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Abstract

COHESIVE ZONE MODELING OF DYNAMIC FAILURE IN

HOMOGENEOUS AND FUNCTIONALLY GRADED MATERIALS

Zhengyu Zhang

Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign

Glaucio H. Paulino, Advisor

The dynamic failure of homogeneous and Functionally Graded Materials (FGMs) can

be simulated by incorporating a Cohesive Zone Model (CZM) into the numerical scheme.

The failure criterion is incorporated by the CZM using both a finite cohesive strength and

work to fracture in the material description. In this study, first the general dynamic behav-

ior of FGMs (without initial crack) is investigated considering bulk material modeled with

graded elements, i.e. elements possessing a spatially varying material property field, such

as Young’s modulus, Poisson’s ratio, mass density, etc. The results reveal some interesting

features of dynamic behavior of FGMs compared to that of homogeneous materials. Next,

two CZMs developed for FGMs are described and the numerical implementation scheme

is discussed. Finally, the influence of material property variation on the crack propagation

pattern for FGM structures under impact loading is investigated with a number of examples.

The powerful features of CZMs in simulating branching and spontaneous crack initiation be-

haviors are also presented. The present finite element code is named I-CD (Illinois Cohesive

Dynamic).
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Chapter 1

Introduction

Cohesive Zone Models (CZMs) are of growing interest for fracture modeling and are cur-

rently widely used in simulations for both homogenous and inhomogeneous material sys-

tems. Various models have been proposed, their advantages, disadvantages and limitations

being debated. This Chapter introduces and motivates the topic of CZMs by providing

a comprehensive review of the history of these models, presenting and discussing several

representative models. After that, the concept of functionally graded material (FGM) is

introduced briefly. Then the outline of the finite element framework incorporating CZMs is

described. In addition, the organization of the overall work is presented at the end of the

Chapter.

1.1 Background

A realistic fracture model which is physics-based and, at the same time, can easily adapt itself

to experimental calibration and numerical implementation remains elusive. A schematic

drawing is shown in Figure 1.1 to describe three regions at the crack tip where different

classes of material responses are dominant. The outer-ring represents the so-called K-field

and relies on the classical approach based on linear elastic fracture mechanics (LEFM),

where the material behavior is linear and stress and strain fields can be determined with

a single parameter, typically the stress intensity factor (SIF) or energy release rate. The

intermediate ring is the Hutchinson-Rice-Rosengren (HRR) field [17, 37], where the elastic-

plastic response is incorporated. For the inner ring which is very close to the crack tip,

the microstructure of material, e.g., distribution of microcracks and voids, will significantly

influence the material response due to effects like void nucleation. In continuum mechanics,

the Gurson model [14] successfully incorporated these effects into the constitutive model for

ductile materials, however, the large number of parameters that need to be calibrated poses
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a strong challenge for the model to be used widely.

K-field

voids and micro-cracks

HRR field

Figure 1.1: Crack tip zones with different material response characteristics.

There are a few shortcomings with the aforesaid approaches. First, whether only LEFM

model is used to describe crack tip field or more complicated phenomena incorporated, an

external criterion is required for the crack to propagate, and the crack propagation direction

is also imposed. Second, phenomena such as fracture instability (which has not been thor-

oughly understood yet), cannot be simulated with a purely phenomenological model. Third,

crack branching and fragmentation that usually occur in impact loading events cannot be

properly simulated. Finally, the classical approaches require pre-existing, crack-like flaws.

The nucleation of voids can be treated in Gurson model, however as explained above, the

wide usage of this model remains problematic.

An alternative way to describe the near-tip behavior and propagate the crack is by

means of the CZM, which incorporates a cohesive strength and finite work to fracture in

the description of material behavior. The concept of “cohesive failureÔ is illustrated in

Figure 1.2 for tensile (mode I) case. It is assumed that a cohesive zone, along the plane

of potential crack propagation, is present in front of the crack tip. Within the extent of

the cohesive zone, the material points which were identical when the materials was intact,

separate to a distance of ∆ due to the influence of high stress at the crack tip vicinity.

The cohesive zone surface sustains a distribution of tractions T which are functions of the

displacement jump across the surface ∆, and the relationship between the traction T and

separation ∆ is defined as the constitutive law for the cohesive zone surface. In general, the

constitutive law indicates that with increasing interfacial separation ∆, the traction T across

the cohesive interface first increases, reaches a maximum value at critical separation value

δ, then decreases, and finally vanishes at a characteristic separation value, here denoted as

∆c, where complete decohesion is assumed to occur and the material is considered to have

2



completely failed. The subscript n (normal) is attached to the parameters in Figure 1.2 to

denote the tensile (Mode I) fracture case, and in Mode-II or mixed-mode case the tangential

traction-separation should be included.

The aforementioned approach has the promise of simulating fracture process where frac-

ture occurs spontaneously. The fracture path and speed become natural outcome of the

simulation rather than being specified ad hoc.

tip

∆n∆n
c

nT

crack tip

cohesive zone tip

cohesive zone

plane of failure
ahead of crack

(a) (b)

Figure 1.2: Schematic representation of (a) the cohesive zone concept and (b) the cohesive
tractions along a cohesive surface at the crack tip vicinity.

1.2 Cohesive Zone Models

The concept of CZM dates back to 1933, when in Prandtl’s [35] work a cohesive traction

relation is used to predict the length of a debonded zone between two slender beams. In 1959,

Barenblatt [1, 2] proposed the CZM for perfectly brittle materials that accounted for the

interaction between atoms near a crack tip. Around the same time frame Dugdale [10]

extended the concept to perfectly plastic material by postulating the existence of a process

zone at the crack tip. Later on, a computational method called “nodal releaseÔ [39] which

models fracture by splitting nodes along the fracture path within a finite element setting was

proposed. During recent years, the CZM became an active research field and many models

have been proposed that consider increasing physical complexity, e.g. the rate-dependent

behavior, damage, and viscoelasticity [26, 48, 9, 29]. However, here, the discussion will

focus on the basic characteristics of a few representative CZMs: the potential-based model

by Xu and Needleman [46], the initial-rigid model by Camacho and Ortiz [6], the bilinear
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model by Geubelle and Baylor [12], and the Virtual Internal Bond model by Klein, Gao and

co-workers [27, 28]. The cohesive zone model for FGMs will be discussed in Chapter 3.

1.2.1 Xu and Needleman’s Model

The model proposed by Xu and Needleman [46] assumes a scalar decohesion potential φ in

the form

φ(∆) = φn+φn exp

(

−∆n

δn

){[

1− r +
∆n

δn

]

(1− q)

(r − 1)
−
[

q +
(r − q)

(r − 1)

∆n

δn

]

exp(−∆2
t )

}

(1.1)

from which the cohesive traction force can be obtained as

T = − ∂φ

∂∆
(1.2)

where T = [Tn, Tt] is the traction force vector — in the two dimensional case it comprises

traction in normal and tangential directions. The displacement jump vector ∆ = [∆n,∆t]

denotes the displacement discontinuity across the cohesive surface in the normal and tan-

gential directions. The parameters φn and φt are the energies required for pure normal and

tangential separation, respectively. The parameters δn and δt are the critical opening and

sliding displacements for normal and tangential separation, respectively, which are related

to the cohesive normal strength σmax and the tangential strength τmax as

φn = eσmaxδn , φt =
√

e/2τmaxδt . (1.3)

Moreover,

q = φt/φn (1.4)

is the energy ratio and r is defined as the value of ∆n/δn after complete shear separation

with Tn = 0. The resulting normal and shear traction components are derived from (1.2):

Tn=−φn

φt

exp

(

−∆n

δn

){

∆n

δn
exp

(

−∆2
t

δ2t

)

+
(1− q)

(r − 1)

[

1− exp

(

−∆2
t

δ2t

)][

r − ∆n

δn

]}

(1.5)

Tt=−φn

φt

(

2
δn
δt

)

∆t

δt

{

q +
(r − q)

(r − 1)

∆n

δn

}

exp

(

−∆n

δn

)

exp

(

−∆2
t

δ2t

)

(1.6)

Figure 1.3 (a) shows the normal traction across the surface, Tn, as a function of ∆n with

∆t = 0. The maximum value of Tn is σn and occurs when ∆n = δn. The variation of Tt

with ∆t is shown in Figure 1.3 (b). The maximum value of |Tt| = τmax is attained when

∆t =
√
2δt/2.
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Figure 1.3: The intrinsic potential-based exponential cohesive model in (a) pure tension and
(b) pure shear.

With the model described above, Xu and Needleman [46] investigated dynamic behavior

of fast crack growth in brittle solids and demonstrated that the model is capable of simulating

many dynamic fracture phenomena such as crack branching, dependence of crack speed on

impact velocity, and abrupt crack arrest.

The above intrinsic model, sometimes referred to as “cohesive surface networkÔ [28],

requires the existence of cohesive elements in the structure before the simulation begins.

This renders certain simplicity to the numerical implementation, however this approach adds

fictitious compliance to the structure (the detailed mechanism will be discussed in Chapter 3),

and hence affect adversely the accuracy of numerical simulation. To mitigate the influence

of this artifact, a large initial stiffness i.e. steep initial slope of Tn versus ∆n and Tt versus ∆t

curves in Figure 1.3 is desired. Since neither cohesive energy nor cohesive strength had been

experimentally determined with high degree of certainty [28], certain latitude is permitted

for the choice of cohesive strength. Orowan [32] estimated E/σmax = 30, and in the work by

Xu and Needleman [46], σmax = E/10 is generally used. However, a consequent drawback

with higher initial stiffness is that smaller elements and smaller time step are required to

produce stable results .

The distinct features of Xu and Needleman’s model [46] are summarized as follows:

• It is an intrinsic model, in the sense that the cohesive surface elements are embedded

in the structure, so the mesh is unchanged during the entire computation time. No
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extrinsic criterion is needed for crack nucleation or propagation.

• The normal and tangential traction-separation relationships are derived from one cohe-

sive energy potential expression, in which 4 parameters need to be determined, i.e. φn,

φt, σmax, τmax. Usually it is assumed that φn = φt, and r = ∆n/δn = 0, which means

that under pure shear deformation, the normal displacement jump remains zero after

complete separation.

• The formulation generates a healing effect so that the closing fracture surfaces do not

take permanent damage into account.

• The elastic response of the cohesive elements prior to crack propagation introduces

artificial compliance to the computation model and reduces accuracy.

1.2.2 Camacho and Ortiz’s Model

This model minimizes the artificial softening effect due to elastic deformation of cohesive

interface present in Xu and Needleman’s model [46]. Ideally the initial interface stiffness

should be infinity, i.e. prior to crack propagation, the cohesive interface should not generate

any deformation. Figure 1.4 illustrates the model by Camacho and Ortiz [6] which pos-

sesses this characteristic. In the implementation stage, the cohesive elements are adaptively

inserted into the mesh, i.e. the initial topology of the mesh does not have any cohesive ele-

ments. When a certain fracture criterion is met, a cohesive element is inserted in the proper

location of the mesh which allows the crack to propagate. Since this model requires a failure

criterion which is external to the cohesive law, this kind of CZMs is referred to as “extrinsicÔ.

The failure criterion may be chosen in terms of a critical fracture stress σfr determined from

the critical mode I stress intensity factors KIc and the initial flaw size a0 of the material

σfr =
KIC√
πa0

(1.7)

This model is based on effective quantities. The effective stress σeff is defined as

σeff =
√

T 2
n + βτT 2

t for Tn ≥ 0 (1.8a)

σeff =
√

βτ (|Tt| − µ|Tn|) for Tn < 0 (1.8b)

where Tn and Tt are the cohesive tractions in normal and tangential direction, respectively;

βτ is the shear stress factor, which represents the mode mixity effect, and µ is the friction

coefficient. When the fracture condition σeff ≥ σfr is met, a new surface is introduced into
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the mesh by doubling nodes and creating the cohesive zone elements. The cohesive force

that resists the opening and sliding of the new surface is assumed to weaken irreversibly

with increasing crack opening. Permanence of damage is retained by keeping track of the

maximum displacement in the simulation history and using it as the indicator for loading

or unloading, as shown in Figure 1.4. The cohesive traction and separation relationship is

described as follows:

• Tn ≥ 0, tensile case. Under loading condition, when the current displacement is larger

than that in history, the cohesive traction ramp down linearly as displacement jump

increases and reduces to zero as opening reaches critical opening displacement ∆n = δn.

The decohesion is complete at this point and cohesive force vanishes thereafter.

Tn = σmax

(

1− ∆n

δn

)

for ∆n ≥ ∆n(max)

Tt = τmax

(

∆n

δn

)

sgn(∆t)

(1.9)

where ∆n(max)
is the maximum normal opening displacement recorded in history, and

sgn(x) = x/|x| is the signum function. If unloading occurs, the crack begins to close,

and the traction obeys the linear unloading relation

Tn = σmax

(

1−
∆n(max)

δn

)

∆n

∆n(max)

for ∆n < ∆n(max)

Tt = τmax

(

1−
∆n(max)

δn

)

∆n

∆n(max)

sgn(∆t)

(1.10)

as shown in Figure 1.4(a). If the crack reopens, the reloading path follows the un-

loading path in reverse direction till ∆n(max)
and then follows the original ramp-down

relation (1.9).

• Tn < 0, compression case. In Ortiz and Camacho’s study [6], when normal com-

pression occurs, a contact algorithm is employed to treat the normal displacement

penetration, while the tangential traction-separation relations follow

Tt = τmax

(

1−
∆t(max)

δt

)

sgn(∆t) for ∆t ≥ ∆t(max)
(1.11)

Tt = τmax

(

1−
∆t(max)

δt

)

∆t

∆t(max)

for ∆t < ∆tmax (1.12)
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Figure 1.4: The extrinsic initial-rigid cohesive model in (a) pure tension and (b) pure shear.

for loading and unloading cases, respectively, where ∆t(max)
is the maximum tangential

opening displacement in the simulation history.

With the model above, Camacho and Ortiz [6] investigated impact damage in brittle

materials. Simulation of severe fragmentation under high velocity impact loading was carried

out, in which thermal effects and rate dependence were also considered.

The features of Camacho and Ortiz’ model [6] are summarized as follows:

• It is an extrinsic model, in that the cohesive elements are adaptively inserted into the

mesh. It avoids the artificial softening effect present in intrinsic models, however at

the price of extra work consisting of adaptively updating the mesh by renumbering

nodes and elements. Moreover, an extrinsic failure criterion is required.

• The critical fracture stress is determined by linear elastic fracture mechanics formula,

and is much lower than used in Xu and Needleman’s [46] model. In their work, Camacho

and Ortiz [6] used a value around E/σmax = 600.

• Permanent damage is considered.

• It is based on effective quantities, which can be considered a drawback of the model.

• Explicit contact/friction algorithm is employed to treat normal displacement penetra-

tion case.
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• The relations between normal and tangential components of the traction and displace-

ment jump are not coupled. Effect of mode mixity is represented by the arbitrary

parameter βτ , whose value can vary within a large range due to lack of experimental

evidence.

1.2.3 Bilinear Model

The bilinear model was presented by Geubelle and Baylor [12, 4] and it is illustrated in

Figure 1.5. A scalar “residual strength parameterÔ S is defined as

S = 1−
√

(∆n/δn)
2 + (∆t/δt)

2 (1.13)

which takes a value close to unity initially and vanishes when complete failure is achieved.

This parameter is forced to be monotonically decreasing, which ensures permanence of dam-

age. To this end, its historic minimum value Smin is stored and S is determined as

S = min

(

Smin, max

(

0, 1−
√

(∆n/δn)
2 + (∆t/δt)

2

))

(1.14)
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Figure 1.5: The bilinear cohesive model in (a) pure tension and (b) pure shear.
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The traction-separation relation follows

Tn =
S

1− S

∆n

δn
σmax (1.15a)

Tt =
S

1− S

∆t

δt
τmax (1.15b)

where

δn =
2GIc

σmaxSinitial

(1.15c)

δt =
2GIIc

τmaxSinitial

(1.15d)

in which GIc and GIIc are the critical energy release rates for mode I and mode II respectively.

Sinitial is the initial value for S.

In Geubelle and Baylor’s work [12], the model is employed to investigate fracture nu-

cleation and propagation in composite materials under impact loading, and delamination

between distinct material layers. The general features of this model are summarized here:

• It is an intrinsicmodel, the cohesive elements are embedded in the discretized structure.

• Permanent damage effect is incorporated with the introduction of parameter S. The

loading and unloading paths are analogous to those of Camacho and Ortiz’s [6] model.

• By choosing the initial strength parameter Sinitial, the accuracy with intrinsic model

can be controlled, however accuracy and computational stability are always at odds.

1.2.4 Virtual Internal Bond Model

The Virtual Internal Bond (VIB) model is different from the previous three models discussed

above in that it does not differentiate the bulk material and cohesive surface, but rather

incorporates the cohesive surface effect into the continuum constitutive relationship. In

essence, it is an elasticity model. In the previous models described above, the bulk response is

accounted for by means by bulk elements, for which the constitutive relationship is described

with the continuum Hooke’s law, while the fracture behavior is captured by explicit cohesive

elements, which follows a cohesive traction-separation relationship. In contrast, there is no

“cohesive elementÔ in the VIB model, and the behavior of the bulk material depends on

the local strain status. The increasing strain localization softens the material and when a

certain “fractureÔ criterion is satisfied, the crack is initiated or propagated.
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The VIB model assumes cohesive interactions between material particles from an atom-

istic view, and the network of cohesive bonds is statistically incorporated into the constitutive

law of the material via the Cauchy-Born rule, i.e. by equating the strain energy density on

the continuum level to the potential energy stored in the cohesive bonds due to an im-

posed deformation. With this approach, fracture is directly introduced into the continuum

constitutive behavior.

For a homogeneous, hyperelastic solid, internal cohesive bonds are assumed to exist

between material particles at the microstructure level. Each bond is described by a potential

energy function U(`) where ` denotes the deformed bond length, which can be expressed in

terms of right Cauchy-Green tensor as

` = `0
√

ξICIJξJ , (1.16)

where ξI denotes the bond orientation in Lagrangian configuration, `0 denotes the length of

the unstretched bond, and (CIJ) is the IJ component of the Cauchy-Green tensor C. The

important idea in this model is to link the discrete microstructure cohesive description and

the macroscopic continuum model by the Cauchy-Born rule as

Φ(CIJ) = 〈U(`)〉 =
〈

`0
√

ξICIJξJ

〉

(1.17)

where Φ denotes the strain energy density. The position of each bond is characterized by a

spherical coordinate system (`0, θ, φ), and the notation < · · · > is defined as the volumetric

average

〈· · · 〉 ≡
∫ ∫ ∫

(· · · )D(`0, θ, φ) sin θd`0dθdφ (1.18)

where D(`0, θ, φ) is the bond density function, which characterizes the spatial distribution

of internal bonds.

By employing a finite deformation formulation, the symmetric second Piola-Kirchhoff

stress tensor S and material tangent moduli tensor C can be represented in component form

as

SIJ = 2
∂Φ

∂CIJ

=

〈

`0U
′(`)

`
ξIξJ

〉

(1.19)

CIJKL = 4
∂2Φ

∂CIJCKL

=

〈

`40

(

U ′(`)

`2
− U ′′(`)

`3

)

ξIξJξKξL

〉

(1.20)

Notice that now the “material parametersÔ in C are no longer constant; rather, they become

function of the cohesive bond distribution D(`0, θ, φ), bond cohesive potential U(`), as well

as local deformation `(CIJ).
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Several special bond cases are proposed [27], e.g., for plane stress, isotropic solid,

D(`0, θ, φ) = D0δD(`0 − `∗0)δD(θ − π/2) (1.21)

where δD denotes the Dirac delta function, and `∗0 is the characteristic bond length.

By Taylor expansion of strain energy density expression (1.17) within small strain case,

the linear elasticity case is produced, and the elastic modulus takes the form

cijkl = µ(δijδkl + δikδjl + δilδkj) (1.22)

where µ is defined as the shear modulus

µ =
π

4

〈

`20U
′′(`0)

〉

(1.23)

with other parameters taking the following forms

λ = µ, ν = 1/3, E =
2π

3

〈

`20U
′′(`0)

〉

(1.24)
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0.2
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0.8

1
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 ′ m

ax

`/`0

Figure 1.6: A general cohesive force law for an isotropic VIB derived considering equibiaxial
stretching.

With the above form, once the potential U(`) is defined, the constitutive model is set. A

phenomenological cohesive force law is introduced (Figure 1.6)

U ′(`) = A(`− `0) exp

(

−`− `0
B

)

(1.25)

in which the parameters A and B need to be calibrated from experiments. The constant

A represents the material “stiffnessÔ at the unstretched state U ′′(`0) = A, and B denotes a
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characteristic length. With the D0 distribution for isotropic plane stress case (Eq. (1.21)),

the cohesive strength under equibiaxial stretching is given by

σc =
D0`

4
0

Ω0

ABπ

e(`0 +B)
(1.26)

where Ω0 denotes representative volume. In the work by Klein et al. [27, 28], the VIB model

has been used to simulate failure detection, crack propagation, and fracture toughening.

The features of VIB model are hereby summarized:

• It links the cohesive traction between material particles at the microstructural level and

the material constitutive law at the macroscopic level, by equating the strain energy

density and average value of cohesive bond potential. No cohesive surface is explicitly

generated in the numerical simulation.

• The elastic parameters, e.g. Young’s modulus E and Poisson’s ratio ν, are no longer

constant, but depend on the cohesive bond behavior, which in turn depends on local

deformation. With accumulated strain localization, material becomes weaker.

1.3 Functionally Graded Material (FGM)

Functionally graded materials or FGMs are a new generation of engineered composites char-

acterized by spatially varied microstructures accomplished through nonuniform distribution

of the reinforcement phase with different properties, sizes and shapes, as well as by inter-

changing the roles of reinforcement and matrix (base) materials in a continuous manner. This

new concept of engineering the material microstructure and recent advances in material pro-

cessing science allows one to fully integrate material and structural design considerations [34].

The initial emphasis for FGMs focused on the synthesis of thermal barrier coatings for

space applications, however, subsequent investigations have addressed a wide variety of ap-

plications [38]. Many of these applications involve dynamic events such as blast protection

for critical structures and armors for ballistic protection. For example, a functionally graded

armor composite with a tailored ceramic to metal through-thickness gradient combines the

beneficial effects of ceramics (e.g. hardness) and metals (e.g. toughness) in the same ma-

terial system while suppressing adverse strength reduction that would occur with discrete

interfaces [7]. Gooch et al. [13] have reported on an investigation of functionally graded

TiB/Ti armors. Other applications of FGMs include bone and dental implants, piezoelectric

and thermoelectric devices, optical materials with graded refractive indices, and spaceflight

structures [38, 34]. New applications are continuously being discovered.
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Fracture mechanics of FGMs have been an active area of research [11]. For instance, Kim

and Paulino [19-25] have provided techniques for evaluating mixed-mode stress intensity

factors, J-integrals, interaction integrals, T-stress, and crack initiation angles under static

and quasi-static conditions for both isotropic and anisotropic materials. Some of the exper-

imental work will be referred to in Chapter 5, where numerical simulation is performed and

compared with experimental results.

1.4 Finite Element Formulation

To incorporate a cohesive zone model into the numerical approach of dynamic fracture

investigation, the cohesive element is developed and implemented as part of the finite element

scheme, which follows the cohesive traction-separation relationship, e.g., the models discussed

above. In contrast, the conventional finite element, which is now called “bulk elementÔ or

“volumetric elementÔ, follows the conventional stress-strain relationship.

�����
�����
�����
�����

T ∆n

∆t

T = f(∆)

σ = g(E)

Figure 1.7: Schematic representation of bulk elements and cohesive elements in the finite
element formulation.

Figure 1.7 illustrates the concept of the two classes of elements. The bulk behavior of

the material is counted for by the conventional volumetric elements, whose constitutive re-

lationship is usually defined by Hooke’s Law. To model fracture initiation and propagation,

cohesive elements are positioned along the possible path of crack propagation, attached to

the volumetric elements, and are capable of performing decohesion, depending on whether

the decohesion force the element experiences has exceeded the cohesive strength. The con-

stitutive law of cohesive elements is inherently embedded in the finite element model, so that

the presence of cohesive elements would allow spontaneous crack propagation, and thus it is
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very promising in the investigation of bifurcation and/or impact dynamic loading problem,

where multiple crack paths are possible.

The FEM formulation with cohesive elements can be derived from the principle of virtual

work, as described in the following. The principle of virtual work of the 2D dynamic finite

element formulation can be expressed as ([46]):

∫

Ω

(divσ − ρü) δudΩ−
∫

Γ

(T− σn)δu dΓ = 0 (1.27)

where Ω represents domain area, Γ denotes boundary line with normal vector n, u is the

displacement vector, T is the traction at boundary, and σ is the Cauchy stress tensor. The

superposed dot in ü denotes differentiation with respect to time, and ρ is the material density.

If cohesive surface is not considered, by applying divergence theorem and integral by parts

to the general expression in (1.27), the following conventional expression can be obtained:

∫

Ω

(σ : δE+ ρü · δu) dΩ−
∫

Γext

Text · δu dΓext = 0 (1.28)

where Γext represents the boundary line on which external traction Text is applied, and E

is the Green strain tensor. When the cohesive surface is considered, the contribution of

cohesive traction-separation work emerges when the integral by parts technique is applied

to (1.27), and one more term appears in the resultant expression:

∫

Ω

(σ : δE+ ρü · δu) dΩ−
∫

Γext

Text · δu dΓext −
∫

Γcoh

Tcoh · δ∆u dΓcoh = 0 (1.29)

where Γcoh represents the internal cohesive surfaces Γcoh on which the cohesive tractions Tcoh

and displacement jumps ∆u are present. Notice that in FGMs the mass density is no longer

constant, but depends on position.

The integrals in Eqs. (1.27-1.29) are carried out in the deformed configuration. If infinites-

imal deformation is assumed, the undeformed configuration can be used instead. However,

when using finite deformation formulation, it is preferable to convert the integral from de-

formed configuration to original configuration, and work conjugates other than σ and E are

used instead. The large deformation formulation scheme is briefly described in the following.

In finite deformation domain, we define the displacement vector u as

u = x−X (1.30)

where x and X denote the location of material point in the undeformed and deformed
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configurations, respectively. The deformation gradient tensor F and the Lagrangian strain

tensor E are defined as

F =
∂x

∂X
, (1.31)

E =
1

2
(FTF− I), (1.32)

respectively, where I is a fourth-order identity tensor.

The principle of virtual work (1.27), with all quantities referred to undeformed configu-

ration, can be re-written as

∫

Ω

(divP− ρü) δudΩ−
∫

Γ

(T−Pn)δu dΓ = 0 (1.33)

where Ω represents domain area, Γ denotes boundary line with normal vector n and T is

the traction at boundary. The first Piola-Kirchhoff stress tensor P is related to the Cauchy

stress tensor σ as

P = JσF−T , where J = detF (1.34)

At the boundary, the following relationship holds: T = Pn. By applying the divergence

theorem and integral by parts to the general expression in (1.33), if cohesive surface is not

considered, the following conventional expression can be obtained (in the absence of cohesive

surface):

∫

Ω

(P : δF+ ρü · δu) dΩ−
∫

Γext

Text · δu dΓext = 0 (1.35)

When the cohesive surface is considered, one more term appears in the resultant expression:

∫

Ω

(P : δF+ ρü · δu) dΩ−
∫

Γext

Text · δu dΓext −
∫

Γcoh

Tcoh · δ∆u dΓcoh = 0 (1.36)

By means of the following relationship for the second Piola-Kirchhoff stress tensor S

S = F−1P = JF−1σF−T (1.37)

the alternative expression of Eqn. (1.36) becomes

∫

Ω

(S : δE+ ρü · δu) dΩ−
∫

Γext

Text · δu dΓext −
∫

Γcoh

Tcoh · δ∆u dΓcoh = 0 (1.38)

In the present work the explicit central difference time stepping scheme [5] is used, and
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the updating scheme for nodal displacements, accelerations and velocities from time step n

to n+ 1 is:

un+1 = un +∆t Úun +
1

2
∆tün (1.39)

ün+1 = M−1(F+Rintn+1 −Rcohn+1) (1.40)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (1.41)

where ∆t denotes the time step, M is the mass matrix, F is the external force vector, Rint

and Rcoh are the global internal and cohesive force vectors, which are obtained from the

contribution of bulk and cohesive elements, respectively.

The formulation described above applies to both homogeneous and FGM problems. By

introducing the generalized isoparametric element formulation in the numerical scheme, the

material gradient is treated appropriately at element level. The discussion of the generalized

isoparametric element will be carried out in Chapter 2. The detailed FEM formulation of

the internal force vector Rint and cohesive force vector Rcoh can be found in the appendix.

1.5 Thesis Organization

The contents of the remaining Chapters of this thesis are outlined as follows. The dynamic

behavior of FGMs (without crack) is investigated in Chapter 2. Section 2.1 presents the

explicit dynamic scheme for the FEM without cohesive element. Section 2.2 introduces

the concept of generalized isoparametric formulation, which is employed to treat material

gradation. Section 2.3 discusses wave speed in FGMs and the time step used for the explicit

updating scheme. Section 2.4 provides simulations for two example problems to validate the

code and to investigate the influence of material gradation on the dynamic behavior of FGMs.

Chapter 3 presents two cohesive zone models for FGMs and energy terms involved in the

CZM approach. Section 3.1 describes a CZM which uses effective quantities (for calculation

of displacement jump and traction) to deal with mode mixity. Section 3.2 describes the

extension of an existing CZM for FGMs, which employs actual displacement jump and

traction quantities instead of effective quantities. A critical discussion on the features and

potential drawbacks of these two models are presented in Section 3.3. Energy terms in the

CZM simulation are described in Section 3.4 along with a simple example. Chapter 4 focuses

on the general issues of the cohesive elements implementation. Section 4.1 provides detailed

procedures of mesh generation with cohesive elements and includes a few examples. Section

4.2 studies the stability and accuracy of the numerical scheme, which are influenced by the
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various parameters of the cohesive model adopted, as well as the geometry discretization

employed. Chapter 5 provides three problems which focus on various capabilities of the

CZM approach in modelling dynamic fracture propagation in FGMs, and demonstrates the

influence of material gradation on the fracture behavior. Section 5.1 presents the simulation

of spontaneous crack growth in an elastic strip, combined with mesh convergence study,

as well as evidence of spontaneous crack nucleation (without initial crack) capability of

the CZM. Section 5.2 presents the the simulation of crack growth in a 3-point-bending FGM

specimen and the results are compared to experimental results. Section 5.3 demonstrates the

capacity of crack branching with CZM approach by simulating a plate subjected to impact

loading with cohesive elements in a large region. The simulation results presented in the

thesis are obtained from the small deformation formulation except for the branching problem

presented in Section 5.3. Finally, a summary of the current work and some suggestions for

future work are presented in Chapter 6.
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Chapter 2

Dynamic Behavior of Bulk Material

The dynamic behavior of FGM material is investigated with only bulk elements and no

cohesive elements involved, so that the influence of bulk and cohesive elements on the stability

and accuracy of the FEM analysis can be differentiated. In this Chapter, first the explicit

updating scheme tailored for the framework without cohesive elements is given, then the

graded element formulation of FGM bulk material is presented, and finally results for two

classes of problems are presented. A cantilever beam subjected to transient point load is

simulated to validate the code by comparing the results to those from analytical solution

and modal analysis. The stress evolution history for a three-point bending beam subjected

to impact loading is studied, which provides valuable insight on the prediction of crack

initiation time sequence for different material gradient cases.

2.1 Explicit Dynamic Scheme

The dynamic updating scheme in bulk material is given by the following equations

un+1 = un +∆t Úun +
1

2
∆tün (2.1)

ün+1 = M−1(F+Rintn+1) (2.2)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (2.3)

which can be obtained from Eqs. (1.39–1.41) by eliminating cohesive terms.
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2.2 Generalized Isoparametric Element Formulation

for FGM

To treat the material nonhomogeneity inherent in the problem, we can use either homoge-

neous elements with constant material properties at the element level, which are evaluated at

the centroid of each element (Figure 2.1), or graded elements, which incorporate the material

property gradient at the size scale of the element (Figure 2.2). The latter scheme (Kim and

Paulino, [18]) was demonstrated to result in smoother and more accurate results than the

homogeneous elements. In this scheme, the same shape functions are used to interpolate

the unknown displacements, the geometry, and the material parameters, and hence earned

the name Generalized Isoparametric Element Formulation. The interpolations for spatial

coordinates (x, y), displacements (u, v) and material properties (E, ν, ρ) are given by

x =
m
∑

i=1

Ni xi, y =
m
∑

i=1

Ni yi (2.4)

u =
m
∑

i=1

Ni ui, v =
m
∑

i=1

Ni vi (2.5)

E =
m
∑

i=1

Ni Ei, ν =
m
∑

i=1

Ni νi, ρ =
m
∑

i=1

Ni ρi (2.6)

respectively, where Ni are the shape functions. The variations of material property, e.g.,

Young’s Modulus E, for graded and homogeneous elements are illustrated in Figure 2.2.

Both homogeneous and graded elements are implemented in the code, however, for the

reasons given above, we prefer to use the graded elements. It is evident from Figure 2.1

and Figure 2.2 that the graded elements can approximate the material gradation much

better, with a smooth transition at element boundaries (though not perfectly smooth, we

naturally expect), while the homogeneous elements give a staircase-like profile. Using graded

elements will be particularly beneficial within regions with coarse mesh or with high stress

gradient. Therefore, the volumetric elements employed to address problems presented in

the thesis are T6/T3 elements, with 3/4 Gauss points for T6 elements and 1 Gauss point

for T3 element (Figure 2.3). The choice of triangular elements in favor of quadrilateral

elements is because the former element allows crack to grow in more arbitrary directions.

For example, the triangular elements of 45o orientation allow crack to grow along either 0o,

±45o or ±90o, while the quadrilateral elements only allow crack to grow along horizontal or

vertical directions.
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Figure 2.1: Material properties evaluated at the centroid of homogeneous elements, and used
for whole element. Exponential gradation in x direction for Young’s modulus E is provided
as example

2.3 Wave Speed in FGM and Time Step Control

The stability of conventional explicit finite element schemes is usually governed by the

Courant condition [3], which provides an upper limit for the size of the time step ∆t:

∆t ≤ `e
Cd

(2.7)

where `e is the mesh equivalent length of the shortest distance between two nodes, and the

dilatational wave speed Cd is expressed in terms of the material elastic constants E = E(x),

ν = ν(x), and density ρ = ρ(x) as

Cd(x) =

√

E(x)(1− ν(x))

(1 + ν(x))(1− 2ν(x))ρ(x)
: plane strain (2.8)

Cd(x) =

√

E(x)

(1 + ν(x))(1− ν(x))ρ(x)
: plane stress (2.9)
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Figure 2.2: Material property first evaluated at element nodes and interpolated to Gauss
points using shape functions (2.6). Exponential gradation in x direction for Young’s modulus
E is provided as example.
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Figure 2.3: T6 and T3 elements and Gauss points

This expression of dilatational wave speed assumes linear elasticity, and since our problem

is restricted to linear elasticity, this expression applies for the explicit FEM formulation.

However, since for FGM all material properties could vary in space, Cd is no longer a constant.

To simplify the implementation, the maximum wave speed is calculated depending on the
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Figure 2.4: Shortest distance between nodes for computing ∆t.

profile of the material property, and a uniform maximum time step is applied to the whole

structure.

Table 2.1 provides wave speeds for a few materials, in which CS and CR denote the shear

wave speed and Rayleigh wave speed, respectively. This table gives an idea about the range

of materials used in this work.

Table 2.1: Wave speeds for a few materials

Material Cd (m/s) CS (m/s) CR (m/s)
Air 345 / /

PMMA 2090 1004 939
Steel 6001 3208 2975

Zirconia 6882 3611 3355

2.4 Homogeneous and Functionally Graded Beams

The dynamic behavior of bulk FGM structures is of significant importance due to various

engineering applications (e.g.vibration problems, impact loading). We perform a thorough

check of stability and accuracy before we proceed to cohesive elements formulation and

fracture analysis. Two classes of problems are addressed here, one is an FGM cantilever

beam under tip point load, with material gradation in either length or height direction; the

other is an FGM beam under prescribed point velocity load, where the results are compared

to those of Rousseau and Tippur’s [40].

2.4.1 Transient Point Loading

The response of a cantilever beam under transient point load is a classical dynamics prob-

lem with well-established solution. Investigating a problem that is simple, yet involves rich
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dynamics, serves as a good starting point that can reveal many important dynamics char-

acteristics particular to FGMs, as well as providing a strong foothold for more complex

problems. First the analytical solution for a homogeneous beam under transient point load

is given, next the Rayleigh-Ritz method is employed to evaluate the influence of material

gradation profile on the natural frequencies and modes of the structure. This result is further

verified with FEM modal analysis, which revealed some interesting features that had been

neglected by the Rayleigh-Ritz method. Finally, the responses of FGM beams of different

material gradation profile are compared for two loading cases, which are in agreement with

the prediction of the Rayleigh-Ritz method.

Transient Point Loading. Consider the cantilever beam illustrated by Figure 2.5. The

beam is of length L = 2mm, Height H = 0.1mm (Figure 2.5), loading (Figure 2.6) is

uniformly distributed along the free end of the beam, and consists of a sine pulse of duration

T chosen as the period of the fundamental vibration mode of the cantilever beam, i.e.,

T =
2π

ω1
(2.10)

where ω1 is the fundamental frequency of the beam. The natural frequencies ωi of the

cantilever beam are given by

ω2
i = λ4

i

EI

ρA
(2.11)

where A,E, ρ and I denote the beam cross-sectional area, stiffness, density and moment of

the inertia, respectively, and [8]

λ1 = 1.875/L, λ2 = 4.694/L, λ3 = 7.855/L, ... (2.12)

The tip deflection is given by Warburton (1976, [47]) as

w(L, t) = 4
P

m

n
∑

i=1

[

1

ωi

∫ l

0

sin
πτ

T
sinωi(t− τ)dτ

]

for 0 ≤ t ≤ T (2.13)

= 4
PL3

EI

n
∑

i=1

[

π/ (ωiT )

(λiL)
4 ((ωiT )

2 − 1
)

{

(cosωiT + 1) sinωi(t− T )

+ sinωiT cosωi(t− T )

}]

for t ≥ T

The T6 elements, with mesh discretization shown in Figure 2.5, produced very good

results compared with the analytical solution expressed in Eq. (2.13), as demonstrated in

Figure 2.7. which shows that both results agree with plotting accuracy. We next investigate

the influence of material gradation.
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Figure 2.5: Geometry and discretization (203 nodes, 80 T6 elements) of cantilever beam
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Figure 2.6: Normalized load history

Material Gradation Profiles. For the FGM cantilever beam under consideration, mate-

rial gradation can be in either x or y direction (Figure 2.8). For each direction, three material

gradation profiles were considered: exponential, linear, and equivalent homogeneous beam,

which can be expressed as follows (assume material properties vary in x direction).

For exponential material gradation

E(x) = E1e
αx

ρ(x) = ρ1e
βx

ν(x) = ν1e
γx

where α, β and γ are the material gradation parameters for E, ρ and ν, respectively.
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Figure 2.7: Normalized displacement of homogeneous cantilever beam

Figure 2.8: beam material gradation direction

For linear material variation

E(x) = E1 + (E2 − E1)x/L

ρ(x) = ρ1 + (ρ2 − ρ1)x/L (2.14)

ν(x) = ν1 + (ν2 − ν1)x/L
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For equivalent homogeneous beam

E =
1

A

∫

E(x)dA

ρ =
1

A

∫

ρ(x)dA (2.15)

ν =
1

A

∫

ν(x)dA

which are defined as the equivalent material constants.

Modal Analysis using Rayleigh-Ritz method. The governing equation for the can-

tilever beam problem under consideration is

∂2

∂x2

[

E(x)I
∂2

∂x2
q(x, t)

]

+ ρ(x)A
∂2

∂t2
q(x, t) = f(x, t) (2.16)

where q(x, t) is the beam response under load f(x, t). To solve the eigenvalue problem, we

set f(x, t) = 0, and q(x, t) harmonic in time, i.e.,

q(x, t) = u (x) eiωt (2.17)

where ω is frequency and u(x) is the corresponding mode shape, and there are infinite

solutions sets for a continuum problem. The kinetic energy of the system can be written as

T (t) = 1
2

∫ L

0

ρ(x)A

(

∂q(x, t)

∂t

)2

dx (2.18)

= 1
2
ω2e2iωt

∫ L

0

ρ(x)A (u(x))2 dx

and the potential energy has the form

V (t) = 1
2

∫ L

0

[

E(x)I

(

∂q2(x, t)

∂x2

)](

∂q2(x, t)

∂x2

)

dx (2.19)

= 1
2
e2iωt

∫ L

0

E(x)I

(

∂u2(x)

∂x

)2

dx

For a conservative system the total energy E is constant, i.e.

E = 0 + Tmax = Vmax + 0 (2.20)
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from which it follows that

Tmax = Vmax (2.21)

Define reference kinetic energy

T ∗ = 1
2

∫ L

0

ρ(x)A (u(x))2 dx (2.22)

and introduce Eqs. (2.19) and (2.22) into (2.21), we obtain the Rayleigh’s quotient

R(u) = ω2 =
Vmax

T ∗ =

∫ L

0
E(x)I [u′′(x)]2 dx

∫ L

0
ρ(x)A (u(x))2 dx

=
N(u)

D(u)
(2.23)

where

N(u) =

∫ L

0

E(x)I [u′′(x)]
2
dx (2.24)

D(u) =

∫ L

0

ρ(x)A (u(x))2 dx

in which the prime denote ∂/∂x. If u chosen for the (2.23) happens to be a true mode

function, the ω solved will be the corresponding frequency. The stationarity of Rayleigh

quotient states that "The frequency of vibration of a conservative system vibrating about an

equilibrium position has a stationary value in the neighborhood of a natural mode".([31]),

hence we can construct trial modes functions and try to minimize the Rayleigh’s quotient.

A trial mode function can be constructed as

un(x) =
n

∑

i=1

aiφi(x)

where ai are coefficients to be determined and φi are admissible functions that satisfy all the

essential boundary conditions

φ(0) = 0

φ′(0) = 0 (2.25)
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The necessary conditions for the minimum of Rayleigh’s quotient are

∂R(u)

∂aj
=

D(u) [∂N(u)/∂aj]−N(u) [∂D(u)/∂aj]

D2(u)
= 0, (2.26)

j = 1, 2..., n

from which it follows
∂N(u)

∂aj
− λ

∂D(u)

∂aj
= 0, j = 1, 2..., n (2.27)

where λ is defined as the minimum estimated value of Rayleigh’s quotient

min(R(u)) = λ

Now we define

Kij =

∫ l

0

E (x) I
∂φi(x)

∂x

∂φj(x)

∂x
dx

Mij =

∫ l

0

ρ (x)Aφi(x)φj(x)dx (2.28)

The symmetry of matricesK andM can be confirmed by proving that the eigenvalue problem

under consideration is self-adjoint:

For any two arbitrary comparison functions u and v which satisfy all boundary conditions,

i.e. essential boundary conditions

u(0) = 0, v(0) = 0

u′(0) = 0, v′(0) = 0 (2.29)

as well as natural boundary conditions

EIu′′|x=L = 0 (2.30)

(EIu′′)
′ |x=L = 0

then the system is self-adjoint provided the following statements hold true

∫ l

0

uL(v)dx =

∫ l

0

vL(u)dx (2.31)

∫ l

0

uM(v)dx =

∫ l

0

vM(u)dx
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where the linear operators L and M for the current problem are

L =
∂2

∂x2

(

E(x)I
∂2

∂x2

)

(2.32)

M = ρ(x)A

By means of integrations by part we can easily prove (2.31):

∫ l

0

uL(v)dx =

∫ l

0

u
∂2

∂x2

(

E(x)I
∂2v

∂x2

)

dx

= [uE(x)Iv′] |L0 −
∫ l

0

∂u

∂x

∂

∂x

(

E(x)I
∂2v(x)

∂x2

)

dx

= 0− [u′E(x)Iv′] |L0 +

∫ l

0

∂2u

∂x2

(

E(x)I
∂2v(x)

∂x2

)

dx

= 0− 0 + [u′′E(x)Iv] |L0 −
∫ l

0

∂

∂x

(

∂2u

∂x2
E(x)I

)

∂v

∂x
dx (2.33)

= 0− 0 + 0− [[u′′E(x)I] v] |L0 −
∫ l

0

∂2

∂x2

(

E(x)I
∂2u

∂x2

)

vdx

=

∫ l

0

vL(u)dx

and the same to
∫ l

0

uM(v)dx =

∫ l

0

vM(u)dx (2.34)

since the system is self-adjoint, we have

Kij = Kji, Mij = Mji (2.35)

Now N(u) can be written in terms of Kij as

N(u) =

∫ L

0

E(x)I [u′′(x)]
2
dx

=

∫ L

0

E(x)I

[

n
∑

i=1

aiφ
′′
i (x)

][

n
∑

j=1

ajφ
′′
j (x)

]

dx

=
n

∑

i=1

n
∑

j=1

aiaj

∫ L

0

E(x)Iφ′′
i (x)φ

′′
j (x)dx (2.36)

=
n

∑

i=1

n
∑

j=1

Kijaiaj
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and similarly D(u) as

N(u) =
n

∑

i=1

n
∑

j=1

Mijaiaj (2.37)

Taking the partial derivatives with respect to ar and recalling the symmetry of the coef-

ficients Kij, we write

∂N

∂ar
=

n
∑

i=1

n
∑

j=1

(

Kij
∂ai
∂ar

aj +Kijai
∂aj
∂ar

)

=
n

∑

i=1

n
∑

j=1

(Kijδiraj +Kijaiδjr) (2.38)

=
n

∑

j=1

Krjaj +
n

∑

i=1

Kirai

= 2
n

∑

j=1

Krjaj, r = 1, 2, ..., n.

and similarly,
∂D

∂ar
= 2

n
∑

j=1

Mrjaj, r = 1, 2, ..., n. (2.39)

Introducing (2.38–2.39) into (2.27) we obtain

n
∑

j=1

(Krj − λMrj)aj = 0, r = 1, 2, ..., n. (2.40)

which represent a set of n homogeneous algebraic equations in the unknowns aj, and K is

the stiffness matrix and M is the mass matrix. Note that λ = ω2, render the linear Eqs.

(2.40) into matrix form

K =ω2M (2.41)

we can solve for the natural frequencies and corresponding modes, and the frequencies ω

provide upper bounds for the true frequencies ω∗ ([31]):,

ω ≥ ω∗ r = 1, 2, ..., n. (2.42)

The base functions chosen for the FGM cantilever beams under consideration are the

polynomial series:

φ1 (x) = x2, φ2 (x) = x3, φ3 (x) = x4, φ4 (x) = x5 (2.43)
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and etc. By incorporating more and more terms in the formulation, the Rayleigh-Ritz method

guarantees that, with a complete set of base functions, the solution approaches the exact

value asymptotically. The results listed in table 2.2–2.4 are obtained for material properties

E1 = 1GPa, E2 = 5GPa (2.44)

ρ1 = 0.5g/cm3, ρ2 = 1.5g/cm3

where subscript 1 denotes side where material elastic constants are lower, and 2 where it is

larger.

Table 2.2: Natural frequency ω1 for FGM beam and equivalent homogeneous beam, consid-
ering gradation in x direction, obtained from Rayleigh-Ritz method

ω1(×104)
num. of base functions Exponential Variation Linear Variation

SoftLHS StiffLHS Equiv. SoftLHS StiffLHS Equiv.
2 2.7934 6.0983 4.2128 3.0405 6.2166 4.4159
3 2.6516 6.0705 4.1942 2.8388 6.2153 4.3963
4 2.6477 6.0673 4.1929 2.8183 6.2138 4.3950
5 2.2425 6.0666 4.1929 2.3823 6.2137 4.3950
6 2.2423 6.0655 4.1929 2.3816 6.2137 4.3950

Analytical 4.1929 4.3950

Table 2.3: ω2 for FGM beam and equivalent homogeneous beam, considering gradation in x
direction, obtained from Rayleigh-Ritz method

ω2(×104)
num. of base functions Exponential Variation Linear Variation

SoftLHS StiffLHS Equiv. SoftLHS StiffLHS Equiv.
2 46.479 36.856 41.508 47.063 38.972 43.509
3 23.842 29.600 26.514 25.332 30.936 27.792
4 22.428 29.140 26.424 23.837 30.785 27.697
5 22.425 29.000 26.277 23.823 30.685 27.544
6 22.423 28.971 26.277 23.816 30.675 27.543

Analytical 26.277 27.543

In table 2.2–table 2.4, SoftLHS, StiffLHS and Equiv. denote the cases where the beam

is softer at the clamped end, stiffer at the clamped end, and equivalent homogeneous beam

as defined in (2.15). It is apparent that the beam which is softer at the clamped end has

smaller natural frequency, thus the whole structure is more compliant than the case where

the beam is stiffer at the clamped end. The equivalent homogeneous result is in between the

other two, however it is not simply the average of the two.
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Table 2.4: ω3 for FGM beam and equivalent homogeneous beam, considering gradation in x
direction, obtained from Rayleigh-Ritz method

ω2(×104)
num. of base functions Exponential Variation Linear Variation

SoftLHS StiffLHS Equiv. SoftLHS StiffLHS Equiv.
3 168.62 114.65 140.89 167.70 118.71 147.68
4 73.990 79.009 75.542 77.142 82.066 79.183
5 69.346 76.547 75.414 72.671 80.779 79.050
6 68.793 75.224 73.598 72.428 79.645 77.145
7 68.680 74.948 73.596 72.415 79.521 77.144
8 68.676 74.945 73.575 72.407 79.519 77.122

Analytical 73.580 77.126
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Figure 2.9: 1st mode shapes of FGM cantilever beams, Rayleigh-Ritz method

The analytical solution for the equivalent homogeneous beams in table 2.2-2.4 are ob-

tained by substituting averaged material properties (2.15) into (2.11) and (2.12). Clearly

the Rayleigh-Ritz method gives excellent estimation of lower frequencies at only a few base

functions for this case, and for FGM beams the frequencies also converge pretty fast. How-

ever for higher modes we would expect that more terms are needed. Since Rayleigh-Ritz

method is usually used to obtain lower frequencies, the study stopped at 3rd mode.

The first three mode shapes of the structure are plotted. It can be observed that for the
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Figure 2.10: 2nd mode shape of FGM cantilever beams, Rayleigh-Ritz method
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Figure 2.11: 3rd mode shapes of FGM cantilever beams, Rayleigh-Ritz method
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normalized mode shape, which is defined as

vi(x) =
vi(x)

√

∫ L

0
v2i (x)dx

(2.45)

where vi(x) is the ith mode shape before normalization. The first mode is quite similar

for all material gradation cases (Figure 2.9), while for higher mode the difference is more

noticeable (Figure 2.10 and 2.11). However, Rayleigh-Ritz method provides better estimation

of frequencies rather than mode shapes, so the results of mode shapes here can not be taken

as seriously as the frequencies, and we will reexamine the results in light of its comparison

with FEM results in the next section.

Modal Analysis using FEM. As an alternative approach to obtain the natural frequen-

cies and modes, modal analysis by FEM is performed. The global stiffness matrix K and

mass matrix M are assembled, and boundary conditions are introduced. Then we solve for

Ku− ω2Mu = 0 (2.46)

Table 2.5: Natural frequencies (w) for FGM beam and equivalent homogeneous beam from
FEM modal analysis

Exponential Variation Linear Variation
w (×104) SofLHS StiffLHS Y_grad Equiv. SoftLHS StiffLHS Y_grad Equiv.

ω1 2.649 6.055 3.882 4.190 2.816 6.204 4.055 4.392
ω2 22.15 28.63 24.08 25.97 23.52 30.31 25.16 27.22
ω3 66.70 72.83 66.38 71.51 70.31 77.25 69.39 74.96
ω4 93.86 136.36 127.19 129.89 100.20 144.48 133.13 136.15
ω5 130.27 162.41 130.00 136.94 137.29 169.56 136.21 143.54
ω6 211.04 217.14 205.04 220.16 222.47 229.82 214.70 230.77

Up to six natural frequencies are tabulated in table 2.5 for FGM beams and equivalent

homogeneous beams, each with different material gradation profiles. Some conclusions can

be drawn from table 2.5:

• Comparison of table 2.5 and table 2.2-2.4 reveals that the results from the two methods

are in good agreement, while the values of FEM results are consistently a little lower

than their counterparts from Rayleigh-Ritz method. This is one of the consequences

of modeling the 2-D structure in 1-D model with Rayleigh-Ritz method employed in

the previous section, where the Poisson ratio effect is overlooked, thus the structure

stiffness is artificially increased, which results in slightly larger frequency values. Recall

that by discretization in FEM the structural stiffness is larger than real structure, we
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conclude that the frequencies obtained from Rayleigh-Ritz method and FEM are both

larger than than that of real structure.

• The trend of influence of material gradation on frequency is consistent with the con-

clusion of Rayleigh-Ritz method, i.e. beams softer at clamped end are more compliant

than beams stiffer at clamped end, thus producing smaller frequencies compared to the

latter. For material gradation in Y direction, the results are close to that of equivalent

homogeneous beams, yet a bit more compliant.

• At lower modes, the influence of different material gradation on frequencies are more

pronounced than at higher modes e.g., for exponential material gradation, at mode 1

the frequency for SoftLHS is 2.3 times of that for StiffLHS (6.055/2.649 = 2.29), while

at mode 6, the ratio is merely 1.029 (217.14/211.04).

• Usually we expect the frequencies of consecutive modes to be at somewhat regular

intervals, yet it is not always the case e.g., for linear gradation in Y direction case,

frequencies of 4th and 5th modes are 133.13 and 136.21, respectively, which are pretty

close compared to the other frequency intervals (e.g., ω3 = 69.39, ω6 = 214.70). This

should not be surprising, though, since actually it results from the 2-D nature of the

problem, i.e. the strange mode 5 (Figure 2.14) is the vibration mode in longitudinal (x)

direction, while other frequencies correspond to vibration mode in vertical (y) direction.

This can be further confirmed with the mode shapes plots (Figures 2.12–2.14).

Should the beam act like a 1-D string, it would have n−1 nodes for nth mode. However,

beam is a 2D structure, hence it can move like a string as well as a rod, i.e. it can make

elongation-compression movement in x direction also. This is exactly what happened in 4th

mode of Figure 2.12 and 5th mode of Figure 2.13. A comparison of mode shapes for different

material gradation profiles reveals that this mode occurs as 4th mode for both beams softer

at clamped end and equivalent homogeneous beams (as in Figure 2.12), while occurs as

5th mode for beams stiffer at clamped end (Figure 2.13). It is of interest to notice that a

similar mode shape occurs for beams graded in Y direction at 5th mode (Figure 2.14), yet

it is not purely elongation-compression in x direction, but rather accompanied with warping

in Y direction. Reason for this is that the upper and lower half of the beam cross section

are nonsymmetric, thus preventing it from displaying a deformation pattern purely in x

direction.

Reflection on the formulation of Rayleigh-Ritz method reveals that the Rayleigh-Ritz

method performed in previous section will not be able to catch the “rod-likeÔ mode shape,

since the polynomial base functions can only give deformation in y direction. This is inherent

36



�

�

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

x 10�
-4

x 10
-4

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

x 10�
-4

x 10
-4

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

x 10�
-4

x 10
-4

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

x 10�
-4

x 10
-4

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

x 10�
-4

x 10
-4

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4

6

x 10�
-4

x 10
-4

X

Y

(a) mode 1 (b) mode 2

(d) mode 4(c) mode 3

(e) mode 5 (f) mode 6

Figure 2.12: Six mode shapes of FGM cantilever beam, linear gradation, softer at clamped
end, E2/E1 = 5, ρ2/ρ1 = 3.
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Figure 2.13: Six mode shapes of FGM cantilever beam, linear gradation, stiffer at clamped
end, E2/E1 = 5, ρ2/ρ1 = 3.
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Figure 2.14: Six mode shapes of FGM cantilever beam, linear gradation Y direction, E2/E1 =
5, ρ2/ρ1 = 3.
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to base functions we choose, however, and Rayleigh-Ritz method still proves to be very

efficient and accurate for obtaining the lower frequency and mode shape.

For comparison purpose, mode shape results of Rayleigh-Ritz method and FEM, for

two cases where material stiffer and softer at clamped end, respectively, are plotted in Fig-

ure 2.15 and 2.16. It can be observed that they are in agreement at large, especially for the

fundamental mode, but some difference for 2nd and 3rd modes are apparent.

Results. Under the tip point load (Figure 2.6), where the period T is the fundamental

period of each FGM beam, the response of the cantilever beam is dominated by the first

mode behavior. This can be clearly observed from Figure 2.17, where all beams responses

match the 1st natural frequency. At t > T , when transient force disappeared, the free

vibration of each beam follows its own fundamental period, and its amplitude is scaled with

respect to the amplitude at t < T in the same pattern as the analytical solution in Figure 2.7.

The deflection amplitude of beams with different material gradations are exactly as having

been indicated in the previous section, i.e., beam softer at clamped end has largest deflection;

beam stiffer at clamped end smallest deflection; beam graded in Y direction and equivalent

beam are in between the other two, while beam graded in Y direction is more compliant

than equivalent beam.

Since both displacement and time are normalized in Figure 2.17, details of frequencies for

each case are more or less concealed. It would be more intuitive to illustrate the response of

each beam under the same loading without normalization, thus further computation was car-

ried out for the same group of FGM beams subjected to the an impulse loading (Figure 2.18),

and results are plotted in Figure 2.19.

Again, beams softer at clamped end gives largest displacement, and vibrates at a much

slower speed than that of beams stiffer at clamped end, just as we have expected. Besides,

FEM analysis for material gradation in Y direction case with more refined mesh (Figure 2.20)

was also performed, and the result plotted in figure 2.19, notice that the results of coarser

and refiner mesh agree with plotting accuracy.

With these results obtained and code proved to give accurate results, a more complicated

problem is addressed in next section.

2.4.2 Homogeneous and FGM Beams Subjected to Impact Load

This section investigates the influence of material gradation profile on the evolution of stress

state, via simulation of a 3-point-bending specimen under impact loading, as illustrated in

Figure 2.21. The motivation for choosing this particular problem is because this simulation

is based on a real material system. The experiments on material properties and dynamic
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Figure 2.15: Comparison of mode shape results of Rayleigh-Ritz method and FEM, material
gradation in x direction, softer at clamped end (LHS). (a) mode 1; (b) mode 2; (c) mode 3.

41



�

�

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10-3

-4

-2

0

2

4

6

x 10
-4

Rayleigh-Ritz result

�

�

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10-3

-4

-2

0

2

4

6

x 10
-4

Rayleigh-Ritz result

FEM result

FEM result

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10-3

-4

-2

0

2

4

6

x 10
-4

Rayleigh-Ritz result

(a) mode 1

(b) mode 2

(c) mode 3

FEM result

Figure 2.16: Comparison of mode shape results of Rayleigh-Ritz method and FEM, material
gradation in x direction, stiffer at clamped end (LHS). (a) mode 1; (b) mode 2; (c) mode 3.
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fracture behavior of this graded glass/epoxy specimen have been conducted by Rousseau and

Tippur [40, 41, 42, 43]. The numerical simulation of crack propagation and its comparison

with experimental data will be described later in Section 3.2. However, before addressing

the fracture problem, it is helpful to study the problem of same geometry and loading, but

without an initial crack. This study offers background knowledge of the dynamic behavior of

this material system, as well as a better understanding of the stress field inside homogeneous

and graded materials, which helps to predict the fracture initiation time in specimens of

various material gradients.
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(a)
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0

P
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Figure 2.21: Uncracked FGM beam subjected to point impact loading; (a) 3-point-bending
specimen; (b) numerical simulation using half model, with symmetric boundary conditions
prescribed. Stress values are retrieved at point P ((x, y) = (0, 0.2W )).

The mesh of the uncracked beam problem is plotted in Figure 2.22. Notice that only half

of the geometry needs to be modelled for the numerical simulation by taking advantage of

the symmetry in geometry, material property, loading and boundary conditions. The mesh
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is refined at the center line with uniform element size h = 92.5µm, and the stress variation

versus time is retrieved at the location (x, y) = (0, 0.2W ), whereW is the height of the beam.

For the numerical simulation of crack propagation in the beam, the initial crack extends from

(x, y) = (0, 0) to (x, y) = (0, 0.2W ), which follows the experiments [43]. Hence, the location

of interest in this study corresponds to the crack tip location when the crack is present.
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Figure 2.22: Discretization of half of the 3-point-bending beam model. Mesh contains 7562
nodes and 3647 T6 elements; (a) global mesh; (b) zoom of box region in (a).

Three simulations are performed, for these beam configurations:

• homogeneous beam (E2 = E1)

• FGM beam stiffer at the impacted surface (E2 > E1)
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• FGM beam more compliant at the impacted surface (E2 < E1)

where subscript 1 and 2 denote bottom and top surface, respectively. Plane stress condition is

used. Figure 2.23 shows the linear variation of Young’s modulus E and mass density ρ for the

above three cases. The range of variation is between 4GPa to 12GPa for E, and 1000kg/m3

to 2000kg/m3 for ρ, which approximates the range of real FGM material [43, 44]. For the

homogeneous beam, the mass density is taken as the mean value of the FGM counterpart,

i.e. 1500kg/m3, and the Young’s modulus is calculated such that the equivalent E/ρ value

equals that of the FGM case:
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Figure 2.23: Variation of (a) Young’s modulus E and (b) mass density ρ in homogeneous
and FGM beams along y direction. The variation of ρ and E are approximated from those
provided in Figures 1 and 2, respectively, of reference [44].

(

E

ρ

)

equiv

=
1

W

∫ W

0

E(y)

ρ(y)
dy, (2.47)

as shown in Figure 2.24(a). Thus the approach from Eq. (2.47) explains the offset observed

in Figure 2.23(a) for the homogeneous material modulus (E1 = E2). Notice that although

E and ρ are linear functions of y, the ratio E/ρ is not. Poisson’s ratio is taken as 0.33 in all

cases. The difference of the average wave speeds, defined as (e.g., dilatational wave speed

Cd)

(Cd)avg =
1

W

∫ W

0

Cd(y)dy,

for each case are marginal (2421.5m/s for homogeneous beam, 2418.4m/s for FGM beam,
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Figure 2.24: Variation of (a) E/ρ versus y and (b) dilatational wave speed Cd versus y in
homogeneous and FGM beams.
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plotted in Figure 2.24(b)). Thereby the influence of the elastic gradients is isolated. The

results are plotted in Figures 2.25, 2.26 and 2.27 for variation of σx, σy and (σx + σy) versus

normalized time, respectively.
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Figure 2.25: Stress σx at location x = 0, y = 0.2W in uncracked homogeneous and FGM
beams, with linearly varying elastic moduli, subjected to one point impact by a rigid pro-
jectile.

The location of interest (point P in Figure 2.21(b)) first experiences stress wave at normal-

ized time 0.8 because the time needed for the first wave front to reach this point is 0.8W/Cd.

This value is exact for homogeneous beam, while for the graded beam, the normalized time

is slightly less than 0.8 for E2 > E1 case and slightly larger than 0.8 for E2 < E1 case. This

is due to the effect of material gradation within the span of top surface to the location of

interest. The difference, though moderate, can be discerned in stress plots.

First, let us consider the overall stress evolution trend versus time. Figure 2.25 indicates

that stress component σx is primarily dominated by the bending effect. When the first tide

of compressive wave reaches the point of interest, σx become negative (during normalized

time period 0.8-1.3) due to Poisson ratio effect, however, this is quickly counterbalanced by

the bending effect, and afterwards the stress value increases monotonically with respect to

time.

On the other hand, the stress component σy in Figure 2.26 shows strong influence of waves

traveling in y direction. The initial stages of this plot can be explained by the dominance of
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Figure 2.26: Stress σy at location x = 0, y = 0.2W in uncracked homogeneous and FGM
beams, with linearly varying elastic moduli, subjected to one point impact by a rigid pro-
jectile.
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Figure 2.27: Combined stress (σx + σy) at location x = 0, y = 0.2W in uncracked beams,
with linearly varying elastic moduli, subjected to one point impact by a rigid projectile.
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the first batch of propagating waves. At normalized time 0.8, the first tide of compressive

wave brings a sharp increase of σy in magnitude, as compressive stress. The magnitude

of σy increases as the subsequent tide of compressive waves pass through point P, till the

first compressive wave passes this point again, as tensile wave, after being reflected from

the bottom surface at normalized time 1.0. The arrival of the tensile wave at this location,

at normalized time 1.2, brings a sharp change of the stress profile towards the opposite

direction (absolute value decreases). This trend is sustained for a while till normalized time

2.0, after which the combined effect of subsequent tensile waves that bounced back from

the bottom surface, and the compressive waves emanated from the velocity loading, reaches

certain balance level at this location, and a “plateauÔ can be observed from normalized time

2.0 to 2.8. At normalized time 2.8, the very first tide of stress wave, after being reflected

from top surface, again passes through point P, and another cycle of increase–decrease in

magnitude of σy can be observed during normalized time period 2.8−3.2, which is similar to

that of time interval 0.8− 1.2. Afterwards, the combined effect of the numerous wave tides

clouds the influence of any isolated wave, and thus it is difficult to detect the precise time

when σy curve changes its trend. Furthermore, waves that traveled to the lateral boundaries

also bounce back, adding more complexity to the stress state.

The first stress invariant (σx + σy) is plotted in Figure 2.27. At the inception of wave

impact, this value is dominated by the compressive stress σy, giving a negative value; then

it is soon neutralized by the tensile wave and the bending effect is dominant at later stages.

The “flatÔ part of (σx + σy) curve (e.g., during time interval 2.8 − 3.2) manifests influence

of the sharp change in σy value.

To gain some insight on crack initiation sequence for the three beams described above, the

effect of material gradation on stress levels is examined next. For the problem with an initial

crack, the crack tip is situated at (x, y) = (0, 0.2W ). The region close to the impact loading

experiences negative σx, and the central bottom part of the beam experiences positive σx,

as shown in Figure 2.28. However, the stress contour patterns are distinctively different

for various material gradient cases. First, we notice that close to the top surface, region of

negative σx value is larger and spans much wider in x direction for beam with E2 > E1,

compared to homogeneous beam (cf. Figures 2.28(c) and 2.28(b)), and is mostly constricted

for beam with E2 < E1 (Figures 2.28(a)). This is due to the difference in material stiffness

at location under point load. For beam with E2 < E1, the material is soft under the

point load, thus the beam deforms locally and the severe deformation is constricted within

a relatively small region. Consequently, the negative stress region is constricted. For beam

with E2 > E1, the material is relatively rigid under the point load, hence the deformation is

sustained by nearby region also. Therefore, a larger negative stress region is developed for
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(a)

(b)

(c)

Figure 2.28: Effect of material gradient on the contour plot of stress field σx. Data obtained
at time t = 90µs. legend shows σx value in MPa. (a) FGM beam with E2 < E1; (b)
homogeneous beam; (c) FGM beam with E2 > E1.
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beam with E2 > E1 than that for beam with E2 < E1.

One may speculate that the opposite trend should occur in the positive stress region near

the central bottom surface, i.e. the region of positive σx is larger for beam with E2 < E1

and smaller for beam with E2 > E1. However, this is not the case. The σx value at the

central bottom region, being far from the point loading, is dominated by the bending effect.

To understand the difference in tensile σx distribution patterns in the three beams, we resort

to first examine a simpler and well-understood problem–a beam subjected to static uniform

bending, e.g., the central region of 4-point-bending beam.

Consider the stress distribution along y direction in the static case. By enforcing the

equilibrium conditions, i.e.,

N =

∫ W

0

σx(y)dy = 0,

M =

∫ W

0

σx(y)ydy,

location of neutral axis can be obtained. In above expression, N denotes the summation of

normal traction along height, and M is the bending moment acting on the cross section of

beam. For uniform bending problem, M is constant. For the homogeneous beam, the neutral

axis is located at half height of the beam. For the beam with E2 < E1, the material is stiffer

at bottom part, thus the neutral axis shifts towards bottom. The opposite situation applies

to beam with E2 > E1. This instinctive observation can be confirmed by mathematical

derivation. A simple calculation reveals that the neutral axis is located at

y = 0.415W, for E2 < E1

y = 0.585W, for E2 > E1

for the material gradient considered (Figure 2.23). Hence, a larger tensile stress region

develops in beam with softer material at bottom (E2 > E1). At the location of interest, the

tensile stress is higher for beam with E2 < E1 than that for beam with E2 > E1. A simple

calculation is carried out here. Assume strain

ε2 = 0.01

at top surface. In linear elastic beam with E2 > E1, corresponding strain at bottom surface

is

ε1 =
0.585W

0.415W
× 0.01 = 0.014097.
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At location P (x = 0, y = 0.2W ), σx can be obtained as

σx(P ) = E(P )ε(P ) = (5.6× 109)

(

0.014097× 0.585− 0.2

0.585

)

= 51.96MPa

while for beam with E2 < E1, with the same assumption of ε2 = 0.01 at top surface,

ε1 =
0.415W

0.585W
× 0.01 = 0.007094

at bottom surface. At location P (x = 0, y = 0.2W ), σx is obtained as

σx(P ) = E(P )ε(P ) = (10.4× 109)

(

0.007094× 0.415− 0.2

0.415

)

= 38.22MPa

The above argument, though made for static analysis of linear elastic beam subjected

to uniform bending, provides an useful analogy for understanding the dynamic problem for

beam under point loading. For a beam subjected to point load, the compressive strain at the

top surface is localized under the point load, while the tensile strain develops in a relatively

larger region at bottom. The localization of compressive region shifts the neutral axis to-

wards the top surface, as shown in the homogeneous case in Figure 2.28(b). Compared to the

homogeneous beam, the neutral axis further shifts towards the top surface for FGM beam

with E2 > E1, and shifts towards the bottom surface for FGM beam with E2 < E1 (cf. Fig-

ure 2.28(a) and (c) with (b)) This observation is consistent with that made for the static

uniform bending beam problem. The dynamic nature of the problem adds more difficulty to

a precise prediction of the stress distribution at certain time, as the neutral axis shifts with

respect to time. However, at any specified time, the overall stress distributions in the three

beams are similar to what was shown in Figure 2.28. The above observation implies that

the location of interest in the FGM beam with E2 > E1 is consistently subjected to higher

tensile stress than its counterparts. Since the crack initiation is primarily dominated by σx,

consequently crack initiation would be expected to occur earlier for beam with E2 > E1.

This is confirmed by both the experiment [43] and the simulation carried out in Section 5.1.

However, this conclusion assumes identical fracture toughness at the crack tip for the three

specimens, which is not true. Fracture toughness depends on local material compositions,

which are clearly different for the three cases. This mechanism will be discussed in further

detail in Section 5.1 and will be considered in the simulation.
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Chapter 3

Cohesive Model for FGMs

Four widely used cohesive zone models have been discussed in Chapter 1. However, an

appropriate CZM for modeling fracture in FGMs poses more challenge due to the complexity

of FGM microstructure. For instance, consider a typical metal/ceramic FGM, both the

metal-rich and ceramic-rich regions can be regarded as matrix/inclusion composites, and the

failure models for conventional composites may be adopted. However, the dominant failure

mechanism at the interconnecting region, which has no distinct matrix and inclusion phases,

remains elusive. To circumvent this problem, Jin et al. [30] have proposed a volume-fraction

based, phenomenological cohesive fracture model and successfully implemented it to treat

quasi-static crack growth in FGMs. In this study, this model is extended to the dynamic

case. Further, the underlying concept in this model that accounts for the interaction between

different material constituents is also adopted to extend the Xu and Needleman [46] model

to FGM case.

In this chapter, the aforesaid two FGM cohesive models are first introduced, followed by

a detailed discussion on the advantages and limitations of each. Finally, the energy balance

check that incorporates cohesive element contribution is described, with expressions of each

energy term given. An example problem is provided to demonstrate the computation of each

term, and the precise calculation of external energy is discussed.

3.1 Model Based on Effective Quantities

For this FGM cohesive zone model proposed by Jin et al. [30], the material system under

discussion is metal/ceramic. Extension of other material systems will be discussed later in

Section 3.3. The notation in the formulas below follows the paper by Jin et al. [30], except

for the substitution of the subscripts “metÔ and “cerÔ, which originally denote metal and

ceramic phases, to “1Ô and “2Ô, so that the notation is more general and consistent with those
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presented in the extended Xu and Needleman’s [46] model, which is discussed in Section 3.2.

Mode-I fracture.

The normal traction force across the cohesive surface, σfgm, which depends on the position

x, is approximated by the volume-fraction based formula

σfgm(x) =
V1(x)

V1(x) + β1[1− V1(x)]
σ1 +

1− V1(x)

1− V1(x) + β2V1(x)
σ2 (3.1)

where σ1 and σ2 are cohesive traction of material phase 1 and 2, respectively, and each phase

assumes an exponential form of cohesive model, i.e.

σ1 =
∂φ1

∂δ
(3.2)

φ1 = eσc
1δ

c
1

[

1−
(

1 +
δ

δc1

)

exp

(

− δ

δc1

)]

(3.3)

σ1 = eσc
1

(

δ

δc1

)

exp

(

− δ

δc1

)

(3.4)

where φ1 represents cohesive energy of material phase 1, σc
1 denotes the maximum cohesive

traction of material phase 1, and δc1 is the value of δ at σ1 = σc
1. Similarly, for the material

phase 2, the cohesive model is given by

φ2 = eσc
2δ

c
2

[

1−
(

1 +
δ

δc2

)

exp

(

− δ

δc2

)]

(3.5)

and

σ2 = eσc
2

(

δ

δc2

)

exp

(

− δ

δc2

)

(3.6)

where φ2 represents cohesive energy of material phase 2, σc
2 denotes the maximum cohesive

traction of material phase 2 and δc2 the value of δ at σ2 = σc
2. The cohesive force-displacement

relationships of material phases 1 and 2 are illustrated in Figure 3.1, where it is obvious that

the cohesive energy (the area under cohesive curve) for material phase 2 (ceramic phase

for the model under discussion [30]), is only a small portion of that for material phase 1

(metal phase in discussion [30]). The energy potential φ, as function of cohesive surface

displacement δ, is plotted in Figure 3.2. Since this plot uses normalized quantities, it may

refer to either the two material phases (Eq. (3.3) or (3.5)).

In Eq. (3.1), V1(x) denotes volume fraction of the material phase 1, β1 and β2 are two

cohesive gradation parameters that describe the transition of the failure mechanism from
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Figure 3.1: Normalized cohesive traction versus nondimensional separation displacement,
strength ratio of the two material phases, σc

2/σ
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1, is taken as 0.35; (a) for material phase 1,

σ1/σ
c
1 vs. δ/δc1; (b) for material phase 2, σ2/σ

c
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Figure 3.2: Normalized energy potential versus nondimensional separation displacement for
Mode-I problem. The parameter φc is defined as the value of φ evaluated at δ = δc.

57



pure material phase 1 to pure material phase 2. With the above formulation, the cohesive

traction σfgm reduces to that of the material 1 when V1 = 1 and to that of the material 2 when

V1 = 0. The two additional parameters, β1 and β2, which are material dependent, should be

calibrated by experiments. For instance, by conducting fracture test of FGMs using standard

specimen geometries, e.g., Compact Tension (CT) test, fracture behavior of the material can

be measured, e.g., load-crack extension length relationship, and compared with numerical

simulation using different β1 and β2 values. For instance, the Compact Tension tests of

TiB/Ti FGM specimen with parameters β2 = 1 and β1=1,3,5 respectively, were simulated,

and load-crack extension responses in [30]. The results presented in [30] indicates that the

fracture resistance reduces with increasing β1 value. Hence, once the same test is performed

on real TiB/Ti specimen, by matching the experimental results and computational ones, the

value of parameters β1 and β2 can be determined.

By substituting Eqs. (3.4) and (3.6) into Eq. (3.1), the cohesive traction of FGM under

loading condition is obtained:

σfgm(x) =
V1(x)

V1(x) + β1[1− V1(x)]
eσc

1

(

δ

δc1

)

exp

(

− δ

δc1

)

+ (3.7)

1− V1(x)

1− V1(x) + β2V1(x)
eσc

2

(

δ

δc2

)

exp

(

− δ

δc2

)

and the corresponding free energy density function is

φfgm(x, δ) =
V1(x)

V1(x) + β1[1− V1(x)]
eσc

1δ
c
1

[

1−
(

1 +
δ

δc1

)

exp

(

− δ

δc1

)]

+
1− V1(x)

1− V1(x) + β2V1(x)
eσc

2δ
c
2

[

1−
(

1 +
δ

δc2

)

exp

(

− δ

δc2

)]

(3.8)

To retain the irreversibility of fracture path, the following updating scheme is prescribed.

The traction σfgm takes the form of Eq. 3.8 under loading condition, i.e.

δ = δmax, and Úδ ≥ 0 loading. (3.9)

Moreover, the traction follows the linear relationship

σfgm =

(

σmax

δmax

)

δ (3.10)
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under unloading condition, i.e.

δ < δmax, or Úδ < 0 unloading, (3.11)

where δmax is the maximum opening displacement attained, and Úδ denotes the rate of δ.

Mixed Mode fracture

In 2-D mixed mode fracture problem, an effective opening displacement jump δeff is defined

as

δeff =
√

δ2n + η2δ2t (3.12)

where δn and δt denote the normal and tangential displacement jumps across the cohesive

surface. The parameter η assigns different weights to the opening and sliding displacements

and is usually taken as
√
2 for homogeneous materials. For such material, the energy po-

tential φ, as function of both δn and δt, is plotted in Figure 3.3, for η = 1 and η = 2,

respectively. With increasing value of η, certain energy potential is reached at smaller value

of δt. For instance, sample values of δn and δt corresponding to φ/φc are given in Figure 3.3

(a) and (b), where φc is defined as value of φ evaluated at δn = δcn, δt = 0. When η = 1,

normal and tangential opening displacement jumps δn and δt are assigned equal weights in

computing the effective displacement jump, and energy potential is symmetric with respect

to the two variables δn and δt. In this case, for example, and φ/φc = 3 occurs at symmetric

displacement value pairs δn/δ
c
n = 2.95, δt/δ

c
t = 0 and δn/δ

c
n = 0, δt/δ

c
t = 2.95. On the other

hand, for η = 2, φ/φc = 3 value occurs at a much smaller tangential displacement jump value

(equals half of the value for η = 1 case) of δt/δ
c
t = 1.48 when δn/δ

c
n = 0. Therefore, with

an η value larger than 1, the tangential direction is assigned a weaker fracture resistance

property.

Analogous to the effective displacement, the effective cohesive traction can be defined as

σeff =
√

σ2
n + η−2σ2

t (3.13)

where σn and σt denote the normal and shear tractions across the cohesive surfaces. With

these two effective quantities introduced, the energy potential in 2-D case takes the same
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Figure 3.3: Normalized energy potential versus nondimensional separation displacement in
mixed mode problem. The parameter φc is defined as the value of φ evaluated at δn = δcn,
δt = 0; (a) η = 1; (b) η = 2.

form as that for Mode-I case, Eq. (3.8), i.e.,

φfgm(x,δeff , δ
max
eff ) =

V1(x)

V1(x) + β1[1− V1(x)]
eσc

1δ
c
1

[

1−
(

1 +
δeff
δc1

)

exp

(

−δeff
δc1

)]

(3.14)

+
1− V1(x)

1− V1(x) + β2V1(x)
eσc

2δ
c
2

[

1−
(

1 +
δeff
δc2

)

exp

(

−δeff
δc2

)]

The normal and tangential cohesive traction thus follows

σn =
∂φfgm

∂δn
=

∂φfgm

∂δeff

∂δeff
∂δn

=

(

σeff

δeff

)

δn (3.15)

σt =
∂φfgm

∂δt
=

∂φfgm

∂δeff

∂δeff
∂δt

= η2
(

σeff

δeff

)

δt (3.16)
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where

σeff =
∂φfgm

∂δeff

=
V1(x)

V1(x) + β1[1− V1(x)]
eσc

1

(

δ

δc1

)

exp

(

− δ

δc1

)

+ (3.17)

1− V1(x)

1− V1(x) + β2V1(x)
eσc

2

(

δ

δc2

)

exp

(

− δ

δc2

)

,

if δeff = δmax
eff , and Úδeff ≥ 0 : loading, (3.18)

where δmax
eff is the maximum value of δeff attained, and

σeff (x) =

(

σmax
eff

δmax
eff

)

δeff , (3.19)

if δeff < δmax
eff , or Úδeff < 0 : unloading.

Notice that σmax
eff is the value of σeff at δeff = δmax

eff computed from Eq. (3.19).

3.2 Model Based on Actual Quantities

The FGM cohesive zone model introduced in Section 3.1 uses effective quantities (δeff and

σeff in Eqs. 3.12 and 3.12) when dealing with mixed mode fracture. Alternatively, the

actual quantities can be used to describe the traction-separation relationship along normal

and tangential directions, respectively. To this end, A new FGM cohesive zone model is

proposed, which extends the Xu and Needleman’s model [46] FGM case, and introduces the

similar material parameters as in the previous model to account for material interaction.

Let

σfgm =
[

σfgm
n , σfgm

t

]

denote the traction force vector across the cohesive surfaces of a two-phase FGM, which

comprises normal and tangential traction force component. We propose that the cohesive

traction σfgm can be approximated by the following volume-based formula

σfgm(x) =
V 1(x)

V 1(x) + β1[1− V 1(x)]
σ1 +

1− V 1(x)

1− V 1(x) + β2V 1(x)
σ2 (3.20)

where superscript 1 and 2 denotes the two individual material phases (e.g., metal and ceramic

respectively). The parameters β1 and β2 are newly introduced material parameter that count
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for the reduction of fracture toughness due to interaction of material phases, and should be

calibrated with experimental data. The traction force vectors

σ1 =
[

σ1
n, σ

1
t

]

, σ2 =
[

σ2
n, σ

2
t

]

are associated with material phases 1 and 2 respectively, and in 2D case comprises traction in

normal and tangential direction. Assume for individual material phase the cohesive traction-

separation relationship follows Xu and Needleman’s model:

σ1 = −∂φ1

∂δ
, σ2 = −∂φ2

∂δ
(3.21)

in which parameters δ = [δn, δt] denotes the displacement jump across cohesive surface in

normal and tangential direction, and φ1 and φ2 are the energy potential of the two material

phases, which assume exponential form

φ1(δ) = φ1
n + φ1

n exp

(

− δn
δc1n

){[

1− r1 +
δn
δc1n

]

(1− q1)

(r1 − 1)
−
[

q1 +
(r1 − q1)

(r1 − 1)

δn
δc1n

]

exp(− δt
δc1t

2

)

}

(3.22)

φ2(δ) = φ2
n + φ2

n exp

(

− δn
δc2n

){[

1− r2 +
δn
δc2n

]

(1− q2)

(r2 − 1)
−
[

q2 +
(r2 − q2)

(r2 − 1)

δn
δc2n

]

exp(− δt
δc2t

2

)

}

(3.23)

respectively. Other parameters in the expression that respectively refer to material phase 1

and 2, are explained hereby without superscript 1 or 2 notation: parameters φn and φt are

the energies required for pure normal and tangential separation, respectively, δcn and δct are

the critical opening displacement for normal and tangential separation, which are related to

the cohesive normal strength σmax
n and tangential strength σmax

t as

φn = eσmax
n δcn, φt =

√

e/2σmax
t δct (3.24)

q = φt/φn, and r is defined as the value of δn/δ
c
n after complete shear separation with σn = 0.

The resulting normal and shear traction components can be obtained

σn=−φn

δn
exp

(

−δn
δcn

){

δn
δcn

exp

(

− δ2t
δnt

2

)

+
(1− q)

(r − 1)

[

1− exp

(

− δ2t
δct

2

)][

r − δn
δcn

]}

(3.25)

σt=−φn

δn

(

2
δcn
δct

)

δt
δct

{

q +
(r − q)

(r − 1)

δn
δcn

}

exp

(

−δn
δcn

)

exp

(

− δ2t
δct

2

)

(3.26)

for each material phase.
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When both material have the same material properties, then by setting both the two

material parameters β1 and β2 to unity, the above formulation reduces to that of Xu and

Needleman’s model. This model avoids the effective quantities like effective separation δeff ,

which is dubious for FGM problem due to the complicated microstructure fracture mech-

anism. The main drawback is that two more material parameters used for the tangential

cohesive strength σmax
t and energy φt are needed compared to the model by [30]. However,

in the future investigation, most problems employing this model are homogeneous material,

and the parameters are provided by works of other researchers, e.g. [46].

3.3 Discussion on Above Models

The cohesive zone models described in the previous sections are phenomenological model,

and they do not incorporate a physical description of the FGM microstructure. The fracture

property that these models describe is captured by the two newly introduced parameters β1

and β2, which are calibrated with experiments. The first model, with its neat expression,

convenient implementation and effectiveness in treating some specific problems [30], is ap-

pealing and has some advantages. The second model is newly proposed and its effectiveness

is under investigation. Here, a detailed discussion is provided on the features and possible

drawbacks of the two models.

3.3.1 Shape of Traction-Separation Curve

Tvergaard and Hutchinson [45] have reported that for metals, the shape of traction-separation

curve is not very important when compared to the cohesive energy (area below cohesive

relation curve) and cohesive strength σc. However, for brittle materials like ceramics,

Guinea et al. [15] have shown that the shape of the curve also plays a significant role in

determining the peak load. In the model described above, however, it is assumed that the

failure mechanism is dominated by the metal phase (material phase 1), thus for simplicity

the ceramic phase (material phase 2) also adopts an exponential form.

3.3.2 Influence of Material Parameters on Cohesive Energy

Density

The cohesive energy density for FGMs, Γc
fgm, is defined by

Γc
fgm =

∫ ∞

0

σ (δeff ) dδeff (3.27)
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By substituting expression of σeff into the above equation, we obtain

Γc
fgm(x) =

V1(x)

V1(x) + β1[1− V1(x)]
Γc
1 (3.28)

+
1− V1(x)

1− V1(x) + βcerV1(x)
Γc
2

where Γc
1 and Γc

2 are the cohesive energy densities of the material phases 1 and 2:

Γc
1 = eσc

1δ
c
1, Γc

2 = eσc
2δ

c
2, (3.29)

respectively.
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Figure 3.4: Normalized cohesive energy density Γc
fgm/Γ

c
1 considering Γc

2/Γ
c
1 = 0.05 and

V1(x) = (x/b)n); (a) n = 0.5; (b) n = 1.0.

The transition between the fracture mechanism of the two material phases is represented

by the two parameters β1 and β2 in this model. The values of both parameters must be

larger or equal to 1, so that they result in a reduced cohesive traction σc
eff , as compared

to that predicted by conventional mixture rule. The influence of the two parameters is

illustrated in Figure 3.4, which shows the normalized cohesive energy density Γc
fgm/Γ

c
1 versus

nondimensional coordinate x/b, with metal volume fraction V1(x) = (x/b)n, where b is the

thickness of FGM specimen in gradation direction. In the above plot, the cohesive gradation
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parameter for the material phase 2 is taken as unity, i.e., β2 = 1.0. Notice that the largest

cohesive energy always occurs at material phase 1, and with increasing value of β1, the

cohesive energy for FGM reduces remarkably. The straight line in Figure 3.4(b) represents

the standard mixture rule with β1 = 1, β2 = 1.

3.3.3 Energy Variation Versus Composition

The cohesive energy density variation (Figure 3.4) described above is conceivably true for

metal/ceramic FGMs, and has produced reasonably good results [30]. However this may not

hold for FGMs of different materials. For instance, the experimental data for epoxy/glass

FGM, presented by Rousseau and Tippur [40], shows that the cohesive energy curve attains

maximum value at volume fraction of glass inclusion at around 22 percent, rather than

at the maximum glass inclusion volume fraction of 50 percent. A comparison of above

model (see Figure 3.4) with that by Rousseau and Tippur [40] reveals that in the former,

the energy grows monotonically as volume fraction of metal phase increases, while in the

latter it increases at small volume fraction of glass inclusion, and then decreases gradually

when volume fraction of inclusion exceeds 22 percent. This issue is further addressed in

Section 5.2.2.

Rousseau and Tippur [40] argued that the underlying mechanism for this interesting

phenomena is due to the fact that the strength of glass is much higher than that of epoxy, and

thus the crack develops along the interfaces between the two phases rather than penetrating

the glass particles. Therefore, the presence of glass inclusion makes the crack path tortuous,

and results in greater crack surface area, hence larger fracture resistance. On the other hand,

however, at higher volume fraction, the glass particles tend to concentrate and form local

defects. Thus the toughness becomes a competition of the two mechanisms, and as glass

volume fraction increses, the toughness first increases, attains its maximum value, and then

it drops gradually.

3.3.4 Mode Mixity

As illustrated in Figure 3.3, in the cohesive zone model discussed in the Section 3.1, the mode

mixity is accounted by using effective quantities with different weights assigned to the normal

and tangential direction. However, whether this feature works effectively remains untested,

especially for FGMs. The problem under investigation in [30] was a mode-I problem, and

cohesive elements are prescribed along the fracture plane that is subject to pure mode-I

loading. Care needs to be taken when using this model to deal with mixed-mode problem.

65



When mode-II fracture is involved, even for homogeneous material, the local fracture behav-

ior becomes complicated and highly depends on the microstructure of the material, since the

property of grain size, shape, surface roughness, etc. are all going to affect the friction when

sliding occurs. For homogeneous material, the effective quantities with different weights in-

troduced by a simple parameter η may be acceptable, however for FGMs, the complicated

interaction of material constituents at microstructure level can hardly be captured by this

simple scheme. Consider a typical ceramic/metal FGM, the ceramic grain size is of a much

smaller scale compared to metal phase, and the ceramic is more brittle, thus at ceramic-rich

region the crack is more likely to propagate between the ceramic grain surfaces, while in

the region where ceramic and metal phase are not distinctive, the crack may penetrate the

metal phase. The friction effect of ceramic-ceramic, ceramic-metal and metal-metal phases

need to be distinguished. Moreover, with different material constituents, the grain shape

will also affect the fracture behavior. For example, for some ceramic grain with spherical

shape, crack propagation is more likely to meander along the grain boundary, while for some

ceramic grains with cylindrical shape, the crack may penetrate through the particle. With

the above arguments, caution needs to be taken when the method of effective quantities is

adopted to deal with mixed-mode problem, especially in FGMs. To further elaborate, the

traction force in normal and tangential direction (σn and σt) that correspond to several sets

of separation values (δn and δt), are compared for effective quantities model (see Section 3.1)

and actual quantities model (see Section 3.2), as tabulated in Table 3.1.

Table 3.1: Traction-separation values for effective and actual quantity methods

Model by Xu & Effective quantities model

Fracture Needleman [46] η =
√
2 η = 2

Mode
δn
δcn

δt
δct

σn

σmax
n

σt

σmax
n

δeff
δcn

σeff

σmax
n

σn

σmax
n

σt

σmax
n

δeff
δcn

σeff

σmax
n

σn

σmax
n

σt

σmax
n

I 1 0 1 0 1 1 1 0 1 1 1 0

II 0
√
2
2 0 2.332 1 1 0 1.414 1.414 0.935 0 1.869

Mixed 1
2

√
2
4 0.728 1.543 0.707 0.948 0.670 0.948 0.866 0.990 0.572 1.617

Mixed 1√
2

1
2 0.738 1.782 1 1 0.707 1.000 1.225 0.978 0.565 1.597

Mixed 1 1 0.368 1.472 1.732 0.833 0.481 0.962 2.236 0.650 0.291 1.162

The model used for above comparison assumes δcn = δct , and for actual quantities model

the normal work of separation φn equals tangent work of separation φt. The material is

homogeneous, and for effective quantity method two η values are taken as examples: η =
√
2

and η = 2. Five sets of separation values (δn and δt) are included, which respectively

correspond to:

• Mode-I problem, with tangential separation δt = 0 and normal separation δn = δcn
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which corresponds to maximum normal cohesive strength σmax
n for Xu and Needleman’s

model.

• Mode-II problem, with normal separation δn = 0 and tangential separation δt =
√
2/2δct

which corresponds to maximum tangential cohesive strength σmax
t for Xu and Needle-

man’s model. Recall for this model σt = σmax
t occurs at δt =

√
2/2δct and σmax

t =√
2eσmax

n with φn = φt.

• Mixed-mode problem with normal and tangential separation values (δn = 0.5δcn, δt =√
2/4δct ), which equal to half of those values (δn = δcn, δt =

√
2/2δct ) that respec-

tively correspond to maximum normal and tangential cohesive tractions for Xu and

Needleman’s model.

• Mixed-Mode problem with normal and tangential separation values that result in an

effective separation δeff equals critical separation δcn for η =
√
2.

• Mixed-mode problem with normal and tangential separation values equal to critical

normal and tangential separation values, respectively.

The comparison of above table reveals that

• The two methods produce the same results for Mode-I problem, irrespective of the η

value selected.

• For pure mode-II problem, the selected δt value correspond to maximum tangential

traction for both Xu and Needleman’s model and effective quantity method with η =√
2, however, the peak traction values are quite different: the maximum tangential

traction obtained from Xu and Needleman’s model is
√
2e/

√
2 = 1.65 times of that

from effective quantity method. In effort to approximate tangential strength of effective

quantity method to that of Xu and Needleman’s method in Mode-II problem, a larger

η value is used, taken as η = 2, which produces a larger traction value in this case,

however still less than that from Xu and Needleman’s model. Furthermore, notice that

the δt value corresponds to peak cohesive traction value for both Xu and Needleman’s

model and effective quantity method with η =
√
2, yet for effective quantity method

with η = 2, the effective separation δeff exceeds the critical value δcn and thus the

corresponding cohesive traction is at the declining curve that past the peak value.

• For the three mixed-mode cases, the normal tractions σn obtained from effective quan-

tity method are smaller compared to that from Xu and Needleman’s method, and
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the discrepancies increase with larger η value (percentage difference around 5-20% at

η =
√
2 and 20-25% at η = 2). On the other hand, the difference in tangential trac-

tions σt results between that obtained from Xu and Needleman’s model and effective

quantity method is more markedly for η =
√
2 (percentage difference around 60-70%)

than for η = 2 (percentage difference around 19-25%).

In the simulations using effective quantity method, generally η =
√
2 is used since it

represent an equivalent cohesive rule as Xu and Needleman’s model in the sense that in both

pure Mode-I and mode-II cases, the maximum cohesive force occurs at the same separation

values for the two models. However, this also implies that separation in tangential direction

would occur at a much lower stress if effective quantity method is used instead of Xu and

Needleman’s model.

3.3.5 Effective versus Actual Quantities

To avoid using effective quantities, we propose to extend Xu and Needleman’s cohesive zone

model [46] for the FGM case. This model differs from the previously discussed FGM model

in that it allows separate cohesive traction-separation laws for both normal and tangential

traction-separation relationships. By retaining the features of Xu and Needleman’s model

as discussed in Chapter 1 for homogeneous material constituents, and by introducing the

same concept of new material parameters (such as β1 and β2) to count for the reduction of

cohesive traction due to interaction of different material constituents, the cohesive laws for

both normal and tangential traction-separation relationships in FGMs are obtained.

3.3.6 Cohesive Model Adopted in This Study

Further investigation needs to be carried out to better capture the cohesive modelling in

FGMs, and probably a single model is not suitable for all situations. On occasions when

more realistic material properties are available, the actual material property data will be

used, e.g., the epoxy/glass FGM data from [40].

3.4 Energy Balance

Energy balance check not only helps to validate the finite element simulation results, but also

provides valuable insight for dynamic problems, especially fracture problems, through un-

derstanding the conversion between various energetics associated with deformation, kinetics
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and fracture process. In this section, the expression of each energy term is given, and then

a simple problem is studied to test the energy balance, where some discussion is presented

on the computation of external work.

3.4.1 Energy Terms in Dynamic Fracture

In the present study, material behavior is assumed to be elastic, so no energy dissipation

occurs for plastic behavior. Therefore, in a dynamic fracture problem with cohesive model ap-

proach, external work should balance the sum of strain energy, kinetic energy and dissipated

fracture energy. In the finite element framework, these terms are computed as following:

• External work Eext

Eext =

∫

Γext

T ext
i ∆res

i dΓ for force-control problems (3.30)

=

∫

Γext

T react
i ∆ext

i dΓ for displacement-control problems

where Γ denotes the boundary where external force or displacement is applied, T ext
i

and ∆res
i are the applied external force and resultant displacement for force-control

problems, while ∆ext
i and T react

i are the applied external displacement and resultant

reaction force for displacement-control problems.

• Kinetic energy K

K =
1

2

∫

Ω

ρv2dΩ (3.31)

=
1

2
miv

2
i

where ρ denotes mass density and v is material point velocity. In finite element scheme,

the lumped mass at nodes mi and nodal velocities vi are used.

• Strain energy due to elastic deformation of the bulk elements Ubulk

Ubulk =
1

2

∫

Ω

σijεijdΩ (3.32)

where Ω denotes domain surface area, σij and εij are stress and strain components,

respectively.
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• Deformation energy due to elastic deformation of the cohesive elements Ucoh

Ucoh =
1

2

∫

Γcoh

Ti∆idΓcoh (3.33)

where Γcoh include all the cohesive interfaces, Ti and ∆i cohesive traction and separation

across the cohesive interface. This recoverable strain energy is depicted in Figure 3.5,

where permanent damage and partial “relaxationÔ of the interface have occurred.
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Figure 3.5: Components of the cohesive energy.

• Total elastic deformation energy U

U = Ubulk + Ucoh (3.34)

• Total cohesive energy Ecoh

Ecoh =

∫ t

0

(∫

Γcoh

Ti
Ú∆idΓcoh

)

dτ (3.35)

where Ú∆i is the rate of displacement jump across cohesive interface. This term contains

integral over time, so in FEM simulation the rate of total energy needs to be computed

at short time intervals, if not at every time step, to ensure accuracy.
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• Fracture energy Efrac

Efrac = Ecoh − Ucoh (3.36)

The energy dissipated by fracture given by the difference between the total energy at

present time and the recoverable strain energy described above.

3.4.2 A Simple Example and Influence of Boundary Conditions

In this section, energy balance check is performed for a simple plate which consists 8 identical

T6 elements and cohesive elements are prescribed at every interface, as depicted in Figure 3.6.

Two cases of problems are studies, with force-control and displacement-control boundary

conditions respectively, as shown in Figure 3.6 (a) and (b). It takes a finite time t0 for the

force or velocity to attain the prescribed value, and this creates some problem for external

work computation if a simplified scheme is adopted.

t0 t0

p=1MPa

0.2mm

0.4mm

v=5m/s

1MPa

p

t t

5m/s

v

0.2mm

0.4mm

(a) (b)

Figure 3.6: Model used for energy balance check, (a) plate subjected to uniform traction,
which rises within time t = [0, t0] from 0 to 1MPa, then kept constant; (b) plate subjected
to uniform displacement, velocity rises within time t = [0, t0] from 0 to 5m/s, then kept
constant.

In theory, the external work is the accumulation of work done by external force within
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Figure 3.7: External energy calculation, (a) general P − ∆ relationship; (b) external force
P kept constant; (c) linear P −∆ relationship.

infinitesimal time intervals, as shown in Figure 3.7(a):

Eext =

∫ ∆

0

P (∆)d∆ (3.37)

This approach requires computation at each time step, hence more expensive, and it is

desirable if the calculation can be simplified so that only the current values of P and ∆ are

involved, instead of the entire P −∆ history. If external force is kept constant, the external

work can be computed as

Eext =

∫ ∆

0

Pd∆ = P

∫ ∆

0

d∆ = P∆ (3.38)

as shown in Figure 3.7(b). If P −∆ relationship is linear, the external work expression is

Eext =

∫ ∆

0

P (∆)d∆ =
1

2
P∆ (3.39)

as shown in Figure 3.7(c). The problems described in Figure 3.6 roughly fall into the above

two categories, however, in dynamic problem, it always takes finite time for the force or

velocity to attain the prescribed value, so the accuracy of employing expression 3.38 and 3.39

to calculate external energy depends on the value of parameter t0. For example, for the

constant traction problem shown in Figure 3.6 (a), the shorter the rising time t0 is, the

closer the P −∆ relationship approaches the curve in Figure 3.7(b), so the result is better

using Eq. 3.38. On the other hand, for the constant velocity boundary condition problem,

short rising time t0 produces oscillating result when expression 3.39 is used. These effects

are illustrated in the following discussion.
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Constant traction loading. Results comparisons of using precise versus simplified ex-

ternal energy computation are plotted in Figures 3.8, 3.9 and 3.10. When the t0 value is

sufficiently small, e.g., t0 = 0.01µs, the two approaches (Eq. 3.37 and 3.38 give indistinguish-

able results, thus only one data set is plotted, as in Figure 3.8. The balance between external

work and internal energy, which is the sum of kinetic energy, bulk strain energy and total

fracture energy, is captured. However, for a larger t0 values, e.g., t0 = 0.1µs, using simplified

formula (Eq. 3.38) results in unbalanced energy check, as evident in Figure 3.9. By using

the precise formulation (Eq. 3.37), the energy balance is obtained, as shown in Figure 3.10.
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Figure 3.8: Energy balance obtained using either original or simplified external work calcu-
lation when rising time for traction is t0 = 0.01µs.

Constant velocity loading. Results comparisons of using precise versus simplified ex-

ternal energy computation are plotted in Figures 3.11, 3.12 and 3.13. When the t0 value

is small, e.g., t0 = 0.01µs, the simplified approach (Eq. 3.39) gives oscillating external en-

ergy curve, as shown in Figure 3.11. This oscillation is spurious, and results in inequality

of energy. On the other hand, using accurate formulation (Eq. 3.37) produces smooth ex-

ternal energy curve and captures the balance between external work and internal energy,

as shown in Figure 3.12. Using larger value of t0 will improve the smoothness of external

energy curve when using simplified formulation, but energy balance is still lost, as indicated

by Figure 3.13.

With the above examples presented, we reach the conclusion that for external energy
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Figure 3.9: Energy balance lost using simplified external work calculation when rising time
for traction is t0 = 0.1µs.
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Figure 3.10: Energy balance obtained using original external work calculation when rising
time for traction is t0 = 0.1µs.
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Figure 3.11: External energy curve oscillates, and Energy balance is lost using approximate
external work calculation when rising time for velocity is t0 = 0.01µs.
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Figure 3.12: Energy balance is obtained using accurate external work calculation when rising
time for velocity is t0 = 0.01µs.
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Figure 3.13: External energy curve is smooth, but energy balance is lost using approximate
external work calculation when rising time for velocity is t0 = 1µs.

calculation, it is better to use the accurate formulation. With this said, the simplified

approach can be adopted if the applied force or velocity are constant, so as to save some

computation overhead. However this approach may produce slight inequality of energy check.

For force-control problem, the approximation overestimates the external work, as shown in

Figure 3.8; for displacement-control problem, the approximation underestimates the external

work, as shown in Figure 3.13.
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Chapter 4

Mesh Generation, Stability and
Accuracy

The introduction of cohesive zone model affects various implementation and performance

aspects of the numeric scheme. First, cohesive elements need to be generated explicitly.

Further, the presence of cohesive elements dictates smaller time step than traditional explicit

dynamic scheme to guarantee stability. Moreover, the accuracy decreases with increasing

number of cohesive elements as well as decreasing cohesive strength. Cohesive elements also

puts an upper limit on the element size, and this will be discussed in Chapter 5 with an

example of elastic strip subjected to initial stretch.

4.1 Cohesive Elements Generation

For intrinsic cohesive model as employed in current approach, cohesive elements are prede-

fined in the domain of interest before the dynamic computation starts. The added cohesive

elements not only affect stability but also accuracy (see [12, 28], these effects will be discussed

in detail in the next section), which requires limiting cohesive elements in a certain region,

rather than being present in entire domain. The code is capable of reading in bulk mesh

information and generating cohesive elements. Considering the following general situations:

• 1. Cohesive elements along a straight line (Figure 4.1(a)).

• 2. Cohesive elements within a rectangular box region (Figure 4.1(b)).

• 3. Cohesive elements everywhere in the domain.

The procedure of generating one cohesive element between two T6 elements is illustrated

in Figure 4.2.
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Figure 4.1: Generation of cohesive elements (a) along a straight line; (b) within a box region
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Figure 4.2: Node renumbering in the procedure of generating one cohesive element between
two existing bulk elements.

1. Generate cohesive elements along a straight line specified in the input file. This is for

cases when the crack propagation direction can be predicted.

• First, select all nodes that are along the predefined cohesive path.

• Second, use element connectivity information to count the node connectivity number

n (i.e. how many elements share the node) for each of the nodes selected.

• Third, duplicate each of the selected nodes an additional copy, which shares the same

coordinate, but is numbered uniquely.

• Fourth, for each of the two nodes that have the same coordinates, assign one node to

bulk elements at one side of the cohesive path, and the other one to the bulk elements

at the other side.

• Finally, pair the nodes that form two edges of different bulk elements but share the

same position to form one cohesive element (See Figure 4.2).
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2. Generate cohesive elements inside a rectangular region which is specified a priori.

This feature has been developed for cases when the propagation direction of the crack(s)

is uncertain, but the potential region where cracking is possible can be estimated. The

procedure to generate cohesive elements in a block region is briefly described as follows,

and partly illustrated in Figure 4.3 and 4.4 for a simple mesh with 8 bulk T6 elements. In

this simple mesh, cohesive elements are finally generated in entire domain, so the feature of

cohesive elements only inside a region is not highlighted, yet the procedure is explained as

following.

• First, bulk elements inside the cohesive region are selected and the subsequent gen-

eration of cohesive elements is performed within this region. In the simple mesh in

Figure 4.3, all elements numbered from 1 through 8 are selected.

• Second, use element connectivity information to count the node connectivity number

n (i.e. how many elements share the node) for each of those nodes that are inside the

region and at the interface between selected and unselected elements. For instance,

node 13 is shared by 6 elements (n = 6) while node 19 is shared by 2 elements (n = 2).

• Third, duplicate each of the nodes additional n − 1 copies, where n is the sharing

number defined above. At this point there are totally n copies of nodes that share the

same coordinates but are numbered uniquely. For example, node 13 in Figure 4.3 is

shared by 6 elements, so additional 5 nodes are generated at the same location.

• Fourth, assign each node to each bulk element that shares the original node.

• Finally, pair the nodes that form two edges of different bulk elements but share the

same position to form one cohesive element.

3. Generate cohesive elements everywhere in the problem domain. This case is similar to

case 2, except for that all bulk elements are selected in step 1 so there is no interface nodes

between selected and unselected elements. For completeness, the procedure is summarized

as follows, and illustrated in Figure 4.3 and 4.4 for a simple mesh with 8 bulk T6 elements.

• First, select all bulk elements in entire region. In the simple mesh in Figure 4.3, all

elements numbered from 1 through 8 are selected.

• Second, use element connectivity information to count the node connectivity number

n (i.e. how many elements share the node) for all the nodes. For instance, node 13 is

shared by 6 elements (n = 6) while node 19 is shared by 2 elements (n = 2).

79



• Third, duplicate each of the nodes additional n − 1 copies, where n is the sharing

number defined above. At this point there are totally n copies of nodes that share the

same coordinates but are numbered uniquely. For example, node 13 in Figure 4.3 is

shared by 6 elements, so additional 5 nodes are generated at the same location.

• Fourth, assign each node to each bulk element that shares the original node.

• Finally, pair the nodes that form two edges of different bulk elements but share the

same position to form one cohesive element.
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Figure 4.3: A simple mesh containing 8 T6 bulk elements, 25 nodes, and no cohesive elements.

4.2 Stability and Accuracy Issues

Before applying the proposed cohesive zone model to the impact induced fracture problem,

validation of the formulation and implementation needs to be carried out. In this section,

a number of example problems are tested to validate the code and examine the issues of

stability and accuracy, which are essential for obtaining satisfactory computational results.

The study starts with an investigation of the stability of the numerical scheme, which turns

out to be also dependent upon cohesive zone model parameter, besides the factors present in

the conventional explicit dynamic finite element scheme. Next the influence of the maximum

cohesive strength and element size on the accuracy of computational results is illustrated
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Figure 4.4: Mesh after cohesive elements are generated in entire domain. It contains 48
nodes, 8 T6 elements and 8 cohesive elements (numbered as C1-C8). Notice that the nodes
that share the same position are plotted separately for clarity, e.g., the center nodes 13,
35, 36, 37, 38 and 39 are actually at the same location and thus have the same Cartesian
coordinates.

by a simple beam example with one cohesive element added. Finally a cantilever beam

subjected to transient loading problem is presented to validate the accuracy of the code.

4.2.1 Stability

The stability of conventional explicit schemes is usually governed by the Courant condi-

tion (see, for example, reference [3]) which provides an upper limit for the time step size

∆t:

∆t ≤ `e
Cd

(4.1)

where `e is the equivalent mesh length of the shortest distance between two nodes, and the

dilatational wave speed Cd is expressed in terms of the material elastic constants E = E(x),

ν = ν(x), and density ρ = ρ(x) as

Cd(x) =

√

E(x)(1− ν(x))

(1 + ν(x))(1− 2ν(x))ρ(x)
(4.2)
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for plane-strain problems, and

Cd(x) =

√

E(x)

(1 + ν(x))(1− ν(x))ρ(x)
(4.3)

for plane-stress problems.
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front

wave

(a) (b) (c)

Figure 4.5: Wave transmission across conventional finite element boundary. Wave front (a)
at upper surface of upper element; (b) transmits across boundary of two bulk elements; (c)
and arrives at lower surface of lower element.
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Figure 4.6: Wave transmission across cohesive element interface; (a) wave front at upper
surface of upper element; (b) wave front at upper surface of cohesive element interface.
Upper element deforms independently; (c) interface separation cause traction developed
along cohesive interface, and the wave front transmits across the interface; (d) wave front
arrives at lower surface of lower bulk element.

The introduction of cohesive elements affect the stability adversely by requiring smaller

time step sizes of the finite element scheme, because of the discontinuous manner the wave

is transmitted between the bulk elements through cohesive interfaces. Schematic represen-

tation of a tensile wave transmission between two bulk elements, without and with cohesive

element respectively, are shown in Figures 4.5 and 4.6. For conventional finite element
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scheme (Figure 4.5), the wave front that reached the upper boundary of top element in Fig-

ure 4.5(a), is smoothly transmitted across the interface of the two elements (Figure 4.5(b)),

and arrived the bottom boundary of lower element (Figure 4.5(c)), deforming the element

shape continuously.

Consider now a single cohesive element inserted between the interface of two elements,

as illustrated by Figure 4.6(a). When the stress wave reaches the interface (Figure 4.6(b)),

there is no immediate resistance developed along the interface at this time step, and the

upper element can move independently. Only by the next time step, the separation of the

interface δ causes cohesive traction to develop along the interface according to the prescribed

cohesive law, and the stress wave is transmitted to the other side of interface (Figure 4.6(c)).

If the upper element experienced too large deformation at the previous step, a large cohesive

force corresponding to the large δ value will result in a large compensating deformation in

the opposite direction (upper element move downward and lower element move upward).

Thus, only when the time step ∆t is sufficiently small, the interface could approach a steady

state value of traction-separation that is consistent with the magnitude of the stress wave;

otherwise the results at the interface oscillate and lead to unstable behavior.

In order to investigate stability, dynamic behavior of a simple finite element model (Fig-

ure 4.7) consisting of 2 quads each divided into four T6 elements is simulated. It is subjected

to uniform traction p at the right end and fixed in x direction at the left end. Note that no

constraint is provided along y direction, which would have resulted in singularity of global

stiffness matrix in implicit scheme, while poses no problem for the explicit dynamic scheme.

The load p(t) is given by

p(t) =
σmax

1000

Cdt

h
(4.4)

where h is the size of the longest edge of the triangular element, which is equal to

h = 2
√
2`e (4.5)

where `e is the smallest distance between element nodes.

Numerical simulations are performed for the dilatational wave to propagate distance

of 10h, yielding a maximum value of applied load p = σmax/100, which is well below the

maximum cohesive traction σmax. The material properties are those of PMMA [46], which

are tabulated in Table 4.1.

The cohesive zone model proposed by Jin et al. [30] is used, with identical material

properties (Table 4.1) for the two phases, and material parameters βm and βc set to unity, so

that the actual material properties are achieved. Besides, the η value that counts for mode

83



h
2

p(t)

3

1

`e

Figure 4.7: Model used for stability investigation. The plate consists of 8 T6 elements.

Table 4.1: PMMA material properties

E ν ρ GIc σmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)
3.24 0.35 1190 351.2 324 0.4

mixity is taken as η =
√
2.

The time step criterion given by Eq. (4.1)

∆t =
`e
Cd

(4.6)

= 3.38× 10−2µs (plane-strain, h = 0.2mm,Cd = 2090m/s)

= 4.01× 10−2µs (plane-stress, h = 0.2mm,Cd = 1761m/s)

provides an upper limit for the conventional explicit scheme, and the minimum value of ∆t

for stability depends on problem. For the problem described in Figure 4.7, stability is first

checked for conventional explicit scheme (without cohesive elements added), by finding a

threshold value of maximum ∆t that produces stable results, and is obtained as

∆t = 0.55
`e
Cd

(no cohesive elements) (4.7)

= 1.86× 10−2µs (h = 0.2mm)

for plane-strain case, and

∆t = 0.54
`e
Cd

(no cohesive elements) (4.8)

= 2.17× 10−2µs (h = 0.2mm)

for plane-stress case.
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When cohesive elements are inserted, the threshold value of ∆t for stable result decreases,

and also depends on the ratio of mesh size and critical interface separation δcn. First one

cohesive element is inserted in the model (Figure 4.7) at the middle of the plate, in vertical

direction. The positions of the three Gauss points on the cohesive element are numbered

as 1, 2 and 3 in the figure. The normal separation and traction at the three locations are

retrieved for different time step ∆t values. Stable results can be obtained once a threshold

value ∆t is reached (see Figure 4.8 and 4.9). For instance, for h = 500δcn = 0.2mm, the

threshold occurs at

∆t = 0.055
h

Cd

= 0.157
`e
Cd

(1 cohesive element) (4.9)

= 0.53× 10−2µs (h = 0.2mm)

for plane-strain case, and

∆t = 0.047
h

Cd

= 0.133
`e
Cd

(1 cohesive element) (4.10)

= 0.53× 10−2µs (h = 0.2mm)

for plane-stress case.

Next, similar simulation is performed for the problem in Figure 4.7 with cohesive elements

inserted along every interface. The normal separation and traction results are still retrieved

from the Gauss points of the vertical cohesive element, and results become stable at certain

threshold of ∆t (Figure 4.9). This value is noticeably lower compared to the case with only

one cohesive element inserted in the middle of plate. For instance, For h = 500δcn = 0.2mm

case, the threshold occurs at

∆t = 0.029
h

Cd

= 0.082
`e
Cd

(9 cohesive elements) (4.11)

= 0.28× 10−2µs (h = 0.2mm)

for plane-strain case, and

∆t = 0.024
h

Cd

= 0.063
`e
Cd

(9 cohesive elements) (4.12)

= 0.25× 10−2µs (h = 0.2mm)

for plane-stress case, which are roughly half of the critical ∆t value for the problem with one

cohesive element inserted.
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Figure 4.8: Determination of the stability threshold for problem in Figure 4.7, considering
plane strain and 1 cohesive element inserted at middle vertical line. The normal separation
δn is retrieved at node 1; (a) result is stable at ∆t = 0.157`e/Cd, but oscillates at ∆t =
0.159`e/Cd; (b) once threshold is reached, results don’t depend on ∆t.
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Figure 4.9: Determination of the stability threshold for problem in Figure 4.7, considering
plane strain and cohesive element inserted along all interfaces. The normal separation δn is
retrieved at node 1; (a) result is stable at ∆t = 0.082`e/Cd, but oscillates at ∆t = 0.085`e/Cd;
(b) once threshold is reached, results don’t depend on ∆t.
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That the critical ∆t value decreases with more cohesive elements is due to the increased

complexity of stress wave transmission across the cohesive interfaces. With only one cohesive

element, which is aligned normal to the wave propagation direction, the instability is only

induced at one cohesive interface, and as long as the time step is small enough to resolve the

“communicationÔ of the traction-separation relationship to a steady stage at that interface,

the result becomes stable. However with more cohesive interfaces, multiple “communica-

tionsÔ are present, and the adjustment of separation at one cohesive element interface will

influence that of others, therefore the time step that is good for only one cohesive element

case can not satisfy the stable ‘communications’ of more interfaces, thus a smaller time step

is needed.

The above results also indicate that the reduction of time step ∆t for the cohesive element

approach compared to the conventional FEM approach, is more significant for plane-stress

than in plane-strain case.

The stability highly depends upon the ratio of element size and cohesive zone model

parameter δcn. The stability threshold ∆t, normalized with dilatational wave speed Cd and

element size h, calculated for different h/δcn values, are presented in Figure 4.10 for plane-

strain case. The stability decreases with increasing element size. This phenomenon can be

understood as follows: when element size is smaller, it takes shorter time for the stress wave
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to propagate through one bulk element and come across an interface. With such short time

interval, the change of current stress wave profile (intensity, direction, etc.) from the last

wave front that impact the interface is also smaller, so that it is easier to solve the “balanceÔ

of the separation-traction “communicationÔ of the interface. However, with smaller element

size, more cohesive elements need to be inserted, and accuracy of the scheme will be reduced,

as will be discussed in the following section.

4.2.2 Accuracy

The added cohesive elements affect the accuracy of the FEM result ([12, 28]. Ideally, prior

to crack propagation, the FEM simulation with cohesive elements should produce the same

result as that without cohesive elements. However, the elastic model as employed in the

current study introduces additional compliance to the structure, and thus entails larger

deformation. This situation can be understood as described below.

As the previous section explains, to generate cohesive elements, one node shared by two

or more bulk elements is duplicated with respect to the number of bulk elements sharing that

node. In this case, each element has a node that is numbered separately, yet possesses the

same spatial position along with some others. The connection of bulk elements, previously

guaranteed by the shared node, is now sustained by cohesive elements, which relates pairs

of coincident nodes following the cohesive law. Requiring the same result for FEM with

and without cohesive elements implies that the initially coincident nodes do not separate

prior to crack propagation, which is, unfortunately, impossible with the intrinsic elastic

cohesive model. The cohesive elements can be conceived as nonelastic springs connecting

bulk elements; initially with zero loading they do not extend. Under force they extend

or shrink, and spring forces (cohesive forces here) are produced, trying to bring the nodes

together again, yet the displacement between initially coincident nodes cannot be avoided.

Thus, the stiffness of the springs, i.e. the cohesive elements will influence the accuracy of

the result.

Figure 4.11 presents a cantilever beam with only one cohesive element, which is positioned

at half length of the beam, in the vertical direction. The beam is subjected to tip traction

and the prescribed force is small enough to keep the deformation within the elastic range.

Displacement at three nodes are tracked: one tip node (1), and two nodes which form a pair

in the cohesive element (nodes 2 and 3).

In Figure 4.12, it is obvious that the lower the maximum cohesive strength σmax, the

larger the tip displacement. By taking the FEM result for the same problem without cohesive

element as reference, one notices that the results obtained for the case σmax = E/10 are very
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Figure 4.11: One cohesive element in a cantilever beam. Displacement in x-direction at
nodes 1 (tip node), 2 and 3 (initially at the same position) are retrieved.
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Figure 4.12: Tip-displacement comparison for different cohesive strength cases.
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close to the reference solution, while that for σmax = E/200 represent a more compliant

beam.

The difference is due to the cohesive element. Figure 4.13 shows the displacement at the

three nodes (1, 2 and 3), plotted for the σmax = E/200 case. Ideally, the gap between nodes

2 and 3 should be negligible, however, in this plot the two curves for these two nodes are far

apart. The ratios of the gap between nodes 2 and 3 (U3 − U2) to the tip displacement at 1

(U1 for different cohesive strength cases are plotted in Figure 4.14. For the weak interface,

i.e.σmax = E/200, at the end of test time, 40 percent of the maximum displacement at the

tip is due to the gap resulting from the cohesive element.
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Figure 4.13: Displacement in x-direction at nodes 1 (tip node), 2 and 3 (initially at the same
position) are retrieved for σmax = E/200 case.

Based on above discussion, σmax = E/10 is taken to test for the validity of the code. It

is anticipated that with this strength value, the presence of cohesive elements would have a

nominal influence on the dynamic problem under small loading.

Again the cantilever beam (Figure 2.5) subjected to transient half-sine shape impact

loading (Figure 2.6) example is considered because reference results without cohesive ele-

ments are available (shown in Chapter 3). To observe the influence of cohesive elements on

the accuracy of results, results for beam with cohesive elements in entire region and without

cohesive elements are presented in Figure 4.15 for homogeneous beam, and Figure 4.16 for
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Figure 4.14: Ratio of the displacement gap at cohesive element to the tip displacement for
different cohesive strength cases.
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Figure 4.15: Comparison of tip displacement for cantilever beam with cohesive elements
in entire domain and without cohesive elements. Homogeneous material, E = 5GPa, ρ =
1g/cm3, ν = 0.3, σmax = E/10.
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Figure 4.16: Comparison of tip displacement for cantilever beam with (in entire domain)
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FGM beam with linear material gradation in x direction. In Figure 4.15, comparison is given

between the FEM result and analytical solutions, while in Figure 4.16 comparison is made

between FEM results since analytical solution is not attainable. As expected, the presence

of cohesive elements results in slightly larger displacement and longer period, yet within

acceptable range.
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Chapter 5

Dynamic Fracture of Brittle FGMs

With the code validated and numerical stability and accuracy issues discussed and under-

stood, we proceed to apply the CZM approach to investigate fracture problems with richer

dynamic features. In this Chapter, three classes of problems are studied:

• Spontaneous rapid crack growth in an elastic homogeneous/FGM strip. This example

is to further investigate the influence of mesh refinement, orientation, and capacity

of crack nucleation without initial crack for CZM approach. Also, energy balance

is checked, which provides valuable insight into the energy exchange in the fracture

process.

• Dynamic fracture propagation of FGM beam under impact loading. This example

provides a rare opportunity to employ real FGM material parameters and compare

results with that of experiments.

• Crack branching in homogeneous/FGM plate. A plate subjected to impact loading

is simulated to demonstrate the important feature of crack branching capacity of the

CZM approach. In this example, cohesive elements are assigned in a large region, and

crack evolves in a branched pattern.

5.1 Spontaneous Rapid Crack Growth in an Elastic

Homogeneous/FGM Strip

In this section, the rapid propagation of a straight crack along defined path is studied for

an elastic strip subjected to initial stretch [4]. First, the mesh convergence of the numeri-

cal method is investigated. Result of the crack tip velocity reveals its dependence on mesh
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refinement. Next, energy balance issue is investigated in detail, which also provides verifi-

cation information for the numerical implementation. After that, graded material property

is adopted to investigate the influence of material variation. Moreover, to further explore

the capability of simulating spontaneous crack nucleation, the elastic strip with initial strain

problem is extended to FGM case without initial crack prescribed. It was found that by

manipulating material properties of FGM strip the crack can nucleate at high stress region

and propagate thereafter.

5.1.1 Problem Description

The geometry and boundary conditions for the strip problem are illustrated in Figure 5.1.

The strip is initially stretched uniformly by imposing an initial displacement field

u(x, y; t = 0) = 0, v(x, y; t = 0) = ε0y (5.1)

The upper and lower surfaces are held fixed and a small crack length a is introduced at

the left edge at time t = 0. For homogeneous strip case, the material is taken as PMMA,

and its properties are tabulated in Table 5.1. For the FGM problem, the detailed material

properties are described for each case in later sections.

Table 5.1: Material properties for PMMA strip subjected to initial stretch

E ν ρ GIc σmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)
3.24 0.35 1190 352.3 324 0.4

5.1.2 Mesh Convergence

The domain is discretized uniformly by T6 elements of various element sizes as shown by

Figure 5.2. Cohesive elements are inserted along plane y=H in order to constrain the crack

path along its original plane and prevent crack branching.

Driven by the strain energy stored in the pre-stretched strip, the crack quickly propagates.

As the strain energy put into the system is increased, the fracture speed should approach

the Rayleigh speed CR of PMMA, which is 939m/s.

It is essential to investigate the convergence of the numerical scheme in terms of the

relation between the characteristic cohesive length scale δc and mesh size h. Here h is

defined as the minimum nodal distance of the cohesive elements. Since quadratic elements
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Figure 5.1: Domain and boundary conditions of the strip dynamic fracture test

are used, one element length equals 2h. A static estimate of the cohesive zone size for a

constant traction-separation relation [36] is

R =
π

8

E

1− ν2

GIc

σ2
ave

(5.2)

where for exponential cohesive law, σave = 0.453σmax, as shown in Figure 5.3. For PMMA,

Young’s modulus E = 3.24GPa, Poisson ratio ν = 0.35, mode I critical energy release rate

GIc = 352.3J/m2, thus the cohesive zone size is approximately 23.6 µm.

The influence of mesh size on the evolution of the crack tip position is shown in Figure 5.4

and 5.5, for an initial stretching parameter ε0 = 0.035 and ε0 = 0.032, respectively. Crack

tip is defined as the right-most point along the fracture plane for which δ > 6δc, where δ

denotes the interface displacement jump.

Evidently, mesh size plays an important role in the spontaneous propagation of fast crack.

When the mesh is too coarse (h=50µm), the crack does not propagate at all. As mesh is

progressively refined, the solution converges as shown in Figure 5.4 and 5.5. The Ccrack = CR

curve assumes an ideal case for which the crack starts to propagate at t = 0 through the

crack path at Rayleigh wave speed. Since it takes a finite time interval for crack to initiate,

this curve is shifted from the rest of FEM results. However the crack tip speed of these

mesh refinement cases, i.e. the slope of the curves, does indicate that with refined mesh, the

crack tip speed is asympototically closer to the Rayleigh wave speed for high initial stretch,

as shown in Figure 5.4.

The rate of mesh convergence also depends on the initial condition of the problem. To

drive the crack propagate through the whole length of strip, the minimum initial stretch

can be estimated as ε0 = 0.031. The detailed derivation will be given in the energy balance

discussion. Therefore, for both cases (ε0 = 0.035, 0.032) in Figure 5.4 and 5.5, the initial

strain energies stored in the elastic strip are high enough to drive the crack to propagate
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Figure 5.2: Mesh discretization with different T6 element size for elastic strip subjected
to initial tension problem. Cohesive elements are inserted on layer at half height, along
x direction, and h is defined as distance between nearest nodes of cohesive element; (a)
h=50µm; (b) h=25µm; (c) h=16.7µm; (d) h=12.5µm; (e) h=8.33µm; (f) h=6.25µm; (f)
h=5.56µm.
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Figure 5.4: Normalized crack tip location versus normalized time for various levels mesh
refinement. CR denotes Rayleigh wave speed, initial stretch ε0 = 0.035.
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Figure 5.5: Normalized crack tip location versus normalized time for various levels of mesh
refinement. CR denotes Rayleigh wave speed, initial stretch ε0 = 0.032.

through the whole strip. For ε0 = 0.035 case, these three meshes produce very close results

in terms of simulation time for the crack to propagate through the strip: h = 5.56µm,

h = 6.25µm and h = 8.33µm, and these two meshes also give good results: h = 12.5µm,

h = 16.7µm, which differ from the result given by mesh of h = 5.56µm only by 5% and 7%,

respectively. However, for slightly lower value of initial stretch, ε0 = 0.032, only results from

these two meshes are close: h = 5.56µm, h = 6.25µm, mesh size h = 8.33µm produces 8.5%

difference compared to the h = 5.56µm result, and mesh size h = 12.5µm gives over 30%

difference, while h = 16.7µm gives completely misleading result–crack arrests.

The results thus suggests that the characteristic element size should be chosen two or

three times smaller than cohesive zone size to ensure convergence. For example, for this

strip problem, when h ≤ 8.33µm, which is around one third of the estimated cohesive zone

size, the result is acceptable. This is consistent with suggestions made by other researchers

([12, 28]). Moreover, this requirement can be relaxed for some particular cases, e.g., for

this strip problem, at high initial stretch, larger cohesive element size can produce pretty

accurate result, but it is difficult to generalize this observation to other problems.

A similar test is performed to model crack arrest under dynamic conditions, as depicted

in Figure 5.6, which shows the effect of initial stretching of the elastic strip on the crack

propagation. When a sufficient amount of energy is stored initially in the system, the crack

speed quickly approaches the Rayleigh wave speed CR. e.g., for ε0 = 0.5, the crack tip curve
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is almost parallel to that of the ideal case where crack tip speed equals Rayleigh wave speed

(Ccrack = CR curve). However, for initial stretch ε0 < 0.031, the crack arrests.
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Figure 5.6: Normalized crack tip location versus normalized time for various initial stretching
parameter ε0. CR denotes Rayleigh wave speed.

5.1.3 Mesh Orientation

Results presented in Figure 5.4, 5.5 and 5.6 are obtained for meshes shown in Figure 5.2,

which has certain mesh orientation bias, i.e. the diagonal lines that bisect the quads into

T6 elements are all aligned in −45 degree direction, with respect to x coordinate. With

the concern whether a specific orientation influences computational results in current prob-

lem, two more mesh orientations are employed to simulate the same problem, which are

plotted in Figure 5.7, for diagonal lines in 45 degree direction with respect to x coordinate

(Figure 5.7(b)), and ‘Union Jack’ mesh (Figure 5.7(c)).

For visual clarity, the mesh shown in Figure 5.7 are for characteristic mesh size h = 25µm,

while numerical simulations are performed using a further refined mesh of h = 5.56µm. Since

the cohesive elements are along a predefined straight line and are of the same characteristic

size in all three meshes, we expect the results to be similar. This is proved by the results

shown in Figure 5.8, which compares the crack tip location of three meshes, for an initial

stretch ε0 = 0.035. Apparently, results of the two ‘biased’ meshes, in the sense that the

elements are not symmetric with respect to x coordinates, coincide with each other within

plotting accuracy, while the ‘Union Jack’ mesh result is slightly different.
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(a)
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(c)

Figure 5.7: Three Mesh orientations, characteristic mesh size is h = 25µm; (a) Diagonal
lines in -45 degree direction measured from x coordinate; (b) Diagonal lines in 45 degree
direction measured from x coordinate; (c) Union Jack mesh.
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Figure 5.8: Normalized crack tip location versus time for three different mesh orientations
(Figure 5.7). Initial stretch ε0 = 0.035, characteristic cohesive element size h = 5.56µm.
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5.1.4 Energy Balance and Validation of Results

This elastic strip problem presents an appropriate example for us to examine the conversion

among energies associated with different energetics during dynamic fracture process. There

are two analytical solutions available that allow us to validate the computational results.

First, the initial boundary condition is such that an analytical evaluation of the initial strain

energy is easily obtained. Second, the cohesive elements are prescribed along a defined path,

hence the total fracture energy required for crack to propagate through the entire strip can

be computed readily. Moreover, the dissipated fracture energy presents a large portion of

the total initial energy, thus the conversion between the stored strain energy and dissipated

fracture energy is evident.

Energy balance expression. As described in Section 3.4, there are totally six energy

components of interest. i.e.,

• External work Eext

• Kinetic energy K

• Strain energy due to elastic deformation of the bulk elements Ubulk

• deformation energy due to elastic deformation of the cohesive elements Ucoh

• Total cohesive energy Ecoh

• Fracture energy Efrac

For the current problem under discussion, external work is kept constant, with value

equal to the initial strain energy due to deformation. At any time instant, the total energy

in the system is

Etot = U +K + Efrac = const (5.3)

where

U = Ubulk + Ucoh (5.4)

represents the total recoverable elastic energy of the system.

Initial strain energy. For the above described initial condition, i.e. uniform stretch in y

direction at t = 0, the strain energy stored in the strip can be obtained analytically as:

Ubulk = w × A =
1

2
σijεij × A =

1

2
σyyεyy × A =

1

2

E

1− ν2
εyy

2 × A (5.5)
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where w denotes strain energy density and A is the strip area. Since the initial stretch is

only in y direction, all stress and strain components vanish except for σyy and εyy. When

initial stretch ε0 = 0.032, strain energy density is

w =
1

2

3.24× 109

1− 0.352
0.0322 = 1.8905× 106N ·m/m2

and the total strain energy stored in the system (w × A) is

Ubulk = 0.756184615N ·m

while the initial strain energy calculated from finite element method is

Ubulk = 0.75618464211N ·m

which is the same as the analytical solution up to seven digits.

Energy evolution. The evolution of various energy components for the spontaneous crack

propagation simulation in the elastic strip with ε0 = 0.032 is shown in Figure 5.9, 5.10

and 5.11.
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Figure 5.9: Total strain energy consists of contribution from bulk elements and cohesive
elements. Cohesive element contribution only represents a small fraction of the total energy
in the strip fracture problem. Applied strain ε0 = 0.032, characteristic cohesive element size
h = 6.25µm.
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Figure 5.10: Total cohesive energy Ecoh can be decomposed into recoverable elastic de-
formation energy Ucoh and dissipated fracture energy Efrac. Applied strain ε0 = 0.032,
characteristic cohesive element size h = 6.25µm.
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Figure 5.11: Evolution of various energy components for the strip fracture problem with
applied strain ε0 = 0.032, characteristic cohesive element size h = 6.25µm.
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As explained earlier in Section 3.4, some elastic energy is stored in the cohesive elements.

As shown in Figure 5.9, the cohesive deformation energy denoted by the bottom curve only

represents a small fraction of the total elastic energy. There is a constant dynamic exchange

between these two types of elastic energies and their sum is a relatively smooth curve, as

shown in Figure 5.9.

Total cohesive energy Ecoh can be decomposed into recoverable elastic part Ucoh and

dissipated fracture energy Efrac, as shown in Figure 5.10. The curves representing total

cohesive energy and elastic cohesive energy oscillates, while the dissipated fracture curve is

rather smooth.

Figure 5.11 shows the total strain energy, kinetic energy, energy dissipated by fracture

and the sum of these terms. Energy conservation is obtained as required. Apparently, the

strain energy initially stored in the system gradually converts to fracture energy and drives

the crack to propagate. A small portion of strain energy is converted to kinetic energy, which

oscillates in equilibrium with the strain energy.

Fracture energy required for crack propagating through strip. Since the cohesive

elements are prescribed along a predefined path and at the end of simulation they are all

debonded, the energy required for the entire fracture process can be evaluated analytically:

Efrac = GIA = 352.3N ·m/m2 × (1.9mm× 1m) = 0.66935N ·m

while the finite element result is

Efrac = 0.66944N ·m

This is a positive indication that the numerical implementation of cohesive elements is

successful.

The minimum initial stretch needed for the crack to propagate through the entire strip

length can also be estimated. If kinetic energy K and elastic cohesive energy Ucoh are

neglected, i.e. assume all initial strain energy Ubulk can be converted into fracture energy

Efrac, by equating Eq. 5.5 and the above value

Ubulk =
1

2

E

1− ν2
ε0

2 × A = Efrac, (5.6)

the initial stretch needed for crack propagating through strip is obtained as ε0 = 0.0301.

However, part of initial strain energy is converted to kinetic energy K and elastic cohesive

energy Ucoh. Elastic cohesive energy is nominal as shown in Figure 5.9, and we just estimate
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the kinetic energy. When the strip is stretched only in y direction at t = 0, the left and

right boundaries of the strip are kept straight. Afterwards, these two boundaries tend to

deform in a curved shape due to Poisson effect. The kinetic energy can be estimated as the

difference in strain energy from initial deformation shape to this curved deformation shape.

Analytical solution is not sought, rather we estimate it from Figure 5.11 as K = 0.05N ·m.

Hence, the initial stretch needed for crack propagating through entire strip is ε0 = 0.0312.

This is consistent with the result shown in Figure 5.6.

5.1.5 Crack Propagation in FGM Strip

Now we consider that an FGM strip with an initial crack and linear material variation in x

direction is subjected to initial stretch as described in the homogeneous case. The detailed

material properties are tabulated in Table 5.2. Young’s modulus is three times as high at left

side (4.86GPa) as the right side (1.62GPa), and the average Young’s modulus is kept the

same as the homogeneous PMMA strip. Poisson’s ratio and material density are assumed to

remain constant. The cohesive strength is kept as E/10 and thus varies linearly along the x

direction. The critical interface separation remains 0.4µm. The cohesive elements are again

prescribed along the ligament on the half height plane (a < x < L, y = H). For the current

problem, mode I fracture dominates, and the two FGM cohesive zone models discussed in

Chapter 3 will produce the same results. The effective quantity model (described in Section

3.1) is used with the parameters chosen as:

β1 = β2 = 1 , η =
√
2

The stored strain energy drives the crack to propagate, and the numerical simulation results

of crack tip location versus time for various ε0 values are illustrated in Figure 5.14.

Table 5.2: Material properties for FGM strip subjected to initial stretch

E ν ρ GIc σmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)

x = 0 4.86 0.35 1190 528.4 486 0.4
x = L 1.62 0.35 1190 176.1 162 0.4
average 3.24 0.35 1190 352.3 324 0.4

Notice that the crack tip velocity is no longer constant, as in the previous example. This

is due to the nonhomogeneous material property. When input energy is sufficiently large,

the crack tip velocity approaches the Rayleigh wave speed, which also depends on material

location. One observes that as input energy increases, the crack tip velocity approaches the
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Figure 5.12: Normalized crack tip location versus normalized time for FGM strip subjected
to various initial stretching parameter ε0. Notice that the Rayleigh wave speed varies along
the x direction.

theoretical Rayleigh wave speed.

Again, energy balance is obtained, as illustrated in Figure 5.13 for the initial stretch

ε0 = 0.032. The fracture energy curve also exhibits nonlinear curvature. Obviously, the

fracture energy required for the cohesive elements to lose cohesion is larger at left side than

at right side, as indicated by the material property (Table 5.2).

First the numerical result of initial strain energy is checked with the theoretical value,

which is computed as

Ubulk =
1

2

3.24× 109

1− 0.352
0.0322 × (4× 10−7) = 0.756184615N ·m

The numerical result is Ubulk = 0.756184642N ·m, which is the same as the theoretical value

up to seven digits. Note that the uniform stretch results in non-uniform stress field, hence

the strain energy density also varies linearly along the x-direction, and the above formulation

uses the average value of Young’s modulus for simplicity.

The energy required for the crack to propagate through is

Efrac = GIA = 343.4× (1.9× 10−3) = 0.65246N ·m
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Figure 5.13: Evolution of various energy components for the FGM strip fracture problem
with applied strain ε0 = 0.032, considering characteristic cohesive element size h = 6.25µm.

and the numerical result is

Efrac = 0.65262N ·m

the same as analytical value up to 3 digits. The energy release rateGI in the above expression

is the average value of GI along a < x < L.

5.1.6 Spontaneous Crack Initiation in FGM Strip

So far, the discussion in this section has been restricted in strips with prescribed crack.

For homogeneous material, a pre-crack was necessary for crack propagation to start. With-

out the initial crack, the uniform stretch incurs uniform stress in the entire domain, and

crack cannot initiate spontaneously even though cohesive elements are prescribed, unless

the stretch applied is very high. For instance, to have a uniform stress inside strip to reach

cohesive strength σmax = E/10, initial stretch ε0 needs to reach roughly 0.1. Under such

condition, the entire weak interface will debond simultaneously, therefore there is virtually

no crack initiation and propagation involved. On the other hand, for FGM, since the ma-

terial property is graded, uniform stretch results in nonuniform stress field, thus crack may

nucleate at region of relatively high stress and low cohesive strength, and crack can initiate

spontaneously.
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Assume an FGM strip with linear material variation in x direction is subjected to uniform

stretch, with detailed material properties tabulated in Table 5.3. Young’s modulus is three

times as high at one side (4.86GPa) as the other (1.62GPa), and the average Young’s

modulus is the same as the homogeneous PMMA strip. The Poisson’s ratio and material

density remain constant. The critical interface separation remains 0.4µm. Notice that

multiple cohesive strength values (σ1
max– σ4

max) are provided in Table 5.3. The reason will

be discussed shortly. The cohesive elements are prescribed along the ligament on the half

height plane (0 < x < L, y = H), but without initial crack.

Table 5.3: Material properties for FGM strip without pre-crack subjected to initial stretch

E ν ρ δc σ1
max σ2

max σ3
max σ4

max

(GPa) (kg/m3) (µm) (MPa) (MPa) (MPa) (MPa)
x = 0 4.86 0.35 1190 0.4 297 267 237 208
x = L 1.62 0.35 1190 0.4 297 267 237 208
average 3.24 0.35 1190 0.4 297 267 237 208

To nucleate a crack, the local stiffness, cohesive strength and stretch need to satisfy

certain conditions, and the Poisson’s ratio effect also plays a role. These issues are discussed

next.

Critical stretch. In order to nucleate a crack with the CZM approach, local stress value

must attain the level of the cohesive strength σmax to allow one or several nodes to experience

debonding. Therefore, the material properties and the range of stretch values employed

in previous sections cannot induce crack nucleation. For instance, provided the cohesive

strength is E/10, then applied ε0 = 0.05 cannot induce high enough stress locally to form a

crack. The relationship between local stiffness E, σmax and ε0 must attain a level of roughly

ε0 ∼ E/σmax. After carrying out simulations for various σmax and ε0 values, we conclude

that at critical value

ε0 ≈ 0.82
E

σmax

(5.7)

crack nucleation will occur, for the material system described in Table 5.3. Therefore, the

cohesive strength σ1
max– σ4

max listed in Table 5.3 correspond to the following critical applied

stretch: ε0 = 0.05, 0.045, 0.04 and 0.035, where E is taken as the value at the left side

(4.86GPa). The numerical simulation result of crack tip location versus time is illustrated

in Figure 5.14 for these four cases.

For the above described material system, as the FGM strip is stiffer at the left side

(E = 4.86GPa), and stress is proportional to material stiffness, thus stress is higher at the
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Figure 5.14: Normalized crack tip location versus normalized time for FGM strip subjected
to various initial stretching parameter ε0 and σmax. CR denotes Rayleigh wave speed, which
varies along x direction.

x = 0 vicinity, and crack initiates if Eq. (5.7) is satisfied. One observes from Figure 5.14

that the crack initiation does not take place immediately. A short while after the simulation

starts, the first nodal debonding occurs at x = 0.07L, i.e. not a boundary node. This is due

to the Poisson’s ratio effect, as will be discussed soon. After this node is debonded, it serves

as a crack nucleation location and the crack quickly runs in both directions, as shown by the

turning of the curves in Figure 5.14 at beginning stages. The crack tip location curve is not

straight as in the homogeneous strip problem, because due to material inhomogeneity, the

wave speed is varying along x direction. The ideal case where the crack begins to propagate

at t = 0 from the left edge with the Rayleigh wave speed is also plotted for reference. For

the four cases discussed above, the crack tip velocities, i.e. the slope of the curves, differ

marginally, and they are approaching the Rayleigh wave speed. By studying Figure 5.14,

we conclude that for the material system described in Table 5.3, once the critical strain is

applied, crack propagation speed is only determined by the bulk material property, which is

characterized by the Rayleigh wave speed CR.

The energy evolution during the fracture process is investigated, and the result for ε0 =

0.35 case is plotted in Figure 5.15. First the numerical result of initial strain energy is
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Figure 5.15: Evolution of various energy components for the FGM strip fracture problem
with applied strain ε0 = 0.035, characteristic cohesive element size h = 6.25µm.

checked with the theoretical value, which is computed as

Ubulk =
1

2

3.24× 109

1− 0.352
0.0352 × (4× 10−7) = 0.904615385N ·m

The numerical result is

Ubulk = 0.904615338N ·m

the same as theoretical value up to seven digits. The above formulation uses the average

value of Young’s modulus for simplicity. Note that the uniform stretch results in non-uniform

stress field, hence the strain density also varies linearly along x direction.

The energy required for the crack to propagate through is

Efrac = GIA = exp(1)σmaxδc × (2× 10−3) = 0.452322N ·m

while the FEM result is

Efrac = 0.452342N ·m

which is same to theoretical prediction up to 4 digits, and energy conservation is again

obtained. The curve denoting fracture energy evolution is almost a straight line, because

the cohesive strength is constant along x in this simulation, and the slight curvature is only

introduced by the nonlinear crack tip speed.
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Poisson’s ratio effect. For a one dimensional problem, the coefficient in Eq. (5.7) would

be 1 instead of 0.82. The reduction of critical stretch required for crack to nucleate in

this problem is due to the Poisson’s ratio effect. The initial condition dictates a uniform

elongation in y direction while all nodes are kept stationary in x direction. When the dynamic

simulation starts, the nodes at left and right edges tend to vibrate along x direction due to the

Poisson’s ratio effect. This movement presses the nodes adjacent to them to move inside, yet

those nodes are under more constraint and cannot move freely. Therefore, the inside nodes

that are close to the edge suffers larger stresses, and hence one of them debond first. Since this

effect is caused by the Poisson’s ratio effect, a test was performed to check if it vanishes with

ν = 0. Assume an FGM strip is subjected to initial stretch ε0 = 0.035, with the same material

properties as described in Table 5.3, except for the Poisson’s ratio, which is set to be ν = 0.

The boundary conditions are the same as in the previous example problem. The cohesive

strength corresponding to the critical stretch is calculated as σmax = E × ε0 = 170MPa.

The numerical simulation result of crack tip location versus time is illustrated in Figure 5.16.

As expected, the first debonded node is the boundary node, and crack quickly propagates

through the strip. Notice that the average Rayleigh wave speed is CR = 1020m/s when

ν = 0.
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Figure 5.16: Normalized crack tip location versus normalized time for FGM strip subjected
to initial stretching ε0. The Poisson ratio is set to ν = 0. Notice that the Rayleigh wave
speed varies along x direction.
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5.2 Dynamic Fracture of FGM Beam Under Impact

Loading
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Figure 5.17: Material gradation of glass/epoxy FGM and Young’s modulus variation in FGM
plates under static test. (a) Glass particles volume fraction distribution in FGM plate with
continuous variation of material property in Y direction. (b) Experimental data of Young’s
modulus variation in FGM beam. Origin of Y coordinate is set at the cutting position of the
original plate for FGM specimen with glass volume fraction = 0. Vertical lines correspond
respectively to ξ = 0, 0.17, 0.33, 0.58, 0.83 and 1. Parameter ξ = Y/W is defined as the
normalized length Y, whereW is the height of FGM beam cut from the original plate. Figure
obtained from Rousseau and Tippur [40] Fig.1.
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Wherever possible, simulations should be performed based on real material properties

and compared to experimental results. However, to date experimental data of real FGMs

subjected to dynamic loading are rare. Rousseau and Tippur have done pioneering work on

dynamic experiments of FGMs and reported results in a series of papers [40, 41, 42, 43].

The FGMs under test were epoxy/glass materials, with epoxy as matrix and glass par-

ticles dispersed in the matrix. In the manufacturing process, glass particles of mean diam-

eter 42µm were cast into melting epoxy matrix, and due to higher mass density (ρglass =

2470kg/m3, ρepoxy = 1150kg/m3), glass particles sank gradually into the slowly curing ma-

trix, and finally a smooth distribution of monotonically increasing (from top to bottom)

volume fraction of glass spheres was formed.(Figure 5.17(a)). Experiments on both homoge-

nous (with uniform volume fraction of particle inclusion in the material) and FGM specimens

under dynamic loading were carried out. Rousseau and Tippur reported material property

change under dynamic load, investigated stress fringe patterns and stress intensity factors

at crack tip for both crack along and perpendicular to material gradation cases. Standard

finite element simulation was carried out using ABAQUS to predict crack initiation time,

and conclusion was drawn that crack initiates earlier for beam softer at cracked side than

beam stiffer at cracked side [42]. In this section, numerical simulations of the same problems

from Rousseau and Tippur [42] are performed, and results turn out to be consistent with

the prediction in [42].

5.2.1 Problem Description

The geometry and boundary conditions are depicted in Figure 5.18. An FGM beam is

subjected to low velocity (5m/s) impact loading, which is applied at the center point of

top surface. Material gradation is along y direction, and the an initial crack of length

a = 0.2W = 7.4mm is predefined at the center of bottom side edge.

The epoxy/glass FGM is manufactured such that it possesses a smooth transition profile

of Vf (volume fraction of glass spheres) varying from 0 percent at one side to 50 percent

at the other, and in between Vf variation is roughly linear. The material properties at two

sides with volume fraction Vf = 0 and Vf = 0.5 are listed in Table 5.4.

Table 5.4: Material properties of three-point bending FGM specimen, obtained from
Rousseau and Tippur [40]

E(GPa) ν ρ(kg/m3)
Vf = 0 4.74 0.35 1150
Vf = 0.5 10.74 0.30 1810
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Figure 5.18: Geometry, load and boundary conditions for epoxy/glass beam under low ve-
locity impact loading. The parameters E0, E1 and E2 denotes Young’s modulus at crack tip,
bottom surface and top surface, respectively.

The cohesive energy is nonlinear with respect to glass inclusion volume fraction, and

is plotted in Figure 5.19. The energy release rate data were obtained by conducting 3-

point-bending test on monolithic glass/epoxy specimen of different volume fraction of glass

inclusions.
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Figure 5.19: Cohesive energy of epoxy/glass FGM versus volume fraction of glass particle
inclusion. Experimental data are retrieved from paper by Rousseau and Tippur [40], and
the smooth curve is obtained by least square fitting of experimental data.

To investigate the influence of material variation on crack initiation and propagation

features, five sets of material properties of different gradation profiles were used in the

simulation:
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• FGM, crack is located at the compliant side, i.e. if we designate subscript 1 to indicate

bottom surface and 2 top surface, then E2 > E1, and the specimen is impacted on the

stiffer side.

• FGM, E2 < E1, crack is located at the stiffer side, and impacted at the more compliant

side.

• Homogeneous, Vf = 0.1, i.e., E1 = E2 = Young’s modulus E0 at crack tip in case 1.

• Homogeneous, Vf = 0.4, i.e., E1 = E2 = Young’s modulus E0 at crack tip in case 2.

• Homogeneous, Vf = 0.25, i.e., E1 = E2 = median value of Young’s modulus in case 1

and 2.

Cohesive energy versus Vf of glass particles is given in Figure 5.19. This is one of the

most influential factors that influence crack evolution, and notice that the peak cohesive

energy occurs at around Vf = 0.22.

5.2.2 Effective Material Property

Under dynamic load, material behaves stiffer than in static case. Rousseau and Tippur

gave the experimental data for FGM properties under quasi-static and dynamic load in

paper [41] and [42], respectively. Under static load Young’s modulus variation is between

range E = 2.6GPa to E = 8GPa (the numbers are read from paper [41] Fig.1), while under

dynamic load, Young’s modulus varies from E = 4.5GPa at Vf = 0 to E = 11GPa at

Vf = 0.5 (the numbers are read from paper [42] Fig. 5). Variation in Poisson ratio was not

reported, and presumably the variation of Poisson ratio would be within a moderate range

that it does not affect results noticeably, thus ν is assumed to be the same as static case. As

for the mass density ρ, we can safely regard it as constant whether under static or dynamic

loading. In this study, since the simulation is dynamic, material property under dynamic

load is used.

Multiple theories exist to estimate effective property of the typical epoxy/glass composite.

In this study, Mori-Tanaka method is employed. Rousseau and Tippur [41] have reported

good agreement between this estimation and experimental results for static case, and here we

assume that this method also gives good estimation on material properties under dynamic

load.

As explained previously, graded element formulation approach is adopted in this study,

and material properties should be computed at nodal points and interpolated to gauss points

of elements. This also holds for cohesive elements.
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To obtain the effective property at nodal points, first Vf of glass phase is calculated at

each node. Second, the bulk modulus κ and the shear modulus µ of the composite are

computed:

κ = κm









1 +
Vf

3(1− Vf )

3κm + 4µm

+
κm

κi − κm









(5.8)

µ = µm









1 +
Vf

6(1− Vf ) (κm + 2µm)

5 (3κm + 4µm)
+

µm

µi − µm









(5.9)

where the subscripts m and i denotes the matrix and the inclusions, respectively, and

κm =
Em

3(1− 2νm)
, µm =

Em

2(1 + νm)
(5.10)

κi =
Ei

3(1− 2νi)
, µi =

Ei

2(1 + νi)

The Effective Young’s modulus and Poisson ratio is thus given by

Eeff =
9µ× κ

µ+ 3κ
, νeff =

1.5κ− µ

µ+ 3κ
(5.11)

Effective material properties versus volume fraction of glass sphere inclusion Vf is plotted

in Figure 5.20. In the current computation, Vf is assumed to vary linearly in FGM gradation

direction, so Figure 5.20 effectively shows the material property gradation profile in the FGM

beam in y direction.

5.2.3 Discontinuity Issues

T6 elements are used in the bulk discretization, and the mesh is illustrated in Figure 5.21.

Cohesive elements are prescribed along the path at x = 0 (the symmetry line), so that crack

will propagate along the defined path.

Based on the discussion in the previous Chapter, the choice of cohesive element size should

take into account the cohesive zone size R (Eq. 5.2) as well as maximum cohesive strength

σmax and critical opening displacement δc. A high cohesive strength, e.g., E/σmax = 10

would result in a shorter cohesive zone size, and thus put a more stringent element size

constraint. In this problem, E/σmax = 10 gives cohesive zone size of approximately 15.5µm.
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Figure 5.20: Effective Young’s modulus and Poisson ratio versus volume fraction of glass
sphere inclusion.

Notice that due to inhomogeneous material property, the determination of R is based on

sampling at a number of points of different Vf of glass inclusion, and then the smallest

R is chosen, which occurs at Vf = 0.50, the stiffest edge. According to the convergence

requirement [12, 28], element size should be at most 1/2 to 1/3 of the cohesive zone size,

so this estimation gives element size of at most 8µm, which leads to a very large number of

nodes and elements, hence heavy computation load. However, since cohesive elements are

inserted only along a defined line, we can assume that using a lower σmax value would not

add too much compliance to the structure. Therefore, E/σmax = 50 is used, which results in

R = 387µm. The mesh size shown in Figure 5.21 is h = 92.5µm, so the cohesive zone spans

over at least 2 cohesive elements, which is roughly within the convergence requirement.

It is of interest to point out that in this problem, the insufficiently refined mesh, which

violates the convergence rule, results in a crack appearing way ahead of the main crack front.

For example, when the E/σmax = 10 ratio is used, and the mesh size held at h=92.5µm,

which is much larger than cohesive zone size R=26.6µm, the crack pattern is illustrated in

Figure 5.22. As can be seen in this plot, before the crack tip node experiences complete

decohesion, some other nodes ahead of it have been cracked. This effect is undesirable,

however, it can be circumvented by careful control of the cohesive element size.

5.2.4 Results

First, results for the three homogeneous beams are presented. Table 5.5 gives the material

properties and crack initiation time for these three cases. Dilatational wave speed Cd is
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Figure 5.21: Mesh for three-point bending beam subjected to impact loading. Mesh contains
14991 nodes before cohesive elements are generated, 15312 nodes after cohesive elements are
generated, 7388 T6 elements and 160 cohesive elements. Uniform cohesive element size
equals 2h = 185µm; (a) global mesh; (b) zoom of block region in (a); (c) zoom of block
region in (b).
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Figure 5.22: Premature crack front for FGM beam under dynamic load (Figure 5.18).

defined by

Cd =

√

E

(1 + ν)(1− ν)ρ
(5.12)

for plane stress case and ti, t
1
i denote crack initiation time in absolute scale (seconds) and

normalized scale (ti ∗ Cd/W where W is the height of the beam), respectively.

Table 5.5: Material properties and crack initiation time for three-point bending homogeneous
beam

Vf E ν ρ Cd GIc σmax δc R h ti t1i
(GPa) (kg/m3) (m/s) (N/m) (MPa) (µm) (µm) (µm) (µs)

0.10 5.517 0.3406 1282 2218 1175.3 110.3 3.92 1166 92.5 120 7.2
0.25 7.020 0.3257 1480 2327 1459.6 140.4 3.82 1136 92.5 117 7.4
0.40 9.010 0.3103 1678 2476 1101.8 180.2 2.25 666 92.5 92 6.2

The crack tip location with respect to time is plotted in Figure 5.23.

Some interesting features can be noticed in the plot. On an absolute time scale, the stiffer

the material, the earlier crack starts to propagate (t
Vf=0.4
i < t

Vf=0.25
i < t

Vf=0.1
i , Table 5.5).
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Figure 5.23: Crack tip location versus time for homogeneous beams with Vf=0.1, 0.25 and
0.4. (a) crack tip versus absolute time; (b) crack tip versus normalized time. Dilatational
wave speed Cd = 2218m/s, 2317m/s and 2476m/s for Vf = 0.1, Vf = 0.25 and Vf = 0.4
beams respectively.
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Two factors attribute to this phenomenon. First, in a stiffer media, wave propagates faster,

and stress concentration accumulates at a higher speed, so that crack starts to propagate

earlier than in softer media. This partly explains the difference between Figure 5.23 (a) and

(b). Figure 5.23(b) uses normalized time, so the influence of different wave speed is partly

excluded, and apparently the three curves in Figure 5.23(b) get closer than in (a). Second,

Values of δc, critical displacements, of the three cases, are noticeably different. Since the local

maximum cohesive strength σmax is assumed to be proportional to local Young’s modulus

(E/σmax = 50), stiffer material gives higher σmax value. Although this seems to enhance the

resistance of local material against crack initiation, it also causes the critical displacement

δc to decrease, since the cohesive law states cohesive energy Γ = eσmaxδc. The reduced δc

turns out to affect the crack initiation more significantly than the increased strength σmax

in this case.

After crack initiation, crack tip appears to remain at a ‘plateau’ status for around 130µm,

during which crack front advanced very little. After careful examination of the deformation

shape of the beam, we can explain the ‘plateau stage’ as follows: when impact load is applied

on the top surface of the beam, first a compressive stress wave propagate downwards, then

bounce back at the bottom surface, and propagate upward as tensile wave. During the same

time, since the velocity load is continuously applied, the subsequent waves also propagate

downwards and bounce back. After a short while, the combined effect of superimposing waves

that propagate back and forth became rather complicated, and at the crack tip, the σx stress,

which is the primary cause of crack extension, does not necessarily increase monotonically.

In fact, it can be observed that the crack tip opening first increases, then decreases, and

increase again. At the early stage, when the stress at initial crack tip attains critical value,

one pair of nodes break up, then it takes another time interval for the stress to arrive at a

equally high level to break up the next pair of nodes. This is the ‘plateau’ stage. However,

in the long run, the bending effect overwhelms the wave effect and the local deformation at

crack tip monotonically increases, and crack propagate at a much faster velocity.

When the crack speeds up, it propagates smoothly till the top surface. The trends of

the three curves share a similar pattern (they are kind of ‘parallel’ in propagation stage).

Curiously, however, the curve for Vf = 0.25 is not half way in between of the other two, as we

might have assumed, but rather much closer to the Vf case, and in normalized scale it is the

one that initiates last and propagates slowest! The reason is explained as follows: Although

most mechanical properties (E, ν, ρ, etc. ) of this Vf = 0.25 specimen are just the average

values of that for the Vf = 0.10 and Vf = 0.40 cases, there is one important parameter, the

cohesive energy, which is different. The cohesive energy is higher at Vf = 0.25 than both

of the others (1459.6N/m vs. 1175.3N/m for Vf = 0.10 and 1101.8N/m for Vf = 0.40),
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and results in a critical displacement value δc just slightly smaller than the Vf = 0.10

case (3.82µm vs. 3.92µm), With this observation, we suggest that for this example, the

local critical displacement δc is a more critical index than maximum strength σmax for the

prediction of crack propagation.

The crack tip velocity is also plotted for the three homogeneous beams (Figure 5.24),

and again, plots with both absolute time and normalized time are given so as to differentiate

the influence of wave speed. Notice that the time coordinate is shifted by (t− ti), where ti

is the crack initiation time for each individual case. By doing so the results are presented

in a more comparable scale, and on this normalized basis, the velocity curve of Vf = 0.25

follows that of Vf = 0.10 closely, both in magnitude and shape. The stiffer material with Vf

exhibits faster crack propagation speed.

Next we proceed to investigate the influence of material gradation. The relevant material

properties and crack initiation time are listed in Table 5.2.4. Notice that for the FGM beam,

the properties used are the effective quantities.

Table 5.6: Material properties and crack initiation time, for three-point bending homoge-
neous and FGM beams

E ν ρ Cd GIc σmax δc R h ti t1i
(GPa) (kg/m3) (m/s) (N/m) (MPa) (µm) (µm) (µm) (µs)

Vf = 0.10 5.517 0.3406 1282 2218 1175.3 110.3 3.92 1166 92.5 120 7.2
Vf = 0.25 7.020 0.3257 1480 2327 1459.6 140.4 3.82 1136 92.5 117 7.4
Vf = 0.40 9.010 0.3103 1678 2476 1101.8 180.2 2.25 666 92.5 92 6.2
E2 > E1 7.292 0.3252 1480 2308 1166.2 145.8 2.94 666 92.5 101.5 6.3
E2 < E1 7.292 0.3252 1480 2308 1166.2 145.8 2.94 666 92.5 113.4 7.1

The crack tip location with respect to time is plotted in Figure 5.25 and the following

observations can be made:

• In the absolute time scale, the crack tip location profile of the FGM beams are bounded

between results for the two homogeneous cases. In the normalized time scale, this still

holds true for most of the propagation time, except for the initiation stage.

• For E2 > E1 case for which the beam is more compliant at bottom, crack initiates at

t=101.5µs; for E2 < E1 case for which the beam is stiffer at bottom, crack initiates

at t=113.4µs. This trend is consistent with the prediction made by Rousseau and

Tippur [41]. However, this is opposite to the homogeneous cases, for which crack

initiates earlier in the stiffer material.

• After the first node experience decohesion, both cases experience a time interval during

which the crack extends slowly. It is relatively longer for E2 > E1 case, with a ‘plateau’
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Figure 5.24: Crack tip velocity versus t− ti for homogeneous beams with Vf=0.1, 0.25 and
0.4, where ti stands for crack initiation time. (a) crack tip velocity versus absolute time;
(b) crack tip versus normalized time. Dilatational wave speed Cd = 2218m/s, 2317m/s and
2476m/s for Vf = 0.1, Vf = 0.25 and Vf = 0.4 beams respectively.
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Figure 5.25: Crack tip location versus time for two FGM beams and two homogeneous beams
with Vf=0.1 and 0.4. (a) crack tip versus absolute time; (b) crack tip versus normalized time.
Vf denotes volume fraction of glass inclusion in specimen material. The intersection point
of the two curves for FGM beams is indicated with a circle on the curves and also on the
insert geometry figure.
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Figure 5.26: Crack tip velocity versus t− ti for for two FGM beams and two homogeneous
beams with Vf = 0.1 and 0.4. where ti denotes crack initiation time. (a) crack tip velocity
versus absolute time; (b) crack tip versus normalized time.
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Figure 5.27: Comparison of stress field σx (units:Pa) at t = 300µs for FGM beam soft at
bottom and stiffer at bottom, beam subjected to three-point bending; (a) beam softer at
bottom; (b) beam stiffer at bottom.
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Figure 5.28: Difference in value of stress field σsoft bottom
x −σstiff bottom

x (units:Pa) for three-point
bending FGM beam at different time; (a) t = 250µs, crack tip of the stiffer-bottom beam
begins to take speed; (b) t = 300µs, both cracks speed up, crack tip of softer-bottom beam
is lower than that of stiffer-bottom beam; (c) t = 350µs, crack tip of softer-bottom beam
catches up with that of the stiffer-bottom beam; (d) t = 400µs, crack tip of softer-bottom
beam overtakes that of the stiffer-bottom beam.
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time of around 170µs, and shorter for E2 > E1 case, with a ‘plateau’ time of around

110µs.

• After the crack propagation takes speed, at first the crack tip of beam with E2 > E1

is ahead of that of the beam with opposite material gradation (E2 < E1, as illustrated

in the stress field σx plot in Figure 5.27. However, the E2 < E1 case accelerates faster

than the other, and at time around 360µs, the two cases reach the same crack tip

location, and afterwards the E2 < E1 case keeps advancing ahead of the other one.

Notice that in Figure 5.25, the curves of the two FGM results cross each other.

To further illustrate the difference of crack evolution pattern in the two FGM beams,

the difference of stress field σx for the two FGM specimens is plotted in Figure 5.28, in

undeformed configuration. By Comparing the stress field figure with crack tip location

plotted in Figure 5.25, the characteristics listed above can be clearly observed. The difference

is taken as σsofter bottom
x − σstiffer bottom

x , so the red color indicates region where the stress of

softer-bottom beam is larger, hence the red blob shows the crack tip location of softer-bottom

beam; for the same reason, the blue blob shows the crack tip location of stiffer-bottom beam.

Apparently, at first crack tip of stiffer-bottom beam advances ahead of softer-bottom beam,

but is taken over by the latter at around t = 360µs and height 24mm.

The comparison of velocities of both FGM and homogeneous beams can be clearly ob-

served in Figure 5.26, which shows the crack extension speed versus time. Again for clarity,

the time axis is shifted by t−ti. The crack propagates consistently faster in the softer bottom

beam than the stiffer bottom beam except for a small time interval at the end of the crack

extension, and the peak value of crack propagation speed in the softer bottom beam reaches

1.67 times as large as that in stiffer bottom beam. The reason for this simulation result is

again attributed to the variation of critical displacement δc. For the soft-bottom beam, the

crack is propagating towards the stiffer side, the δc in which region is constantly decreasing,

thus crack is easier to form. For the stiff-bottom beam, the crack is propagating towards the

compliant side, where δc is increasing, thus crack speed is deterred compared to the opposite

case.

5.3 Dynamic Crack Branching

Observations of fast crack growth in brittle materials reveal complex patterns of crack branch-

ing [46]. The crack branch patterns are influenced by many factors, including material gra-

dation profile, boundary conditions, applied impact velocity, etc. In this section, dynamic
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crack branching phenomenon is explored with a plane strain plate containing an initial cen-

tral crack subjected to tensile velocity loading. Qualitative behaviors of dynamic crack

branching are investigated for both homogeneous materials and FGMs, as well as the for

various impact loading velocities.

5.3.1 Problem Description

v0

2L=6mm

v0

w=3mm

2a=0.6mm

y

x

Figure 5.29: Geometry and boundary conditions of a plate containing a central crack sub-
jected to velocity loading.

The computation is carried out for a center cracked rectangular plate as shown in Fig-

ure 5.29. Symmetric velocity loading v0 is applied at the upper and bottom surfaces. Two

classes of problems are investigated. First, to explore the influence of material gradation on

crack branching patterns, three material cases are studied:

• case 1: both the bulk and cohesive properties are considered for homogeneous materials,

as tabulated in Table 5.7.

Table 5.7: Material properties for plate containing central crack and subjected to velocity
loading, case 1: homogeneous material (PMMA)

E ν ρ GIc σmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)
3.24 0.35 1190 352.3 324 0.4

• case 2: hypothetical “FGMÔ, as tabulated in Table 5.8. The bulk material is considered

as homogeneous, while the cohesive properties are linearly graded in y direction, as
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the cohesive strength decreases from 486MPa at the upper surface to 162MPa at the

bottom surface.

Table 5.8: Material properties for plate containing central crack and subjected to velocity
loading, case 2: homogeneous bulk material property and graded cohesive property

E ν ρ GIc σmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)

y = 1/2W 3.24 0.35 1190 528.4 486 0.4
y = −1/2W 3.24 0.35 1190 176.1 162 0.4
average 3.24 0.35 1190 352.3 324 0.4

• case 3: FGM with both the bulk and cohesive properties linearly graded in y direction

as tabulated in Table 5.9.

Table 5.9: Material properties for plate containing central crack and subjected to velocity
loading, case 3: graded bulk and cohesive properties

E ν ρ GIc σmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)

y = 1/2W 4.86 0.35 1190 528.4 486 0.4
y = −1/2W 1.62 0.35 1190 176.1 162 0.4
average 3.24 0.35 1190 352.3 324 0.4

Second, the influence of impact velocity is investigated by applying different impact

velocity v0. The homogeneous material tabulated in Table 5.7 is considered. Three cases are

studied: v0 = 1m/s, 5m/s and 15m/s.

5.3.2 FEM Model

Due to symmetry of the geometry, material gradation and loading condition with respect to

y axis, only the right half of the geometry is modelled for the numerical simulation, along

with proper boundary condition to account for the symmetry at x = 0. The domain is

discretized with 40 by 40 quads each divided into 4 T3 elements, as depicted in Figure 5.30.

In order to allow crack branching to occur, cohesive elements are inserted inside a rectan-

gular region right to the initial crack, as shown with the thicker lines. Due to accuracy and

computation cost considerations (as discussed in Chapter 4), the dimension of the cohesive

region is preferably confined to the minimum potential crack propagation region. Therefore,

the cohesive region depicted in Figure 5.30 is shown as an example, while in the simulations

the size of the cohesive elements region may vary from case to case. However, for consis-

tency reason, the results presented in this section are all obtained with the mesh shown in

Figure 5.30.
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h

3mm

0.3mm 2.7mm

Figure 5.30: Mesh descretization of the dynamic branching problem with half of the original
geometry modelled due to symmetry. Characteristic element size h = 75µm, and the rect-
angular region plotted with thicker lines indicates the region where cohesive elements are
inserted. There are 6400 T3 elements, 8244 cohesive elements and 17650 nodes.

For the problems discussed in Sections 5.1 and 5.2, small deformation assumption was

used because the nature of those problems does not incur large local rotation, for which

case the large deformation formulation must be employed. However, when crack branching

takes place, large rotation often occurs for elements around crack tips. Therefore, finite

deformation formulation is used for the results presented in this section. Moreover, due to

the expensive computation induced by large number of cohesive elements, the bulk elements

are chosen as T3 instead of T6 elements, so as to save the computation cost.

Notice that the cohesive element size h = 75µm with current mesh discretization does

not satisfy the required criterion h = (1/2 − 1/3)R where R is the cohesive zone size. For

instance, R = 23.6µm for the homogeneous case, as discussed in Section 5.1.1. Therefore the

element size ought to be reduced significantly to satisfy the above requirement. However,

the computation cost would be tremendous to resolve this problem, since the computation

increases approximately cubically with the decease of the element size. For the time being,

the mesh in Figure 5.30 is used. Clearly, the results can not resolve the accurate stress
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distribution, hence nor the actual crack propagation behavior. Therefore, the examples

presented qualitatively describe the fracture patterns for each case. Further investigations

using refined meshes are under way, but not reported in the thesis.

5.3.3 Results for Various Material Gradation Profiles

Case 1: homogeneous PMMA material. Symmetric branch pattern is obtained, as

shown in Figure 5.31. The crack begins to branch at abranch = 1.05mm, after propagating

along straight plane for a length of 0.75mm. When the crack approaches the edge, the cracks

further branch. Note that although crack branching can only take place either parallel to the

coordinate axes or at ±45◦, the overall branching angle is less than 45◦ from the x axis. In

the example, the overall branching angle is about 29◦, calculated by approximating the main

branch as a straight line. Due to the healing effect of the actual quantities model employed,

when crack branching occurs along several paths in the simulation, continued growth takes

place on one or more of these branches and the others heal. For instance, at the stage

shown in Figure 5.31 (a), totally four crack branches form at the regions indicated by the

two circles. Afterwards, two of them dominate and grow further while the other two close,

as shown in the final crack branch pattern shown in Figure 5.31 (b). Observations of this

example, as well as some similar simulations with different loading velocities reveal that, for

most cases, the remaining branches are those leading in similar directions of the main cracks

that they emanate from.

Case 2: Variation of cohesive strength. In this example, bulk material is considered

to be homogeneous while cohesive strength varies linearly along y direction. The cohesive

strength σmax is lower at bottom surface (σmax = 162MPa) and higher at top surface

(σmax = 486MPa), which implies weaker fracture resistance at the lower region. Therefore,

the crack branching is expected to be more significant at the lower part of the plate, as

shown in Figure 5.32(d). The crack branching initiation location is roughly the same as the

homogeneous case, as indicated by Figure 5.32(a). However, this branching disappears in

the final figure (Figure 5.32(d)). Because the lower region of the plate is weaker in resisting

fracture, the crack branch towards the lower region dominates, and due to the healing effect,

the initial upward branch becomes insignificant compared to the downward branch and finally

heals, as shown in the series of Figures 5.32(b), (c) and (d). Further branches emanated from

the main downward branch at a later stage, and again the lower one is more significant. More

branches occur when the cracks approach the right surface.
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(a) t = 9µs

(b) t = 10.6µs

Figure 5.31: Crack branch pattern for homogeneous material PMMA subjected to v0 = 5m/s
velocity loading; (a) local crack branches at t = 9µs indicated with circles, among which two
of them close at latter stage; (b) final crack pattern at t = 10.6µs.

134



(a) t = 7.5µs (b) t = 8.25µs

(c) t = 8.85µs (d) t = 10µs

Figure 5.32: Crack branch patterns for “FGMÔ plate with bulk property following homo-
geneous PMMA material, while cohesive strength is graded linearly in y direction from
σmax = 486MPa at upper surface to σmax = 162MPa at lower surface. The plate is sub-
jected to v0 = 5m/s velocity loading. (a) branch pattern at t = 7.5µs; (b) branch pattern
at t = 8.25µs; (c) branch pattern at t = 8.85µs; (d) branch pattern at t = 10µs.

135



Case 3: Graded bulk and cohesive properties. In this example, both bulk and cohe-

sive properties vary linearly in y direction. The top surface is stiffer (Etop = 4.86GPa) and

with higher cohesive strength (σtop = 486MPa), while the bottom surface is more compliant

(Ebot = 1.26GPa) and with lower cohesive strength (σbot = 126MPa). More issues come to

concern than case 2 when predicting the crack branch pattern, due to the variation of bulk

material property. On one hand, the weaker cohesive resistance favors the crack branching

into the y < 0 region. On the other hand, two effects may promote the crack branching

into the stiffer y > 0 region. First, displacement loading condition is employed, and the

stress developed in the stiffer region is higher than that at the compliant region. Second, the

stress waves generated from the loading at top surface propagates faster than its counterpart

emanating from the bottom surface, due to higher dilatational wave speed, and thus reaches

the crack plane earlier. These two mechanisms compete with each other in influencing crack

branching pattern.

The final crack pattern for plate with material properties given in Table 5.9 is plotted in

Figure 5.33. The initiation location of crack branching is the same as in case 2. Evidently, the

influence of cohesive strength is dominant among the factors discussed above, as indicated

by dominant crack branching towards the lower region. However, the main upward branch

does not heal, but propagates almost horizontally.

The crack initiation time, branching time and first branching location for the three cases

are compared in Table 5.10. One notices that the crack initiation times are very close for the

homogeneous and ‘cohesive strength σmax gradation’ cases, while for the plate with graded

stiffness E and cohesive strength σmax, crack initiation takes place slightly later. This can be

explained by the variation of Young’s modulus. For case 3, the material is more compliant at

the lower region, thus the average wave propagation speed is also lower, and it takes longer

time for the stress to accrue to the critical value for crack to propagate. The branching

initiation occur at roughly the same time, and since the branching takes place earlier for the

graded material cases, the branching initiation time is also less (tbranch = 7.0210µs for case 2

and tbranch = 7.4755µs for case 3, as compared to tbranch = 7.5280µs for the homogeneous

case 1). Crack branching locations are roughly the same for all cases, and only differs by

one element length (abranch = 1.05mm for homogeneous case, and abranch = 0.975mm for the

other two).

The crack tip location, as defined by the right-most crack tip location when multiple

cracks exist, is plotted in Figure 5.34 with respect to time. The slope of the each curve

indicate the speed of the crack. One observes that for each case, the crack tip runs at a

roughly steady speed. The crack tip speeds are similar for the two graded plates, with vtip=

700m/s≈ 0.745CR for case 2 and vtip =667m/s≈ 0.710CR for case 3, where CR = 939m/s
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Figure 5.33: Crack branch pattern at t = 10µs for FGM plate with both bulk and cohesive
properties linearly graded in y direction. Cohesive strength is graded from σmax = 486MPa
at upper surface to σmax = 162MPa at bottom surface. Young’s modulus is E = 4.86GPa
at upper surface and E = 1.26GPa at bottom surface. The plate is subjected to v0 = 5m/s
velocity loading.

Table 5.10: Crack branch initiation time and location for different material gradation.

Gradation Properties tinit (µs) tbranch (µs) abranch (mm)
Homogeneous Table 5.7 6.1055 7.5280 1.050
Graded σmax Table 5.8 6.1235 7.2010 0.975

Graded E & σmax Table 5.9 6.4955 7.4755 0.975

denotes the average Rayleigh wave speed. The average crack tip speed is slowest for the

homogeneous case, with vtip = 597m/s ≈ 0.636CR.

5.3.4 Results for Different Velocities

The impact velocity has significant influence on the crack pattern. Consider a mode-I fracture

induced by very low velocity impact, which can be regarded as a quasi-static problem. In this

case, the crack will assumably propagate along a straight plane without branching. On the

other hand, high velocity impact will induce more significant branching and fragmentation.

Simulations are carried out for the homogeneous PMMA plate under various impact loading

v0 = 1m/s, 5m/s and 15m/s, respectively, and the final crack branch patterns for v0 =
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Figure 5.34: Crack tip location versus time for different material gradation cases.

1m/s and v0 = 15m/s cases are plotted in Figure 5.35(a) and (b). The branch pattern for

v0 = 5m/s case was plotted in Figure 5.31 in Section 5.3.3.

Branching occurs after the crack runs along the original plane for certain distance a1.

Clearly, this distance is significantly shorter for the plate subjected to higher impact loading.

For v0 = 1m/s, branch occurs at abranch = 1.8mm, while for v0 = 15m/s, branch occurs

at abranch = 0.975mm. In other words, the initial crack begins to branch after propagating

along original plane for a1 = 1.5mm = 5a0 for the former, and a1 = 0.675mm ≈ 2a0 for

the latter, where a0 denotes the initial crack length. The difference is significant. The stress

carried by the wave propagating in the plate becomes very complicated due to the presence

of the running crack, and the crack branching occurrence is also influenced. Therefore,

higher velocity does not necessarily always induce earlier branching if the velocities under

comparison are not far different. However, for significantly different impact velocity, the

trend is consistent with the above observation. Another important observation is that at

lower impact velocity, the crack branching pattern is ‘cleaner’, with only main branches

present. At higher impact velocity, more sub-branches occur.

The crack initiation time, branching time and branching locations for the three impact

velocity cases are compared in Table 5.11. Obviously, for lower impact velocity case, it

takes longer time for the crack tip stress to accumulate to the critical value required for the
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crack to propagate. After crack initiation, branching follows, and the gaps between these

two characteristic time are tgap = 2.765µs, 1.423µs and 1.260µs, respectively. This time gap

mainly depends on the horizontal distance a1 on which the crack runs before branching. The

crack speed is roughly the same for the three cases, as indicated by Figure 5.36.

Table 5.11: Crack branch initiation time and location for different applied impact velocity

impact velocity v0 Properties tinit (µs) tbranch (µs) abranch (mm) a1 = abranch − a0 (mm)
1m/s Table 5.7 27.2175 30.0125 1.80 1.50
5m/s Table 5.7 6.1055 7.5280 1.05 0.75
15m/s Table 5.7 1.7560 3.0155 0.975 0.675

The relationship between crack tip location and time is plotted in Figure 5.36 for each

impact velocity. The crack tip speed is indicated by the slope of each curve. Due to the large

difference in the crack initiation time, the three curves are far apart in Figure 5.36(a). To

provide a more meaningful comparison, the crack initiation time is deducted from the time

axis and the results are plotted in Figure 5.36(b). One observes that the crack propagates

at almost constant speed, with slight acceleration for the v0 = 15m/s case. The average

crack tip speeds are calculated as vtip = 566m/s ≈ 0.603CR, vtip = 597m/s ≈ 0.636CR and

vtip = 656m/s ≈ 0.700CR for v0 = 1m/s, v0 = 5m/s and v0 = 15m/s cases, respectively.

As expected, at higher impact velocity, crack runs at higher speed, yet the difference is not

significant for the examples analyzed here.
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(a) t = 32µs, v0 = 1m/s

(b) t = 6µs, v0 = 15m/s

Figure 5.35: Crack branch pattern for different impact velocity applied on homogeneous
PMMA plate. (a) final crack pattern at t = 32µs for applied impact v0 = 1m/s; (b) final
crack pattern at t = 6µs for applied impact v0 = 15m/s.
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Figure 5.36: Crack tip location versus time for various impact loading velocity v0 = 1m/s,
v0 = 5m/s and v0 = 15m/s. (a) crack tip versus absolute time; (b) crack tip versus t− tinit,
where tinit denotes the branch initiation time for each case.
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Chapter 6

Conclusions and Future Work

In this study, the dynamic behavior of homogeneous and functionally graded materials under

dynamic loading is investigated, which include problems both with and without cracks. The

research code I-CD (Illinois-Cohesive Dynamic) is developed using explicit dynamic scheme,

with graded elements in the bulk material, and graded cohesive elements to model fracture.

The graded elements are associated with nonhomogeneous elastic constitutive relationships of

the bulk material, and the graded cohesive elements are associated with traction-separation

relationships to describe the physical status at the crack tip (actual and fictitious) and the

fracture evolution. As illustrated in the study, the cohesive approach, which is based on a

cohesive view of material fracture, is promising for modeling generalized fracture without

predefined fracture criteria. It proves to be an attractive alternative approach for investi-

gating a broad range of fracture phenomena, especially for dynamic fracture propagation

problems involving branching and fragmentation, which are not handled properly by other

models.

In this Chapter, a brief summary of the content and contribution of the study is presented,

followed by a number of suggestions for the future work.

6.1 Concluding Remarks

This work first provides some background information, including an overview of the numerical

approach adopted in the study, explanation of the cohesive zone modeling concept, and how

this model is implemented in the numerical scheme. A number of existing CZMs are critically

reviewed to show the general capability of CZMs, as well as the advantages and potential

caveats of each model. After that, dynamic behavior of homogeneous and graded materials

without cracks are investigated. The explicit scheme is used in this study, with adaptation of

the time step control due to varying wave speed in FGMs. Graded elements are introduced
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by means of a generalized isoparametric formulation including material gradation at the

element level. Examples are presented to validate the code and assess the bulk behavior

under dynamic loading for homogeneous and functionally graded materials. A careful study

of 3-point-bending homogeneous and FGM beams reveals the effect of material gradient on

stress evolution in time. This investigation also provides some insight to predict the order of

crack initiation time for different material gradient cases, which was confirmed by simulations

with cracks.

Based on the understanding of CZMs for homogeneous materials, further discussion was

carried out for a CZM developed for FGMs, which is a potential-based surface network ap-

proach. The main drawbacks of this approach include the artificial compliance introduced

with the embedded cohesive elements, the attenuation of crack tip stress singularity due to

cohesive surface separation, and the crude approximation of mode mixity by using effec-

tive quantities. As an alternative, Xu and Needleman’s [46] model was extended to treat

FGMs, which eliminates the dependence upon effective quantities, and may provide certain

advantages when investigating crack branching. During the numerical implementation stage,

detailed discussion was made on the stability, accuracy, and mesh convergence issues.

With the numerical scheme described above, a number of numerical simulations are car-

ried out, for both homogenous and graded materials under dynamic loading, and considering

crack propagation in predefined and non-predefined paths. Comparison of results of numer-

ical simulation with those from experiments indicates that the cohesive zone approach is

capable of qualitatively capturing the fracture evolution characteristics in homogeneous and

graded materials, however, the quantitative match of results requires extensive calibration

of cohesive zone model parameters.

The primary contributions in this study are briefly summarized as follows:

• Extension of the generalized isoparametric element formulation using graded elements

to dynamic problems, which include both bulk and cohesive elements.

• Extension of the FGM CZM by Jin et al. [30] to the dynamic case.

• Extension of Xu and Needleman’s [46] CZM to FGMs.

• Implementation of compositionally varying cohesive energy, which is obtained from

actual experiments, rather than hypothetical assumptions.

• Investigation of difference between CZMs using effective quantities for traction-separation

relationship (e.g. [30]) and those using separate laws for normal and tangential quan-

tities (e.g. [46]).
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• Investigation of spontaneous crack nucleation capacity of CZMs.

• Investigation of crack propagation in FGMs under impact loading using real material

properties, and comparison of simulation results to that from experiments.

6.2 Suggestions for Future Work

To better explore fracture phenomena using the CZM approach, some fundamental issues

need to be addressed, which include development of physics-based FGM CZMs. The future

work on cohesive zone modeling should focus on a better understanding of the numerical

caveats introduced, the limitations of different forms of model, and the impact of cohesive

parameters entering the model. Based on such extended knowledge, a better CZM needs

to be developed that incorporates fracture mechanisms at the FGM microstructural level.

Specifically, the Camacho and Ortiz’ [6] model and the Virtual Internal Bond model [27]

should be scrutinized for their appealing features that have not been investigated in this

study.

Some open problems that call for closer attention and careful treatment for the CZM

approach are discussed below. The topic are listed from a more specific to a more general

computational perspective.

Investigation and comparison of intrinsic versus extrinsic CZMs. As an innate

characteristic of the intrinsicmodel, the artificial compliance is unavoidable. This mechanism

has been elaborated upon in Chapter 3. An alternative approach is to adopt an extrinsic

model for which the cohesive elements are inserted adaptively as in Camacho and Ortiz’s [6]

model. However, the adaptive modification of the mesh and the numerical model during the

actual computation poses additional complications, which need to be further investigated.

Mesh dependence. Xu and Needleman [46] have reported that distinctively different

crack propagation profiles are generated with different mesh orientation patterns. In ref-

erence [28], similar results have been presented, and the reason for this phenomenon was

ascribed to mesh size. To ensure that the crack propagates in a continuum way rather than

in a discrete manner, certain upper limit for mesh size needs to be prescribed. However this

limit requires the mesh size to be of the same scale of the material characteristic length, for

which the computation overhead is enormous. No results have yet been reported to demon-

strate that violation of this condition is indeed responsible for mesh dependence. Thus a
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systematic study need to be conducted to address mesh dependence in CZMs, including

recommendation for practical simulation frameworks.

Time discontinuity. Papoulia and Vavasis [33] pointed out that in numerical applications,

“initial rigidÔ models result in time discontinuous behavior if no special provision is made.

This time discontinuity gives rise to oscillatory, non-convergent results in time, as well as

dependence of results on nonphysical parameters. Though certain remedy was proposed

to cure this problem, it is argued that the measure taken entails another pathology called

“traction lockingÔ. Thus a mechanics-based treatment of “time-discontinuityÔ is needed.

Mode mixity effect. In some models, the normal and tangential traction-separation re-

lations are coupled, as in Xu and Needleman’s model [46], while in some others they are

not, as in Camacho and Ortiz’s model [6]. How to properly choose parameters to account

for the effect of mode mixity in CZM formulation remains unclear and should be further

investigated.

Physics-based model with microstructural considerations. A phenomenological model

proposed for FGMs tries to capture the fracture property at a scale where the influence of

discrete microstructure can be neglected. However, this proves to be problematic, as man-

ifested by the discrepancy between the cohesive energy variation curve predicted by the

proposed CZM and the experimental data for the glass/epoxy FGM beam (See Section 3.2).

The discussion on the actual energy variation curve reveals the importance of local struc-

ture and interaction of material phases. Hence, a better model should ideally consider the

microstructure of the FGMs, and may differ considerably in form for different FGMs systems.

Three-dimensional dynamic fracture simulations of advanced composites and

FGMs. Certain fracture phenomena, e.g. crack front tunneling effect, complex loading

conditions, and surface crack propagation, cannot be modelled by 2D simulation. Therefore,

3D simulation provides a richer field for fracture investigation, and models the fracture more

realistically. A practical simulation framework for 3D analysis need to be developed further.

Parallel Computing. Parallelization of program code is mandatory for large scale sim-

ulation, particularly for 3D dynamic fracture simulation. In 3D simulation, the number of

degrees of freedom (DOF) is usually high, and CZM parameters also dictates an upper limit

of mesh size. Thus large number of DOFs in bulk area is generated. Moreover, the presence

of cohesive elements again increases the number of DOFs of the finite element model by

145



introducing multiple nodes at the same location, and requires smaller time step to obtain

stable results. All these factors lead to huge computation overhead, hence parallel computing

must be employed.

Optimization of the code structure. Various element types (bulk and cohesive) are

present in the CZM approach. They are associated with different constitutive laws and re-

quire different treatment during computation. Various complexities are introduced by the

cohesive models, e.g. the adaptive insertion of cohesive elements and updating of mesh infor-

mation using extrinsic model, and extinction of cohesive elements after complete decohesion.

In light of these factors, advanced techniques need to be employed, including a more orga-

nized data structure, which would facilitate the management of data input/output, updating

of array data with dynamic bounds, and specific item selection and reporting. Alternative

programming languages may be considered, e.g. C++.

Scientific Visualization. Rich fracture fracture phenomena, e.g. crack tunneling, branch-

ing and fragmentation, can be captured with CZM approach. This also adds to the complex-

ity in understanding and explanation of the results, especially in 3D simulations. To help

understand the mechanical phenomena at various scales and regions of the body under inves-

tigation, scientific visualization tools need to be employed, including virtual reality. Various

means involving visual and audio effects can be pursued. This further requires development

of the finite element code to accomodate these features, e.g. real-time data retrieving, data

postprocessing.
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Appendix A

Nonlinear Finite Element Formulation

The explicit updating scheme employed in this study is a central difference method, and

Eqs. (1.39-1.41) for updating nodal displacements, accelerations and velocities from time

step (n) to (n+ 1) are re-written here for convenience:

un+1 = un +∆t Úun +
1

2
∆tün (A.1)

ün+1 = M−1(F+Rintn+1 −Rcohn+1) (A.2)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (A.3)

where ∆t denotes the time step, M is the mass matrix, F is the external force vector,

Rint and Rcoh are the global internal and cohesive force vectors, which are obtained from

the contribution of bulk and cohesive elements, respectively. The appendix focuses on the

methodology used to determine the internal force vector and the cohesive force vector.

A.1 Internal force vector

The global internal force vector Rint is assembled from the element internal force vector

Re
int, which is defined as

Re
int =

∫

Ve

[ke]{u}dVe (A.4)

with small deformation formulation, or

Re
int =

∫

Ve

[BNL]
T{S}dVe (A.5)

with large deformation formulation, which is derived from the first term of Eq. (1.38). The

matrix BNL relates a virtual displacement to the virtual Lagrangian strain.
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For small deformation formulation, the stiffness matrix k is constructed once and as-

sumed to remain unchanged throughout the computation. Thus the calculation of (A.4) is

straightforward, and the details are not repeated here. On the other hand, for large de-

formation, the stiffness matrix is dependent upon the deformation at each time step, and

the detailed formulation is presented below. The derivation refers to T6 elements, however,

analogous steps also apply to T3 elements. Both elements are employed in this work.

The displacement field u inside one element can be interpolated from nodal values using

shape functions:

u =
∑

Nidi (A.6)

where

u = [u v]T (A.7)

N =

[

N1 0 N2 0 N3 0 N4 0 N5 0 N6 0

0 N1 0 N2 0 N3 0 N4 0 N5 0 N6

]

(A.8)

d = [u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6]
T (A.9)

Green’s strain tensor is constructed considering high order term:

E =
1

2

(

∇u+∇Tu+∇u∇Tu
)

(A.10)

The following expression, which takes advantage of the symmetry properties of the tensors

S and E, is obtained after some algebra:

S : δE = S11δE11 + S12δE21 + S21δE12 + S22δE22

= S11δE11 + S12(δE21 + δE12) + S22δE22 (A.11)

= [BNL]T{S} · δd

where the stress vector {S} is defined as

{S} =











S11

S22

S12











(A.12)
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and

[BNL] =

















∂N1

∂x

(

1 +
∂u

∂x

)

∂N1

∂x

∂v

∂x
· · ·

∂N1

∂y

∂u

∂y

∂N1

∂y

(

1 +
∂v

∂y

)

· · ·

∂N1

∂y

(

1 +
∂u

∂x

)

+
∂N1

∂x

∂u

∂y

∂N1

∂x

(

1 +
∂v

∂y

)

+
∂N1

∂y

∂v

∂x
· · ·

















(A.13)

where the shape function derivatives Ni,x, Ni,y and displacement derivatives u,x, u,y, etc. are

constructed with the isoparametric formulation, i.e. using the Jacobian matrix and derivative

of shape functions in parametric space. The above expression only illustrates the first two

columns of the 3× 12 fully populated matrix for a 6-noded triangular elements in 2D space.

The second Piola-Kirchhoff stress S is related to Green’s strain tensor E as

S = CE (A.14)

where C denotes a fourth-order elastic stiffness matrix. In contracted form, the tensor E

comprises 3 components for the 2D problem:

E =











E11

E22

E12











=
1

2











F2
11 + F2

21 − 1

F2
12 + F2

22 − 1

F11F12 + F21F22











(A.15)

and the components form of deformation gradient tensor F can be written as

F =







1 +
∂u

∂x

∂u

∂y
∂v

∂x
1 +

∂v

∂y





 (A.16)

The relationship (A.14) can be expressed as











S11

S22

S12











= E











1 −ν 0

−ν 1 0

0 0
1

2(1− ν)





















E11

E22

E12











(A.17)

Once the BNL matrix and the S vector are constructed, the internal force can be com-
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puted accordingly using Gauss quadrature:

Re
int =

1

2

n
∑

i=1

wiJi[B
NL]Ti











S11

S22

S12











i

(A.18)

where wi and Ji denote the weight and Jacobian values evaluated at Gauss point i, respec-

tively.

A.2 Cohesive Force Vector

The global cohesive force vector Rcoh is assembled from the element cohesive force vector

Re
coh, which is defined as

Re
coh =

∫

Γe

[N]T{T}dΓ (A.19)

where N is the shape function matrix and T is the traction vector. For 2D problems, the

cohesive elements are line elements, and the shape functions are

N1 =
ξ

2
(ξ − 1), N2 =

ξ

2
(ξ + 1), N3 = 1− ξ2 (A.20)

for quadratic line elements (when T6 bulk elements are used) and

N1 = −1

2
(ξ − 1), N2 =

1

2
(ξ + 1) (A.21)

for linear line elements (when T3 bulk elements are used). Expression (A.19) is evaluated

numerically by integrating the tractions along the cohesive element surface using Gauss

quadrature

Rcohj =
L

2

n
∑

i=1

wiNj(ξi)T (ξi) (A.22)

and a three point quadrature rule was used with the Gauss points ξ and weights w listed in

Table A.1.

Table A.1: Three point Gauss quadrature rule for cohesive line element integration

ξ1 ξ2 ξ3 w1 w2 w3

−
√
0.6

√
0.6 0 5/9 5/9 8/9

Notice that the cohesive force vector Re
coh is constructed with respect to the global co-
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ordinate system, while the traction T is determined in a local coordinate system depending

on the interface separation. Therefore, transformations between the local and global coor-

dinate systems need to be carried out for the interface separations in normal and tangential

directions
{

δt

δn

}

=

[

cosα sinα

− sinα cosα

]{

δx

δy

}

(A.23)

and for interface tractions back to global coordinate system

{

Tx

Ty

}

=

[

cosα − sinα

sinα cosα

]{

Tt

Tn

}

(A.24)

where α is the angle of the cohesive element interface measured in the global coordinate

system. During computation, the α value needs to be updated to obtain accurate cohesive

force because the elements around the crack tip can experience large rotations.
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