height 2H=60 mm containing a hole of radius r=3.75 mm. Two cracks extend from the

hole, and the length between the two crack tips is 15mm. The cracks are inclined at 30◦

clockwise from horizontal. Figures 5.20 (b), (c) and (d) show the mesh configurations for

the whole geometry, and mesh detail for near the hole and the crack tips. A crack tip

template of 12 sectors and 4 rings of elements provide sufficient mesh refinement around the

crack tip regions, which is crucial to obtain reliable numerical results. Step loading, which

is illustrated in Figure 5.2, is applied to both the top and bottom edges. No other boundary

conditions are prescribed.

In this mesh, 1350 Q8 and 204 T6 plane strain elements are used with full integration.

The average acceleration method is adopted with a time step of ∆t = 0.1 µs, and consistent

mass matrix is employed.

5.4.1 Homogeneous Plate

A comparison between the present numerical results and a reference solution is carried out.

For the homogeneous plate, the material properties described in Section 5.3.1 are used. The

corresponding wave speeds are given by expressions (5.1), (5.2) and (5.3).

Figure 5.21 shows the comparison between present numerical results at the right crack

tip and the solution by Fedelinski et al. [21]. The reference results plotted here are obtained

from graphical data using special-purpose software. The abscissa indicates time up to 20 µs.

The DSIFs are normalized by Ks given in expression (5.4). The values of KII in Fedelinski et

al. [21] are positive, while the present numerical values of KII are negative up to around 18

µs in Fig. 5.21. This might be due to different sign convention in shear. The same magnitude

but opposite sign of the KII in the reference solution is compared with the present numerical

values of KII . Greater but acceptable difference is found between KI values than between

KII values. The difference may be due to different numerical schemes, different domain
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Figure 5.20: Rectangular plate with cracks emanating from a circular hole: (a) geometry
and boundary conditions; (b) mesh configuration for whole geometry; (c) mesh details for
both crack tip regions (d) mesh details for the right crack tip (12 sectors and 4 rings).

75



0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (µs)

N
or

m
al

iz
ed

 K
I &

 K
II

K
I
 of numerical results 

K
I
 of reference solutions

K
II
 of numerical results 

K
II
 of reference solutions

Figure 5.21: The comparison between the present numerical results and reference solu-
tions [21]

discretization, and different conservation integrals; ÝJ integral and M-integral. Overall, the

present numerical results agree well with this reference solution.

5.4.2 Nonhomogeneous Plate

Unlike in previous examples, realistic nonhomogeneous material properties are adopted here

to investigate fracture behavior. Rousseau and Tippur [48] prepared three point bending

specimens made of epoxy and solid soda-lime glass spheres. The material properties of the

current specimen follow the values provided in Rousseau and Tippur [48] and assume linear

variation of material properties in the x direction, described by

E(x) = (244x + 7471) (MPa), (5.18)

ρ(x) = (28.8x + 1380) (Kg/m3). (5.19)

A constant Poisson’s ratio of 0.3 is used. Table 5.1 shows material properties and the

corresponding dilatational wave speed along the left edge and the right edge. Notice that

the longitudinal wave speed is different at each location due to the different variation between
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Young’s modulus and mass density.

Table 5.1: Material properties and dilatational wave speed along the left and right edges.

Young’s modulus Mass density Longitudinal wave speed
Left edge 3811 MPa 948 Kg/m3 2.33 mm/µs
Right edge 11130 MPa 1812 Kg/m3 2.88 mm/µs

Normalized mixed-mode DSIFs at both the right and left crack tip locations for homoge-

neous and nonhomogeneous materials are plotted versus time in Figure 5.22. The ordinate

indicates DSIFs normalized by Ks (see expression (5.4)) and the abscissa is time up to 40

µs. Since initiation time of DSIFs depends on the dilatational wave speed, first the DSIFs

for homogeneous materials initiate, then the DSIFs at the right crack tip for the nonhomoge-

neous case initiate, and finally, the DSIFs at the left crack tip for the nonhomogeneous case

initiate as shown in Figure 5.22. At any given time of the transient response, the magnitude

of KI at the right crack tip is higher than that at the left crack tip for the nonhomogeneous

case. This is due to the fact that the values of material properties at the right crack tip are

higher than those at the left crack tip.
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Figure 5.22: Normalized mixed-mode DSIFs at both the left and right crack tips for homo-
geneous and nonhomogeneous materials.
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Chapter 6

Conclusion and Future Work

Dynamic fracture behavior for both homogeneous and nonhomogeneous materials is exam-

ined thoroughly using the dynamic fracture research code developed in this study. The

investigations include the influence of different material profiles on DSIFs, the relation be-

tween initiation time and the domain size, and the contribution of each distinct term in the

M -integral. This code has been developed using the implicit time scheme and theM -integral

with graded elements, which are implemented by means of the GIF [28]. The non-equilibrium

formulation of the M -integral is implemented to evaluate SIFs for both static and dynamic

cases. As illustrated in this study, the M -integral is superior to the DCT in terms of accu-

racy, and unlike the standard J-integral, it yields mixed-mode SIFs directly. The M -integral

proves to be an attractive and superior approach in exploring transient dynamic fracture

behavior in terms of DSIFs.

In this Chapter, a brief summary of this study is provided. Then, the contribution of

this study and suggestions for future work follow.

6.1 Summary

In Chapter 1, literature reviews regarding the evaluation of DSIFs were presented. Through-

out the reviews, we found that various numerical schemes such as the FDM, the FEM, the

BEM and the EFG have been proposed to set up the dynamic equations. The DCT, the

J-integral, and the modified J-integral have been developed for evaluating DSIFs. Then,

background regarding asymptotic fields for dynamic nonhomogeneous materials were pro-

vided. A few works revealed that the asymptotic singular stress fields in nonhomogeneous

materials under dynamic condition are identical with those in homogeneous materials under

quasi-static condition. Finally, dynamic auxiliary fields for nonhomogeneous materials were

discussed in conjunction with non-equilibrium, incompatibility, and constant constitutive
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formulations. The three different formulations arise due to violation of one of the fundamen-

tal properties of mechanics: equilibrium, compatibility and constitutive model. However,

this violation is considered and compensated in the formulation.

In Chapter 2, the generalized J-integral considering dynamic effects was derived. The J-

integral, which is equivalent to energy release rate under linear elastic condition, was proved

to be path independent under the steady state condition, i.e. ∂ui/∂t = −V ∂ui/∂x1. In

other words, if crack speed varies, path independence is violated. We demonstrated theoret-

ically and numerically that the generalized J-integral is reduced to standard J-integral by

Rice [46] under stationary condition, i.e. V = 0. Then, the J-integral was extended to incor-

porate material nonhomogeneity and dynamic effects. It is reduced to the J-integral derived

by Kim and Paulino [27] for static nonhomogeneous material case and to the one derived

by Moran et al. [38] under the stationary condition, i.e. V=0, for dynamic homogeneous

case. The M -integral considering material nonhomogeneity and dynamic effects was derived.

This M -integral utilizes actual and auxiliary fields superimposed on the J-integral. In the

M -integral using non-equilibrium formulation, terms σaux
ij,j ui,1 and Cijkl,1ε

aux
kl εij account for

material nonhomogeneity, and ρüiu
aux
i,1 accounts for mass effects.

In Chapter 3, the concept of homogeneous elements and graded elements was introduced,

and the GIF for graded elements was explained and implemented. Dynamic finite element

formulations were presented including the concept of elastodynamics, Newmark β method,

and displacement control analysis. Numerical aspects of the M -integral were explained in

detail. Transformations are unavoidable in obtaining DSIF using the M -integral because

SIF and auxiliary field quantities are local, while the actual quantities are global.

In Chapter 4, benchmark problems were selected to verify the implementation of the

implicit time scheme, and the M -integral in the research code. The first problem is an

uncracked nonhomogeneous infinite plate where material gradation changes along the x di-

rection. In this problem, stress fields of σyy were verified by comparing present numerical

results with analytical solutions. The second problem is an uncracked homogeneous can-

tilever beam where displacements of the tip were compared with analytical solutions. It has

also been extended to the nonhomogeneous material case. The third problem is a nonho-

mogeneous unbounded plate with an arbitrarily oriented crack under static condition. In

this problem, path-independence for KI and KII was demonstrated numerically and the

M -integral implementation for a static nonhomogeneous medium was verified. The fourth

problem is a homogeneous edge cracked semi-infinite plate where path-independence and

the M -integral implementation for dynamic homogeneous materials were investigated. The

last problem is a nonhomogeneous edge cracked semi-infinite plate. In this problem, field

quantities such as displacements and the M -integral implementation for nonhomogeneous
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materials under dynamic loading were considered.

In Chapter 5, dynamic fracture behavior for homogeneous and nonhomogeneous ma-

terials was investigated in the following examples: 1) Homogeneous CCT specimen; 2)

Nonhomogeneous CCT specimen with mixed-mode crack behavior; 3) Homogeneous and

nonhomogeneous rectangular plate with an inclined crack; 4) Homogeneous and nonhomo-

geneous rectangular plate with cracks emanating from a circular hole. In the examples,

path-independence is assessed and the present numerical results are compared with refer-

ence solutions. Besides, the influence of material gradation on DSIFs, the relation between

initiation time and the domain size, and the contribution of each distinct term in the M-

integral were studied.

6.2 Concluding Remarks and Extensions

The major contributions of this study can be summarized as follows:

• TheM -integral is derived to account for material nonhomogeneity and dynamic effects.

• Three different formulations of the M -integral, i.e. non-equilibrium, incompatibility

and constant tensor formulations, are derived.

• The mode I and mixed mode DSIFs for both homogeneous and nonhomogeneous ma-

terials are evaluated using the M -integral.

• The path-independence of theM -integral is assessed numerically for both homogeneous

and nonhomogeneous materials under dynamic loading.

• Fracture behavior is investigated thoroughly for homogeneous and nonhomogeneous

materials under dynamic loading, including the influence of material gradation on

variations of DSIFs, the relation between initiation time and the domain size, and the

contribution of each distinct term in the M-integral.

In this study, consistent mass matrix is used in conjunction with implicit time schemes

such as the average acceleration method because a consistent mass matrix has the upper-

bound property for the frequency and the implicit method slightly dampens the frequency.

However, this fact has not been examined for nonhomogeneous materials. Therefore, an

investigation of the influence of lumped and consistent mass matrix formulation methods in

conjunction with implicit and explicit time schemes for nonhomogeneous materials is recom-

mended. Moreover, extensive dynamic fracture behavior is examined under the assumption
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of stationary condition, i.e. V=0. Even though good understanding is obtained throughout

this study for dynamic fracture behavior of both homogeneous and nonhomogeneous ma-

terials, this assumption has limitations of application to crack propagation. Therefore, to

better understand more realistic behavior of dynamic problems, i.e. intersonic or supersonic

propagation, extension of this code to simulate crack propagation is necessary.
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Appendix A

ABAQUS User Subroutine for
Graded Elements

c

c-------------------------------------------------------------------------

c Subroutine implemented by S.H.Song

c University of Illinois at Urbana-Champaign

c

c * PROBLEM DESCRIPTION

c This UMAT user subroutine is for isotropic and isothermal materials.

c This subroutine is designed for 3-D and plane strain problems.

c This subroutine needs to be modified for plane stress.

c Both homogeneous and graded properties are possible by selecting

c appropriate functional form of "props".

c This UMAT is based on direct integration method

c

c * IMPORTANT NOTICE

C For new problems, choose the function for

c the material variation and the values of "props".

c After that, go to the section -CHANGE- and change the function and

c values accordingly

c-------------------------------------------------------------------------

c

subroutine UMAT(stress, statev, ddsdde, sse, spd, scd,

& rpl, ddsddt, drplde, drpldt,

& stran, dstran, time, dtime, temp, dtemp, predef, dpred, cmname,
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& ndi, nshr, ntens, nstatv, props, nprops, coords, drot, pnewdt,

& celent, dfgrd0, dfgrd1, noel, npt, layer, kspt, kstep, kinc)

c

include ’ABA_PARAM.INC’

c

character*80 cmname

dimension stress(ntens), statev(nstatv),

& ddsdde(ntens, ntens),

& ddsddt(ntens), drplde(ntens),

& stran(ntens), dstran(ntens), time(2), predef(1), dpred(1),

& props(nprops), coords(3), drot(3,3), dfgrd0(3,3), dfgrd1(3,3)

c Determine material properties based on global coordinates of gauss points.

c coords(1) is X-coordinate of gauss points.

c coords(2) is Y-coordinate of gauss points.

c coords(3) is Z-coordinate of gauss points.

c props is defined by users.

c The function can be also defined by users.

c

c ----CHANGE------------------------------------------------

E=props(1)+props(2)*coords(1)+props(3)*coords(2)

& +props(4)*coords(3)

v=props(5)+props(6)*coords(1)+props(7)*coords(2)

& +props(8)*coords(3)

c-----------------------------------------------------------

c

c Determine Lame’s constants

c amu is mu

c alambda is lambda

c

amu=E/2.0d0/(1.0d0+v)

alambda=E*v/(1.0d0+v)/(1.0d0-2.0d0*v)

c

c

c

c Determine the tangent(Jacobian) matrix
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c

c ndi is number of normal stresses (e.g. Sxx, Syy, Szz))

c nshr is number of shear stresses (e.g. Sxy)

c ntens is dimension of constitutive matrix(ntens=ndi+nshr)

c

do i=1, ndi

do j=1, ndi

if (i.eq.j) then

ddsdde(i,i)=alambda+2.0d0*amu

else

ddsdde(i,j)=alambda

endif

enddo

enddo

do i=ndi+1, ntens

ddsdde(i,i)=amu

enddo

c

c Determine the stress and update the stress

c

do i=1, ntens

do j=1, ntens

stress(i)=stress(i)+ddsdde(i,j)*dstran(j)

enddo

enddo

c

return

end
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